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Abstract—The IaaS (Infrastructure as a Service) is one of the
most popular services from todays cloud service providers, where
the virtual machines (VM) are rented by users who can deploy
any program they want in the VMs to make their own websites or
use as their remote desktops. However, this poses a major chal-
lenge for cloud IaaS providers who cannot control the software
programs that users develop, install or download on their rented
VMs. Those programs may not be well developed with various
bugs or even downloaded/installed together with virus, which
often make damages to the VMs or infect the cloud platform. To
keep the health of a cloud IaaS platform, it is very important
to implement the PHM (Prognostics and Health Management)
technology for detecting those software problems and self-healing
them in an intelligent and timely way. This paper realized a novel
PHM technology inspired by biological autonomic nervous system
to deal with the memory anomalies of those programs running on
the cloud IaaS platform. We first present an innovative autonomic
computing technology called Bionic Autonomic Nervous System
(BANS) to endow the cloud system with distinctive capabilities of
perception, detection, reflection, and learning. Then, we propose
a BANS-based Prognostics and Health Management (BPHM)
technology to enable the cloud system self-dealing with various
memory anomalies. AI-based failure prognostics, immediate self-
healing, self-learning ability and self-improvement functions are
implemented. Experimental results illustrate that the designed
BPHM can automatically and intelligently deal with complex
memory anomalies in a real cloud system for IaaS, to keep the
system much more reliable and healthier.

Index Terms—reliability, prognostics and health management,
artificial intelligence, cloud computing, memory anomaly, Infras-
tructure as a Service.

I. INTRODUCTION

Nowadays, cloud systems become increasingly large and

complex for integrating a great number of heterogeneous

computing resources to support various science, engineering

and commercial applications. Since the cloud system plays

an irreplaceable role in supporting internet-based applications,

how to guarantee the reliability of the cloud system is indeed

a crucial issue [1]. Due to large scale and high complexity

of the cloud system, failures in a cloud system are difficult

to be diagnosed and removed in a timely manner by using

some traditional and manual mechanisms, for example, test-

debugging approaches and fault detection and isolation (FDI)

tools [2][3]. Therefore, failure prognostics and autonomic

health management would be indispensable for a large and

complex cloud system [4].

Prognostics and Health Management (PHM) is an efficient

technology that performs modeling, assessment, and improve-

ment of reliability under actual conditions of a complex

system. The PHM has been successfully adopted in various

IT systems for ensuring the system to be reliable in real

time [5], especially for large-scale network systems, wireless

sensor systems [6], and smart grid systems [7]. Two important

advantages of PHM can be summarized as: providing early

warning on failures and maintaining effectiveness through

timely maintenance actions [8], that is, prognostics of failures

and management of system health. It is difficult but obviously

meaningful to endow a large-scale cloud system with such two

key functions [9].

In a large-scale cloud system, varieties of programs and

applications can be delivered by cloud users to the cloud sys-

tem. These programs and applications are executed in virtual

machines (VM) for realizing non-interfering share of hetero-

geneous computational resources [10]. For example, Amazon

provides Infrastructure-as-a-Service (IaaS) (e.g., Amazon EC2

and Amazon Elastic Container Service [11]) for cloud users.

Then, the cloud users rent VMs from Amazon for running

their personal programs and applications [12][13]. However,

it is impossible that the cloud system tests or verifies the

correctness of all these programs and applications in advance.

Therefore, in realistic environment, a VM will inevitably

encounter various failures caused by running user programs

and applications. In a practical scenario, VMs must have some

abnormal conditions before the final failure, which are usually

regarded as unusual resource use, i.e., abnormal changes in

CPU, memory, disk and network metrics.

Memory anomalies are a common category of failures that

occurs frequently in the users’ applications running in the VMs

of a large-scale cloud system. It is because when users develop

the applications running on the VMs they don’t care too much

about memory leakage for the VMs are maintained not by

them but by the cloud service providers. Recent researches

on memory anomaly detection for the cloud system focus

on statistics analysis of memory metrics [14][15], such as

exploring metric space of a VM [16], or finding change trends

of memory usages for programs and applications hosted on

a VM [17]. However, these existing researches ignore an

important fact that some memory anomalies not only lead

to unusual memory usages but also result in some correlated

abnormal changes in other metrics (e.g., the CPU metric and
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the network metric) [18]. This is because that there exist a

kaleidoscope of causes of memory anomalies. For example,

if an application running in a VM has a memory anomaly

of memory leak, it may only affect the memory metric of the

VM [14]. However, if it has been infected by a computer virus,

abnormal memory usage definitely exists due to the virus must

run in the memory [19], and it also has complicated effects

on the CPU, disk, and network metrics depending on specific

actions of the virus.

Therefore, due to the large-scale cloud system running

various user programs and applications on the host, the

memory exception problem becomes more serious and severe

than ever before. Such problem cannot be effectively solved

by using some traditional methods, because the traditional

methods first need to use debugging [20], error location [21]

or some specific detection tools [22] to find the specific causes

of memory exceptions. However, this action is truly time-

consuming, and thus it is very inefficient or even unrealistic

from the perspective of the cloud system. More importantly,

the cloud system has no responsibility or access to remove

bugs, errors, or faults of all users’ programs and applications

without original codes. The cloud system can only manage its

own health to prevent serious damage from unknown memory

anomalies.

