
Architecture for the Automation of Live Testing of
Cloud Systems

Oussama Jebbar
Gina Cody School of Engineering and

Computer Science
Concordia University

Montreal, Canada
ojebbar@encs.concordia.ca

Ferhat Khendek
Gina Cody School of Engineering and

Computer Science
Concordia University

Montreal, Canada
ferhat.khendek@concordia.ca

Maria Toeroe
Ericsson Canada Inc.

Montreal, Canada
maria.toeroe@ericsson.com

Abstract— Live testing is performed in the production
environment. In such environment, test activities have to be
orchestrated properly to avoid interferences with normal usage
traffic. Conducting live testing activities manually is error prone
because of the size and the complexity of the system as well as the
required complex orchestration of different tasks. Furthermore, it
would be impossible to react to failures and contain them in due
time without automation. Live testing requires a high level of
automation. This automation comes with several challenges
especially in contexts such as cloud and zero touch networks
because of the diversity of the software composing them. In this
paper we discuss the challenges of automating live testing for
cloud systems. We propose an architecture that relies on a
modeling framework to decouple the specification of testing
activities from the platforms needed to conduct them. We propose
a solution for conducting testing activities on a live system
according to such a specification.

Keywords—live testing, cloud, UML Testing Profile, test
architecture, automation

I. INTRODUCTION
Live testing is the activity of testing a system in the

production environment without disturbing its usage. Many
activities such as fault prediction [21], regression testing after a
live update, composing web services [11], etc., are expected to
rely on live testing in the future. Live testing can be either
deployment time testing or service time testing [4, 3].
Deployment time testing is performed when a system is
deployed but it is not yet serving users. Service time testing is
performed while the system is serving its users.

Live testing requires a high level of automation. The test
preparation phase does not only consist of deploying the test
configuration, but also on setting up test isolation
countermeasures to reduce potential disturbances. In addition,
executing a crashing error revealing test case may lead to
failures that need to be contained and recovered from in a timely
manner. Testing related activities such as test planning, test
execution and orchestration, test completion, etc., require
automation for live testing to be conducted successfully.

Automating live testing for systems such as cloud systems
has several challenges. The software involved in building such

systems, as well as the test cases used to validate them often
come from different sources; therefore, one cannot expect to
interact-with/test all parts of the system using the same runtime
environment (the same technology), or the same methodology
(passive, active, metamorphic, etc.). Moreover, the diversity of
the sources of software and test cases implies that they often use
different configuration management platforms for test
preparation and/or software reconfiguration. The dynamicity of
cloud systems is yet another challenge for the automation of live
testing of cloud systems as the frequently changing state of the
system may jeopardize the applicability of test cases at certain
points of time due to unmet preconditions for instance. Online
testing methods [20] are well suited to deal with such challenges;
however, they remain unsupported by the commonly used test
runtime environments. In addition, existing test runtime
environments are concerned only by test execution without
considering test preparation and completion. Furthermore, they
usually do not support multiple test case description languages.
Thus, there is a need for a solution to tackle test automation of
cloud systems.

Testing involves many activities such as planning,
preparation, execution, and completion [19]. Reducing human
intervention in these activities is a step forward towards
automating live testing for cloud systems. In this paper we
propose an architecture for such automation. This architecture is
composed of two main building blocks, the Test Planner and the
Test Execution Framework, each of which is responsible for a
subset of the testing activities. To deal with the challenges
related to the diversity of platforms encountered in cloud
systems, we use UML Testing Profile (UTP) [16] to provide a
platform independent representation of all the artifacts involved
in the information flow of our proposed architecture. We map
relevant elements in the artifacts involved in our architecture to
UTP concepts. We also propose an execution semantics that the
Test Execution Framework will associate with each model
element that represents an entity involved in tests execution and
orchestration. The execution semantics is not only useful for
automatic orchestration of testing activities, but also for tracking
the progress of these activities and reacting to them
appropriately.

142

2020 IEEE 20th International Conference on Software Quality, Reliability and Security (QRS)

978-1-7281-8913-0/20/$31.00 ©2020 IEEE
DOI 10.1109/QRS51102.2020.00030

The rest of this paper is organized as follows. In Section II
we review the related work and go through the challenges of the
automation of live testing. We provide an overall picture of our
proposed solution and its components in Section III. Section IV
describes the first building block of our proposed solution, i.e.
the Test Planner, and the method it uses for test suite generation.
In Section V we map the concepts in our solution to the UTP
concepts. In Section VI we show how this mapping can help
automating testing activities in production by associating
execution semantics to UTP concepts. We conclude in Section
VII.