The PHM technology provides an efficient approach to

manage the health of a system in real time. For the large-

scale cloud system, the PHM also needs autonomic computing

[23] and self-learning abilities to guarantee the health of

the cloud system (i.e., an expected normal system condition)

against varieties of memory anomalies. To realize an intelligent

PHM technology for the cloud computing, in this paper, we

first integrate an innovative autonomic computing technology

called Bionic Autonomic Nervous System (BANS) with the

PHM technology. Today’s large-scale cloud systems are just

like a human but without an autonomic nervous system,

and thus the BANS can endow the systems with powerful

capabilities of self-management and self-improvement. After

building up the BANS-based PHM (BPHM) structure, we

further adopt the machine learning to build failure models for

VMs, which can be used to realize the prognostics function

of the cloud system. The deep learning technique is also

studied to realize a self-healing module that recovers various

memory anomalies timely. Finally, we propose a self-healing

module in BPHM, which is updated by using reliability model

and reinforcement learning (RL) technology to improve the

accuracy of self-healing in real-time running cloud. Then,

the BPHM can be very effective, which perceives complex

memory anomaly phenomenon, detects failures in advance,

reflects a healing plan timely, and learns knowledge to improve

the accuracy of the BPHM.

Section 2 describes the design of the PHM system merging

with our new biologically inspired technology BANS for

dealing with the memory anomaly problem in the cloud

system. Section 3 presents the implementation of the BPHM,

where health index monitor, intelligent failure prognostics,

self-healing and self-learning abilities are integrated in a
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Fig. 1. Combination of the BANS and the cloud system.

holistic manner. Section 4 shows the experimental results of

our researches. Section 5 is the conclusion and future works.

II. DESIGN OF THE BANS-BASED PHM

A. Distinctive capabilities of the BANS

Bionic Autonomic Nervous System (BANS) is a

biologically-inspired technology. It is analogous to human

autonomic nervous systems that work in an unconscious

manner (e.g., conditional reflection). Such an autonomic

nervous system is indeed crucial and indispensable for

keeping our body functioning well.

We should note that the autonomic nervous system have

some unique and distinctive capabilities, particularly, per-
ception, detection, reflection and learning. Take that a child

accidentally touches a flame as an example. In the autonomic

nervous system, skin temperature perceived by axons is trans-

mitted to the neuron in real time. The axon’s perception works

in all times but most normal perception does not incur the

reflection except some stimulus, such as the flame touch in

this example. When the neuron detects this abnormal and

harmful situation, it immediately sends an electrical signal to

the peripheral nerve. The peripheral nerve is now triggered to

take a conditional reflection (i.e., stress action) of removing

the finger away from the flame as soon as possible. Note that

such conditional reflection is executed in a totally autonomic

manner without any control of brain. At the same time,

the peripheral nerve also transmits the information to the

central nerve, which is connected with the human brain to

learn experience or knowledge from events. Finally, with the

irreplaceable help of the autonomic nervous system, the child

will never deliberately touch the fire again (i.e., self-learning

and improvement).

The BANS is a novel technology that imitates such a human

autonomic nervous system with those distinctive capabilities,

and the BANS consists of four basic modules: the cyber

axon, the cyber neuron, the peripheral never and the central

never. The BANS could be a prefect remedy of the lack of

an efficient autonomic management system for the large-scale

cloud system, as shown in Fig. 1.
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As shown in the figure, servers in the cloud system hosts

various VMs. Each VM runs multiple perception threads that

monitor operational conditions of the VMs in real time, which

can be treated as cyber axons in the BANS. Meanwhile,

cyber neurons have detection functions resident in the VM to

determine whether an abnormal stimulation occurs. Once the

cyber neuron detects an abnormal situation, it creates a signal

for triggering the peripheral nerve, and also transmits the

abnormal perception information to the peripheral never. The

peripheral nerve connects the host server with the edge server.

The edge server works for network fusion in the cloud system.

The peripheral never has an important reflection function,

which can immediately reflect a signal to the physical server

for taking a quick stress reaction to prevent the server suffering

from a severe consequence. This reflection procedure works in

an autonomic way without the participation of central servers

in the cloud system. In fact, the conditional reflection action

can be further improved. That is, the peripheral nerve also

transmits the information about perception and reflection to

the central never (i.e., central servers in the cloud system) for

self-learning and improvement. The central nerve is capable

of self-learning to derive useful experience or knowledge

from the information reported by the peripheral nerve, and

finally coordinates the peripheral nerve to achieve intelligent

improvement.

B. BANS-based PHM Structure

To realize an autonomic and intelligent PHM system for

solving the memory anomaly problem existed in the cloud

system, the BANS should be customized with specific func-

tions of the PHM system. That is, a deliberately designed

BANS-based PHM (BPHM) structure. As shown in Fig. 2,

the presented BPHM structure consists of four important

modules corresponding to the cyber axon, the cyber neuron,

the peripheral nerve, and the central nerve in the BANS. The

design of these modules are described as follows.

1) Health index monitor (by the cyber axon): the cyber

axon associated with the cyber neuron is realized as the

health index monitor in the BPHM structure. The health

index monitor is a resident process running in all VMs.

It has multiple threads imitating cyber axons that perceive

various health metrics. Now, these threads glean various real-

time metrics to perceive the running condition of the host

VM. The gleaned metrics include resource usages of CPU,

memory, disk and bandwidth. Meanwhile, the cyber axon

has a quantification of the health index derived from those

metrics for the VM (suppose it is X). The health index is

designed to comprehensively cover not only real-time data

but also some historical information, such as mean values

and max values of some metrics over a related short time

period. Having the quantification of the health index, the

VM-resident health index monitor transmits the health index

(X = {x1, x2, . . . , xN}) to the cyber neuron in real time.

2) Intelligent prognostics (by the cyber neuron): the cyber

neuron is designed as an intelligent prognostics module in

the BPHM structure. The cyber neuron runs in the server

to realize failure detection of its VMs. The failure detection

function is derived by training a neural network (NN). The

NN takes perceived health indices as the input and takes

a signal representing whether a memory anomaly occurs as

the output. The NN has the capability of machine learning,

and thus can finally give us a failure detection function

y = hw(X), where w and y are the optimal parameter set and

the output of the NN, respectively. Now, the cyber neuron can

perform the failure prognostics for various memory anomalies

by using y = hw(X). Once the cyber neuron identifies an

abnormal health index, it immediately generates a signal of

exceptional occurrence and then triggers the peripheral nerve.