II. RELATED WORK AND CHALLENGES
Several architectures have been proposed for tests

orchestration. The authors in [9] highlight three tasks that such
an architecture should be able to perform: 1) observation, i.e.
ability to collect information; 2) stimulation, i.e. ability to
stimulate the system; and 3) reaction, i.e. an event, such as a
detected error, should trigger a reaction at the level of the system
under test (SUT) as much as it does at the level of the test system
itself. In other words adaptation at the level of the SUT should
lead to adaptation at the level of the test system too. The
architectures mentioned in the literature can be classified into
passive tests vs active tests orchestration architectures. [9 and
11] describe architectures that can be used to manage passive
tests (monitoring) in production. [1, 3, 5, 6, 7, 10, and 12]
propose solutions that can be used for active tests orchestrations.
Another classification of these architectures can be established
based on what triggers the testing activities; from this
perspective, one can distinguish between interactive
architectures and event driven architectures. Interactive
architectures are the ones in which testing activities are triggered
by human intervention (e.g. system administrator). Such
architectures include [6, 7, and 13] as they launch testing
activities when an administrator submits a request through a
GUI or a CLI. Event driven architectures rely on events, such as
the expiration of a timer, to trigger testing activities. The most
commonly considered event is a system reconfiguration as it
requires regression testing to evaluate the new state of the
system. Reconfigurations can be simple adaptations such as a
change in the binding of web services (e.g. the work in [9]); or,
they can be additions or removals of one or more components
(e.g. [5, 10]). Other types of events such as the expiration of
timers to establish periodic checks [1, 3, 12], when the
component is being looked up or called [1, 3], when an error is
detected and the fault needs to be localized [2], etc., are also
considered in the literature in event driven architectures. These
architectures and solutions are used to orchestrate various types
of tests. Yardstick [6] for instance, is used for pre-deployment
testing of infrastructures’ performance, capacity, availability,
and the infrastructure’s ability to properly run lifecycle
operations on Virtual Network Functions (VNFs) and Network
Services. Fortio operator [7] is yet another tool proposed by the
Kubernetes community to run load tests on microservices in a
Kubernetes managed environment. NetFlix Chaos Monkey [12]
is one of the commonly discussed projects when it comes to live
testing. It enables performing resiliency testing through fault
injection in the production environment. Gremlin [14] is another
tool, which is developed by IBM, for resiliency testing.
Although it was not evaluated for live testing, but it is claimed

to be easily portable to a production environment. Unlike Chaos
Monkey, Gremlin injects faults at network level and not code
level thus allowing for a better applicability across different
technologies.

The approaches discussed so far indeed have the potential to
be adapted to safe use in a production environment (as not all of
them deal with test interferences); however, they remain limited
to specific test types (load, performance, resiliency, etc.), and/or
to specific test items (infrastructure, specific software, etc.). As
a result, a test engineer who uses these approaches will have to
make their own test scripts to schedule these tests and
orchestrate them; which can be time and effort consuming as it
has to be done every time the system needs to be tested. It can
also be error prone due to the complexity and size of the
production systems. Furthermore, of the three tasks mentioned
in [9], these architectures are capable of stimulating and
observing the SUT; however, their reaction capabilities are
limited to reactions at the level of the SUT only. [8 and 10] are
some of the few works that address how the test system should
be maintained in reaction to an adaptation or a change in the
SUT. The approach proposed in [8] reacts at the level of the test
system by changing a label that it assigns to test cases which can
be either ACTIVE or INACTIVE. A test case label may switch
if the test case, for instance, was applicable under a previous
service bindings, but when the binding has changed it became
inapplicable. At every test sessions, the architecture is only
allowed to select from test cases that have the ACTIVE label.
The work in [10] relies on a different approach with the aim of
decoupling the test case specification from the test case
implementation. As a result, at every test session all the test
cases are eligible to be chosen; however, in response to a system
adaptation or reconfiguration, the architecture changes how that
test case is implemented by associating it with a different set of
test tasks (which are concrete implementations of test cases).

From this review of the related work we can identify a
number of challenges that need to be addressed to automate live
testing. They can be summarized as follows:

• Challenge#1: Test cases come from different
sources (software vendor, test teams, third party).
They may be written in different languages and
require different runtime environments for
execution. On the other hand, converting all
available test cases to one programming or
modeling language is unpractical (at the moment as
it has to be done manually), and sometimes even
unfeasible (test cases whose logic is inaccessible
for the system owner).

• Challenge#2: Test cases coming from different
vendors typically imply also that the test
configurations for these test cases are deployed
differently. Therefore setting up the test
configurations may require different environments
or tools depending on the test case.

• Challenge#3: Test cases may be of different
nature. Passive tests such as monitoring, active
tests, or metamorphic tests; they all differ in the
way their configurations are deployed, how they

143

should be executed, and how/when their verdicts
are generated/fetched.

• Challenge#4: Existing tools of test case execution
such as ETSI TTCN [17] Test Architecture, assume
that only the test cases are executed in the SUT,
however, one may need to use an online testing
method to test some properties of the system.
Online testing [20] is a viable solution to deal with
non-determinism and the dynamicity of the runtime
state of modern systems such as clouds. Therefore,
a proper solution for automation of live tests needs
to support them.

Today these challenges are not properly dealt with in
practice as we have shown in this section. In fact, system
maintainers who encounter them end up either orchestrating the
tests manually, or creating ad hoc scripts that will solve the
problem for a few test sessions at best. These methods of test
orchestration are unpractical because they are not reusable, error
prone as these scripts are often made manually, and rarely deal
with all the various failures that may take place during the
testing activities.