This procedure just like the biological neuron conducts an

electric signal from a stimuli.

3) Self healing (by the peripheral nerve): the biological

peripheral nerve is responsible for creating an immediate

reflection for executing a stress action in an unconscious

manner. Therefore, the peripheral nerve in the BPHM also

needs have two similar capabilities: self-healing imitating au-

tonomic reflection, and some preset healing plans resembling

unconscious stress actions. We can adopt a deep learning

(DL) network to build up such a self-healing system to

fulfill immediate healing. The inputs of the DL network are

exceptional health indices, and the output of the DL network

is a corresponding healing plan k (k = 1, . . . ,K) that is

selected from K preset healing plans defined in advance.

After training the deep learning network, the self-healing

module can perform the conditional reflection that gives the

immediate healing plan k for the detected failure. Meanwhile,

the peripheral never also reports the information about the self

healing to the central nerve for supporting further learning and

improvement.

4) Self Improvement (by the central nerve): In biology,

the brain and spinal cord make up the central nerve, which

mainly takes charge of activity improvement. Therefore, the

central server in the cloud system can be treated as the central

nerve in the BPHM structure. As shown in Fig. 2, the central

nerve have two key functions of learning and improvement.

The reinforce learning (RL) is a powerful technique can

achieve the goal of self-learning and self-improvement. The
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objective of the RL is to improve the accuracy of the self-

healing. This is because that the reflected healing plan k given

by the self-healing may not be the most accurate one for the

detected failure due to complex memory anomalies. Hereby,

we use reliability models to computer an error �R to train

the RL model. That is, after receiving the information reported

by the peripheral never, the central nerve use the information

to derive reliability metrics R′ that quantifies the system

reliability after healing. Then, the central nerve computes an

error as �R = 1 − R′, where ‘1’ represents the idealistic

condition of the cloud system without any failures. Now, �R
can be treated as a deviation between the health condition after

executing the reflected healing plan k and the perfect health

condition of the cloud system. Although such perfect health

condition is hard to achieved, the RL will try to make the

deviation smaller and smaller through the self-learning, that

is, keep improving the accuracy of the self-healing.

III. REALIZATION OF THE BPHM

A. Health Index for Perception

Since cloud users rent VMs from the cloud system for

running their personal applications, there may exist unknown

possibilities of causing memory anomalies, e.g., program bugs,

software faults, viruses and malware. In principle, the cloud

system cannot access the original codes of the users applica-

tions to find specific causes of memory anomalies. Therefore,

running state of the rent VMs should be perceived in real time

for preventing failures. Here, we give a vector named as the

health index to describe the state of the VM. The design of

the health index satisfies the following principles.

1) Observability: the health index must include multiple

observable metrics. These metrics can be observed, captured,

and analyzed in real time, which like human body condition

that can be perceived by axons anytime.

2) Failure correlation: a failure definitely has a negative

effect on the system health. Therefore, the health index has

important correlation with the failure. That is, if a VM has

a memory anomaly, the health index should be able to reveal

some correlated and abnormal changes that potentially implies

a failure may happen.

3) Health-related: the metrics in the health index should be

health-related to provide valuable information for supporting

the follow-up self-healing and self-improvement in the BPHM.

Thus, the i-th cyber axon can monitor the i-th health

index at any time t, to obtain xi(t). Suppose there are a

total number of N health indices fulling the above three

conditions. Then, there should be N cyber axons to monitor

their corresponding health index at any time t, generating a set

of X(t) = {x1(t), x2(t), . . . , xN (t)}, at a certain time t. X(t)
will become the input for the following intelligent prognostics

by the corresponding cyber neuron.

B. Intelligent Prognostics for Detection

There are two important steps to realize the intelligent

prognostics to detect whether a failure happens according to

gleaned health indices, which is presented as follows.

Step 1. Train a neural network to learn the failure prog-
nostics: To endow the cyber neuron with the capability of

the intelligent prognostics, we can adopt the NN to learn

the knowledge about the failure prognostics. The NN has

been widely applied into many fields that require artificial

intelligence. The training set of the NN is a batch of datasets

including two parts of data, i.e., normal health indices with a

label of ‘0’ and abnormal health indices with a label of ‘1’.

The abnormal health indices are gleaned from some actual

memory anomaly problems that are observed before. Suppose

the input of the NN is X, that is,

X =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

x
(1)
1 , x

(1)
2 , . . . , x

(1)
N , y(1)

x
(2)
1 , x

(2)
2 , . . . , x

(2)
N , y(2)

. . .

. . .

x
(M)
1 , x

(M)
2 , . . . , x

(M)
N , y(M)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(1)

where y(m) (y(m) ∈ {0, 1},m = 1, 2, . . . ,M) is the la-

bel of the mth sample (m = 1, 2, . . . ,M ), and X(m) =

[x
(m)
1 , x

(m)
2 , . . . , x

(m)
N ] is the health index of the mth sample

in X. Now, the NN gives a failure prognostics model (i.e.,
detection function) of y = hw(X), where w is the parameter

sets of the NN. Now, for a health index X gleaned real time,

the output y is derived as

y =

{
1, hw(X) ≥ 0.5

0, hw(X) < 0.5
(2)

For deriving the failure prognostics model with an optimal

parameter set w, the cost function of the NN is given as

C(w) =

− 1

M

(
M∑

m=1

y · loghw(X) + (1− y) · log
(
1− hw(X)

))
(3)

and we can use a gradient descent algorithm to derive w for

minw C(w) by iterating

wj = wj − α · ∂

∂wj
C(w), for all wj ∈ w (4)

where α is a learning rate of the NN.

Step 2. Detect a failure and trigger the successive self-
healing: Now, the cyber neuron has the intelligent failure

model to sense stimulus (i.e., various memory anomalies).

The real-time health index X(t) gleaned by the cyber axon is

transmit to the cyber neuron as the input of y(t) = hw (X(t)).
Once the cyber neuron find that the output becomes y(t) = 1,

it immediately transmit a signal to the peripheral nerve for

triggering the self-healing action.

C. Consequence-oriented Self-Healing for Reflection

After receiving a trigger signal from the cyber neuron, the

peripheral nerve needs to reflect a healing plan for dealing with
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Fig. 3. Structure of the deep learning network.

the failure timely. We call this procedure as the consequence-

oriented self-healing. Since the self-healing should give a

healing plan immediately to alleviate consequence that may

be caused by the faults, appropriate healing plans must be

preset in advance. Here, the healing plans are designed from

the consequence-oriented perspective of the cloud system,

which are different from those that focus on program debugs,

logical errors, or software faults in users’ applications. Some

principles to design the consequence-oriented healing plans

are listed as follows.

1) Not to stop the program, or change the codes, nor recom-

pile it. This is because the cloud IaaS providers cannot access

the software codes that users develop, install or download on

their rented VMs.

2) Not to reboot the physical server (host machine) when

encountering problems in a virtual machine, thereby minimiz-

ing the effect on other ongoing tasks and processes. This is

very important for the cloud IaaS, since there are other cloud

users VMs are hosted on the same physical server.

3) Even though the consequence-oriented healing plan

cannot remove bugs or recompile the program, it should

has a significant effect on restraining/alleviating the conse-

quence/damage of the occurred memory anomaly. For exam-

ple, limiting the upper memory usage of the process with a

slight memory leak.

4) The healing plan should consider the generality which

can fit the heterogeneity of memory anomalies existed in

various users programs and applications.

After designing the healing plans satisfying the above

requirements, the reflection rule can be determined to match

them to the corresponding memory anomalies. For example,

the reflection rule can be set according to certain categories

of the memory anomalies.

In Fig. 3, z(i) and a(i) are the input vector and the output

vector of layer i, and z(i+1) = Θ(i)a(i) gives the transform

form layer i to layer i + 1. Function a(i) = g(z(i)) is an

activation function applied to z(i), such as a sigmoid function

g(z) = 1/(1 + e−z). This will give us activation for hidden

layer i. Finally, the output layer gives k as the output of

the DL network. The DL network uses the gradient descend

with momentum and adaptive learning rate algorithm [24] to

perform convergent iteration.

After training the DL network, we can have the self-

healing function of k = πΘ(X), where Θ is an optimal

parameter set of the DL network, and X is an exceptional

health index transmitted from the cyber neuron. As soon as

the peripheral nerve receives the exceptional health index X , it

can immediately reflect a healing plan k (k = 1, 2, . . . ,K) to

make a stress action. Finally, the peripheral nerve also reports

X , k and πΘ(X) to the central nerve for supporting the self-

learning and self-improvement.

D. Cloud Service Reliability Modeling for IaaS

Since the reflection rule of the self-healing module during

the training process is to learn some historical training data, it

may not be the most accurate rule for healing various memory

anomalies in a new cloud platform. Therefore, a reinforce

learning for self-improvement module is essential and crucial

for the BPHM, which can increasingly coordinate and update

the self-healing for a better accuracy to adapt to the new cloud

platform. This module embedded into central nerves should

fulfill two important functions: quantifying healing effect of a

reflected plan and learning knowledge from this healing action.

Thus, we first present an effective approach to quantify the

healing effect of a reflected healing plan given by the self-

healing module, that is, a reliability-related metric �R. To

derive such an evaluation metric, a cloud service reliability

model for the IaaS system need to be built up first. As

the cloud IaaS system provides VMs to users, we make

the following assumptions for modeling the cloud service

reliability.

1)VMs created by the same template of a cloud system

are homogeneous with an identical failure rate. The failures

of those VMs follow the exponential distribution with the

constant parameter λ0, which has been widely accepted in

reliability area, see e.g. [25][26].

2)Once a VM is assigned to a cloud user, the failure rate

of the VM becomes different. This is because that the user’s

personal applications hosted on the VM have some inevitable

effects on the failure rate of the VM. Suppose the cloud system

assigns N VMs to different users, and thus the failure rates

of these VMs are λ1, . . . , λn, . . . , λN , respectively.

3)The cloud system also runs M hot-standby VMs for

guaranteeing service reliability of the cloud system. The failure

rates of those hot-standby VMs are λ0. Once a VM assigned

to the cloud user is failed due to a failure, the cloud system

migrates the user’s applications to a hot-standby VM, and the

number of the hot-standby VMs becomes M − 1. The live

migration between VMs is technologically feasible in cloud

computing, see e.g. [27].

4)If a hot-standby VM is failed due to failures of itself, M
also changes to M − 1.

Given the above assumptions, such a cloud IaaS system can

be treated as a k-out-of-n system [28], and states of this system

can be modeled by a Markov process, as the following Fig. 4.

State m (m = 1, 2, . . . ,M) represents that there are m
hot-standby VMs remaining in the cloud system, and state

−1 means that the cloud service failed because at least one

necessary VM required by the N users is unavailable. For
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Fig. 4. Markov model for the k-out-of-n cloud system.

m = M,M − 1, . . . , 1, there are two events result in that the

state transmits from m to m−1. One is that a VM assigned to

the cloud user has a failure, and thus the user’s application is

migrated to a hot-standby VM. Another is a hot-standby VM

is failed due to failures of itself. Therefore, the state transmits

from m to m−1 with the rate of
∑N

n=1 λn+m·λ0. As for state

0 shown in the figure, there is no hot-standby VM anymore.

Therefore, the system transmits from 0 to -1 with the rate of∑N
n=1 λn. Let random variable Tm (m = M,M−1, . . . , 1, 0)

represent the random time of the transition from state m to

m − 1. The one-step transition probability from state m to

m− 1 during time interval t can be derived as

Fm(t) = Pr (Tm < t|S(0) = m)

= 1− exp

(
(−

N∑
n=1

λn +mλ0) · t
)
, 0 < t < ∞

(5)

where {S(t), t ≤ 0} represent the stochastic model shown in

Fig. 4.

Now, suppose T is the random time for the cloud system

transmits to state -1. The cumulative distribution function

(CDF) of T can be derived by

F (t) = FM (t) ∗ FM−1(t) ∗ · · · ∗ Fm(t) ∗ · · · ∗ F0(t) (6)

where ‘*’ denotes the Stieltjes convolution of two functions.

Having the CDF of T , we can give a service reliability of the

cloud system as

R(t) = 1− F (t) (7)

Now, different healing plans change parameters of the reli-

ability stochastic model. For example, for the standard healing

plans of limiting the upper memory usage and suspending a

suspicious progress, they have positive effect on decreasing

the failure rate of the VM. As for the healing plan of the VM

migration, it also change the failure rate of the host server

to a new value. For the other healing plans, (i.e., the VM

rollback and the VM reboot), VM failure rate λ also becomes

different. More details of the stochastic models related to the

failure recovery for the cloud system can be found in our prior

research [29][30].

E. Reinforce Learning for Self-Improvement

The BPHM has a program to estimate parameters of the

service reliability model of the cloud system. The parameters

of the model for a healing plan can be estimated by using some

statistical method, such as the maximum likelihood estimation

(MLE). Once the central nerve receives information about a

Fig. 5. Reinforce learning for learning and improvement.

conditional reflection for a memory anomaly from the periph-

eral nerve, it use the information to train the reinforce learning

network. The central nerve first updates the parameters in

the service reliability model to derive the reliability metric

�R. Then, �R can be inputted into the reinforce learning

network, and the object of the reinforce learning is to minimize

error �R. After performing the self learning, the central nerve

update the self healing module for realizing self improvement.

The reinforce learning technique is shown in Fig. 5.

As shown in the figure, after receiving the report informa-

tion (i.e., the reflection rule, the reflected plan, the exceptional

health index, and so on) from the peripheral never, the central

nerve first updates the parameter of the reliability model

(changes of the parameters may be slight, but it is not a

problem since the reinforce learning is a continuous and real-

time process), and then compute the error for the reflected

healing plan. This error and the report information become

the inputs of the reinforce network. Then, after training the

reinforce network with the important self-learning capability,

a more efficient healing plan is derived, and the central nerve

also updates the self-healing model and the reflection rule in

the peripheral nerve to realize self-improvement.

The reinforce learning network can be realized by using an

Actor-Critic algorithms [31][32], where the service reliability

model is the critic of the reinforce learning network, and the

self-healing model with the reflection rule is the actor of the

reinforce learning network.

IV. IMPLEMENTATION AND CASE STUDY

A. Environment of the Case Study

This is a real case study running on a cloud computing

system that provides a typical IaaS for VMs leased for

teaching and research in our university. Users of this cloud

IaaS system, including students, teachers, and researchers, can

request a VM for running their personal applications to do

research or teach. For example, a student can build a big-

data testing environment using VMs provided by our IaaS

cloud system. A teacher can also preset software demos in

a VM for teaching. Meanwhile, a researcher can deploy a

complicated development environment among multiple VMs

(e.g., a Hadoop system or a TensorFlow AI system). Then,

they can develop and test new techniques and do scientific
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experiments by utilizing the computational resources of our

IaaS cloud.

The infrastructure of our cloud system consists of several

hundred physical servers. The central servers and the edge

servers are deployed with Inventec cloud controller servers

K900 and Asus GPU servers ESC4000 G3, respectively. The

computing resource pool of the cloud system are deployed

with plenty of servers that have Intel Xeon CPU E5-2407 (

4× 2.2 GHz ), 96 G memory, and 2TB disk each.

In this case study, we choose 40 identical physical servers,

where 8 VMs are hosted on one physical server. Among the

320 VMs, we set up 200 VMs to simulate different usages

for teaching and research by running corresponding programs,

and prepare 100 hot standby VMs for backups. Each VM

is assigned 4G memory, 2 CPU core, and 128G disk. The

remaining 20 VMs are reserved for the real-time reliability

evaluation and self-learning function of central nerves.

We have already implemented the proposed BPHM for

our cloud IaaS system. Each VM has one cyber neuron for

prognostics function running in it as a process and multiple

cyber axons running as threads to monitor the health indices.

Each physical server (host machine) has one peripheral nerve

for self-healing function running in it as an OS-level program.

There are 20 VMs particularly work as central nerves for

reliability modeling and self-learning function with the im-

plementation by the open-source TensorFlow. Historical data

gleaned by our cloud IaaS system is used to train the failure

prognostics module and the self-healing module in the BPHM.

In this experiment, we have a fault generator to randomly

generate faults among different types of the memory anoma-

lies, and then inject the fault into a randomly selected VM.

The fault generator follows a Poisson distribution. Then we

can do the case study to verify the BPHM in our cloud IaaS

system.

The following subsection 4.2 first describes the health

index monitored by cyber-axons. Subsection 4.3 shows the

experimental results of failure prognostics by cyber-neurons.

Subsection 4.4 shows the experimental results of self-healing

by peripheral nerves. Subsection 4.5 shows the experimental

results of self-learning by central nerves. Subsection 4.6 shows

the overall performance of BPHM with regular maintenance.

B. Health Index Monitored by Cyber-Axons

In this case study, we define a health index as a vector

consists of multiple metrics related to resource usages of the

VM, that is, X = {x1, x2, . . . , xN}. Elements in the health

index includes both historical and real-time data gleaned by the

cyber axons. The design of the health index we implemented

here is described as follows:

Memory usage related metrics: since the memory usage

is the most obvious phenomenon effected by the memory

anomaly, the health index includes more metrics related the

memory usage:

1) Instant memory usage: real-time memory usage metric

of the VM, denoted by x1;

(a) No correlation memory anomaly (b) CPU-correlated memory anomaly

Fig. 6. Two examples of historical data for different memory anomalies.

2) Derivative of the memory usage: it is a metric that needs

to be computed. It is obtained as (x1(ts)− x1(ts−1)) /�t,
where �t = ts−ts−1 is the time span between two continuous

sample points. This metric is denoted by x2.

3) Mean memory usage: it is the mean value of the memory

usage over S sample points (S is usually set as a relative small

value). It can be calculated as
∑S

s=1 x1(ts)/S, where x1(ts)
is the instant memory usage at sample point ts (s = 1, . . . , S).
This metric, x3, can help the cyber axon have an information

of historical conditions of the memory usage.

4) Increase possibility of the memory usage: given S sample

points tS , tS−1, . . . , t2, t1, find the number of the samples that

satisfies x(ts) − x1(ts−1) > 0, suppose it is S′. Then, this

metric denoted by x4 is written as S′/S.

CPU usage related metrics: in general, the CPU usage has

a strong correlation with the memory usage because the CPU

often performs too busy if memory is not enough. Therefore,

we also give more metrics to describe a comprehensive CPU

usage situation. Similar with the metrics designed for describ-

ing the memory condition, multiple metrics are collected and

computed to show the condition of the CPU, including instant

CPU usage (x5), derivative of the CPU usage (x6), mean CPU

usage (x7), and increase possibility of the CPU usage (x8).

Disk and network related metrics: the I/O throughput (x9) is

also correlated with memory consumption for virtual memory

communicating with disks via I/O. The network throughput of

the VM (x10) can be treated as valuable metrics for memory

anomaly when users apply VM to provide web services.

Health index: after normalizing these metrics, the health

index can be derived as X = {x1, . . . , xN} (N = 10),

which is transmitted to the cyber neuron for intelligent failure

prognostics. Note that the health index can be customized by

a specific cloud system for some special demands.

According to the designed health index for our cloud

system, the cyber axon gleans real data for all VMs rent to

cloud users. Hereby, we illustrate two data examples of the

health index that is being monitored by cyber axons. Fig. 6

shows data sets of health index when two kinds of memory

anomalies happened. In Fig. 6 (a), we can find that the memory

usage keeps continuous increase, and the CPU usage decreases

dramatically. This may be a memory leak. That is, all memory

resource has been occupied by an abnormal program, and thus

all normal programs can not request memory resource any

more, which results in that the CPU resource becomes idle.
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TABLE I
EXPERIMENT RESULTS FOR THE FAILURE PROGNOSTICS MODULE.

Description Number of Data Number of Misreported Data Value
Accuracy rate Mnor +Mab = 25656 Merr1 +Merr2 = 159 99.3803%
Type 1 error Mnor = 21186 Merr1 = 114 0.5381%
Type 2 error Mab = 4470 Merr2 = 45 1.0067%

However, in Fig. 6 (b), there is a totally different memory

anomaly. We can find that the CPU usage remains at a high

level with the increase of the memory usage, which means

that the occurred memory anomaly may be a CPU-correlated

memory anomaly, such as a virus occupies a large amount of

the CPU resource.

C. Failure Prognostics by Cyber-Neurons

We first use almost 40000 historical records of the health

index (including normal indices and abnormal indices) to train

the cyber neuron and the peripheral nerve. After training the

cyber neuron and the peripheral nerve, the BPHM system has

capabilities of the failure prognostics and the self healing.

Then, a verification dataset with 21186 (denoted by Mnor)

normal health indices and 4470 (denoted by Mab) abnormal

health indices are inputted into the BPHM to verify the trained

cyber neuron and peripheral nerve. Given a health index X ,

the trained cyber neuron use the failure prognostics model

y = hw(X) to output a result as y = 1 or y = 0. The diagnosis

accuracy is defined as

diagacc =
Mcorr

Mnor +Mab
(8)

where Mcorr is the number of health indices that are diagnosed

correctly. From (8), the experimental results shows that the

trained failure prognostics module in the BPHM achieves an

accuracy of diagacc = 99.3903% where there are only 159 data

do not have a correct diagnosis result. Two types of errors are

used to analyze 159 indices with wrong diagnosis results, that

is,

1) Type 1 error: if a normal health index is diagnosed as that

it will lead to a failure, the diagnosis result is treated as a type

1 error. Suppose there are Merr1 diagnosis results having the

type 1. The type 1 error rate of the failure prognostics module

is given by

err1 =
Merr1

Mnor
(9)

In the verification dataset, there are 114 normal indices

have the type 1 error, and the type 1 error rate is err1 =
144/21186 = 0.5381%.

2) Type 2 error: if an abnormal index of a memory anomaly

that should be detected is actually missed, it results in a type

2 error. Let Merr2 represent the total number of indices with

the type 2 error. The type 2 error rate is written as

err2 =
Merr2

Mnor
(10)

There are 45 abnormal indices have been missed by the

self-diagnosis module, and the corresponding type 2 error rate

is computed as err2 = 45/4470 = 1.0067%.

If a failure detection result has the type 2 error, it is

missed by the BPHM. The corresponding memory anomaly

will lead to the service reliability decrease of the cloud system.

However, the problem of the type 2 error can be effectively

solved by adopting the BPHM and regular maintenance, which

will be introduced in the following subsections.

D. Self-Healing by Peripheral Nerves

To reflect a healing plan for an exceptional health index,

a conditional reflection rule should be preset in advance. In

practice, abnormal healing indices are observed as different

symptoms caused by different memory anomalies. Therefore,

it is rational to define the reflection rule according to categories

of the memory anomalies.

In fact, with the run of our cloud system, we found that if

more metrics in the health index are affected by a memory

anomaly, the self-healing reflection usually needs to deal with

the consequence of all infected components. Therefore, in

our implementation, we give the categories of the memory

anomaly according to the correlation of abnormal changes

among different metrics in the health index. There are five

categories of various memory anomalies are listed as follows.

1) No-correlation memory anomaly: such a memory

anomaly only incurs abnormal changes in the memory usage

metric. The cause of the no-correlation memory anomaly could

be a memory leak.

2) CPU-correlated memory anomaly: a CPU-correlated

memory anomaly mainly results in abnormal changes in both

the memory usage metric and the CPU usage metric. For

example, in the Window 10 system, some system processes

such as ntoskrnl.exe and Runtime Broker running without a

correct runtime environment can lead to a memory overflow

with a high CPU consumption.

3) Disk-correlated memory anomaly: it is similar to the

CPU-correlated memory anomaly. But it affects memory usage

metrics and disk usage metrics. For example, if the physical

memory is used up, the virtual memory will cause lots of I/O

with disks.

4) Network-correlated memory anomaly: it can be found

as exceptional phenomenon in both network and memory

resources. For example, memory anomalies caused by a web

service where the program forgets releasing connections after

the web services done.

5) Serious memory anomaly: it obviously affects more than

two resources above, and the cloud system treats it as a serious
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TABLE II
THE PRESET REFLECTION RULE FOR MEMORY ANOMALIES.

No. Categories of the memory anomaly Preset healing plan
1 No correlation memory anomaly Limit memory usage
2 CPU-correlated memory anomaly VM rollback
3 Disk-correlated memory anomaly Suspend suspicious process
4 Network-correlated memory anomaly VM migration
5 Serious memory anomaly VM shutdown and reboot
6 Type 1 error from prior self-diagnosis No action

Fig. 7. Service reliability analysis of the cloud system by using the self
healing.

memory anomaly that may result in sever damage to the

system health.

According to the categories of the memory anomaly, the

reflection rule can be further defined. In this experiment, the

set of healing plans as following Table 2 shows the preset

reflection actions.

In Table 2, a healing plan of ‘no action’ is necessary because

that some normal cases misreported as failures by the cyber

neuron when type 1 errors occur. Now, 4470 abnormal health

indices in the verification dataset are transmitted into the

peripheral nerve for verifying the capability of the self healing.

The reflection accuracy rate of the peripheral nerve is defined

as the rate of choosing a correct one according to the preset

healing rule. The reflection accuracy rate of the peripheral

nerve on the 4470 abnormal health indices is 90.2401%.

Fig. 7 shows the effect of the self-healing module by

running the cloud system in a real case of two days, which

is compared with the situation that no BPHM in the cloud

system. As shown in the figure, if the cloud system does not

have the BPHM, the service reliability of the cloud system

decreases dramatically. It also can be found that the self

healing has an obvious effect on slowing down the decrease

trend of the service reliability of the cloud system to manage

a better system health.

E. Self-Learning by Central Nerves

According to the preset reflection rule, the peripheral nerve

may not reflect a most suitable healing plan. Meanwhile, type

1 errors also need to be handled in the self-healing module.

Therefore, the central nerve performing the self learning in the

BPHM is indispensable. After using the self-learning module

presented in Section 3.4, the BPHM can coordinate and update

Fig. 8. Service reliability analysis of the cloud system by using the self
learning.

the reflection rule (including add the healing plan of no action

for the type 1 error) to improve the accuracy of the BPHM.

Fig. 8 demonstrates that the service reliability of our cloud

system running for two days by using the self-learning module.

As shown in the figure, once the BPHM has the key ability

of the self-learning, the BPHM has more obvious effects on

slowing down the degradation of service reliability. That is,

with the run of our cloud system, the BPHM keeps learning

knowledge or experience from healing actions. Therefore, the

gap between the line of the self-learning and the dot line of

the self healing (i.e., without the self-learning) becomes larger

and larger. This implies the learning procedure of the self-

learning modules. With the knowledge accumulation by using

the self-learning, the reflection rule is increasingly improved.

Therefore, the BPHM becomes more accurate on dealing with

complex memory anomalies.

However, there still exist some type 2 errors that cannot

be removed by using the BPHM, which was accumulated in

the system although few. Therefore, regular maintenance of the

cloud system is also necessary. In fact, the regular maintenance

can be associated with the BPHM for achieving a better effect

on guaranteeing the health of the cloud system.

F. Realistic Performance of BPHM with Regular Maintenance

Even though the type 2 error cannot be totally eliminated by

the BPHM automatically, it also can be effectively removed by

combining the BPHM with the regular maintenance. This is

rational since not only the cloud system but also all IT systems

definitely have regular maintenance strategies. In fact, the

designed BPHM also brings some advantages on optimizing

maintenance strategies with less frequencies.

To show the realistic performance of the BPHM, we run

the cloud IaaS system eight days. After running the cloud

system for every two days, we do a manual maintenance to

recovery the cloud system to an original state (restart all the

VMs and services in the midnight). Fig. 9 shows the change

of the service reliability of the cloud system with the regular

maintenances.

As shown in Fig. 9, there are four running cycles (i.e.,
each two days for running the cloud system without the

manual maintenance) of the cloud system. At the ends of

four run cycles, the BPHM makes the system reliability
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Fig. 9. Service reliability analysis of the cloud system with regular maintenance.

remains at 0.7523, 0.8230, 0.8288, and 0.9293, respectively.

This demonstrates that the realistic performance of the BPHM

has a significant effect on guaranteeing the health of the

cloud system. However, as for several running cycles at the

beginning of the BPHM, the realistic performance may not

be too obvious or even a slight decrease. For example, as for

the second and third run cycles shown in Fig. 9, the lowest

service reliability are 0.8230 and 0.8288, respectively. This

mainly because that

1) The BPHM needs time to learn knowledge: in realistic

environment, various memory anomalies appears in a complex

random manner. At the beginning of the BPHM, there may

be partial categories of the memory anomalies existed in

the cloud system. Therefore, knowledge learned from these

memory anomalies may not be comprehensive for covering all

categories of memory anomalies. For some memory anomalies

that occurred rarely before, if they suddenly appear in the

cloud system in a high frequency, the BPHM needs a time

period to learn the knowledge about those new memory

anomalies. In this phase, the system reliability may not be

improved obviously.

2) Random occurrence of type 2 errors: Since type 2 error

cannot be removed by the BPHM, the frequency of type 2

error occurrence also make the service reliability of the cloud

system has a slight fluctuation. That is, if there are more type

2 errors occur in a run cycle, the service reliability has more

decrease caused by those errors. However, due to the error rate

of the type 2 error is a relative small value, it does not bring

serious negative effect on the service reliability.

Meanwhile, the designed BPHM also brings some benefits

for optimizing maintenance strategies of the cloud system.

That is, after the BPHM learns enough knowledge to ensure

the cloud system running with a relatively high reliability, the

frequency of carrying out manual maintenance can be reduced

accordingly. This potentially implies the BPHM has a positive

effect on saving the maintenance cost.

V. CONCLUSION AND FUTURE WORK

In the cloud IaaS system, users rent VMs to run their

personal programs. Therefore, how to guarantee the service

reliability of the cloud system under the cloud users unknown

actions is indeed a complicated problem for the cloud provider.

To solve such a problem, this work presented a new application

of the PHM technology, named as BPHM. The primary

innovation of the BPHM is that it takes advantage of the

biological system BANS, and thus it can imitate human

with powerful abilities of perception, detection, reflection, and

learning and improvement.

The contribution of the BPHM can be summarized as: 1)

we realized the cyber axons for perceiving the real-time health

index of VMs. This is an efficient approach to find a memory

anomaly as soon as possible for the cloud IaaS system, since

cloud users personal programs and applications in VMs are

inaccessible for the cloud provider; 2) we also designed the

cyber neuron for prognostics of failures in the cloud system.

By using the neural network to train the cyber neurons, those

VMs are capable of the failure prognostics. Different form

traditional failure detection techniques, the presented failure

prognostics is more intelligent. It can detect VM failures from

the health index instead of finding errors, bugs, or faults in

users’ programs or applications; 3) we implemented the self

healing for the peripheral nerve with timely reflection function.

In the cloud IaaS system, a physical server may host multiple

co-located VMs rented by different cloud users. Therefore,

this immediate conditional reflection is very important for the

cloud IaaS system. It can effectively prevent a VM failure

bringing more harm to the cloud system, such as a server

failure; 4) a cloud service reliability model for the IaaS was

presented in this work. It can be used to evaluate service

reliability of the cloud IaaS system. Then, the healing effect

of a healing plan can be quantified as a reliability-related

metric. It provides a novel theoretical base to implement the

self-learning; 5) the ability of learning and improvement is

a distinctive feature of the BPHM. After learning knowledge

from healing actions, the central nerve updates the reflection

rule in the peripheral nerve to improve the accuracy of the

self healing increasingly. That is, with the run of the BPHM,

it can become more intelligent and more accurate.

We also implemented the BPHM in a real cloud IaaS

system, and carried out a case study to verify the effectiveness

of the BPHM technology. The experimental results exhibit that

the BPHM is an intelligent, autonomous, and adaptive system
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that can effectively deal with complex memory anomalies.

In principle, the PHM needs have two key functions of

early warning on failures (failure prognostics) and preventative

maintenance to keep system health (health management).

This case study verified that the cyber axon and the cyber

neuron in the BPHM satisfied the demand of the failure

prognostics with a high accuracy of detecting failures from

real-time health indices. Meanwhile, our experimental results

also demonstrated that the self healing module in the BPHM

had a significant effect on alleviating the decrease of the cloud

service reliability. More importantly, the self-learning module

continued improving the accuracy of the self-healing actions,

and as a result the cloud system could steadily remain at a

higher service reliability. This verified that the peripheral nerve

and the central nerve in the BPHM have excellent abilities of

managing the system health. Hereby, the experimental results

illustrate that the proposed BPHM is effective and efficient to

achieve both functions of PHM intelligently.

In our future work, we will extend the BPHM to other

types of cloud computing systems, such as SaaS (Software as

a Service) and PaaS (Platform as a Service) offered by cloud.

This extensions is feasible by using the BPHM presented

in this work, but some modules in the BPHM need to be

customized. For example, health indices monitored by cyber

axons will focus on different perspectives; the self-diagnosis

by cyber neuron need consider more layers across infras-

tructure, platform and software layers; self-healing module in

peripheral nerve can be designed with more access to APIs of

a platform; and the cloud service reliability model evaluated

by central nerve is different for SaaS and PaaS from the IaaS.
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