III. AN ARCHITECTURE FOR AUTOMATION OF LIVE TESTING
In this paper we propose an architecture for the automation

of live testing of cloud systems. We aim at tackling the
challenges we identified in the previous section.

The first step for dealing with these challenges is to decouple
the representation of the system and the artifacts involved in the
testing activities from any platform. The second step is to
specify how this representation is processed and used to achieve
the goals, i.e. automate testing activities in production.

Testing activities such as planning, preparation, execution,
completion, etc., need to be automated for live testing to be
properly conducted. Unlike test planning, other activities such
as preparation and execution depend heavily on the platform of
the SUT. In other words, due to platform dependencies a good
solution for test execution for microservice based systems for
instance may not be good enough for ETSI Network Function
Virtualization (NFV) [22] based systems. However, a good
solution for test planning is reusable regardless of the platform
of the SUT provided the SUT can be modeled at the right level
of abstraction. Therefore, when designing a solution to automate
live tests one has to take into consideration to what extent each
activity may depend on the target platform on which the solution
would be applied to be considered a good solution to automate.
Taking this into consideration, we grouped activities that heavily
depend on the target platform into one of the building blocks of
our solution; and grouped the activities that may be reused
across several contexts into another building block. Therefore,
we propose the architecture shown in Fig. 1 to automate testing
activities in production. The architecture is composed of the Test
Planner (reusable building block) and the Test Execution
Framework (target platform dependent block). The Test Planner
is responsible of generating the test package. The test package is
generated as a response to an event taking into consideration the
test cases in the test repository and the current state of the system
(system information). The test package is then fed to the Test

Execution Framework which executes it on a live system while
maintaining the disruption level within a tolerable range.

A. System information
This artifact represents the knowledge about the SUT that is

required to properly conduct testing activities. It includes system
configuration, runtime state, available software packages and
their properties, and data collected or used by other management
frameworks (availability management, scalability management,
virtualization management, etc.).

B. Test Repository
The test repository stores test cases and test design methods

along with the test goals they achieve. Test goals may be of
various granularity ranging from the exercise of a path in a
software (same granularity as test requirement in UTP); to
system wide acceptance testing (same granularity as test
objective in UTP). Other test case related information such as
history of execution times, fault exposure rates, etc., are also
stored in the test repository. Similarly, the test repository has
information about test design techniques such as their required
inputs and whether they are online or offline test design
techniques. The test cases, test design techniques (both online
and offline), and the test goals in the repository come from
developers, software vendors, or the system administrator. The
extra information is collected after each test session as the test
case execution environment allows it. This extra information is
then used to update the test repository accordingly.

C. Event
An event is what triggers a test session. Events are

configured at the level of an instance of this architecture, or
created by the system maintainer or by a third party software to
launch an on demand test session. Events created by third party
software are of several types including events triggered by other
management frameworks (for some specific types of regression
testing, or to assist in root cause analysis for instance); as well
as events created by some system components to ensure they are
using services from the right components as stated in [3].

D. Test package
A test package consists of a test suite and a test plan. The test

suite includes test suite items which are test cases and/or test

Fig. 1. Overall abstract architecture

144

design techniques that were selected from the test repository to
respond to the received event.

The test plan provides the road map of the test execution and
specifies a set of partially ordered Test Suite Item runs (TSIs),
each TSI is an application of one or more test suite items under
a given test configuration. This approach allows for grouping
according to different criteria. For example, grouping together
TSIs if setting up a test configuration is costly and/or disruptive,
and there are more than one test suite items that apply to it. In
this case one needs to setup this configuration only once during
a test session and run all the test suite items that apply to it before
tearing it down. In other cases TSIs applicable to the same test
configuration may be grouped separately based on the criticality
of the services they may impact.

Information on how the tests should be executed such as test
configurations, test preparations e.g. isolation countermeasures,
contingency plans to fix/contain crashing errors detected during
the tests, etc., are also included in the test plan.

E. Test Planner
The Test Planner is responsible of generating the test

package in response to a received event. Taking into
consideration the received event, the Test Planner starts by
selecting the test goals which respond/correspond to that event.
After test goals selection, the Test Planner proceeds with the
selection of test cases or test design techniques that can achieve
the selected test goals. The selected test suite items will compose
the test suite in the test package. The Test Planner relies on the
information in the test repository, especially the mapping
between test cases/test design techniques to the test goals they
achieve, to select these tests cases and test design techniques.
Later in this paper we describe our proposal for how this test
suite is made based on the received event.

To complete the test package, the Test Planner generates a
test plan. This test plan is generated taking into consideration the
extra information available about each selected test case as well
as the knowledge available about the system (system
information). This information helps to decide which isolation
method and contingency plan to use for each test case or set of
test cases. As a result, test plan generation is a complicated
process that involves making some decisions that if made
inappropriately may lead to unnecessary, or even intolerable,
disruptions in the system. The test plan generation is out of scope
of this paper.

The generated test package is then given to the Test
Execution Framework to execute. After the execution, the Test
Planner updates, when applicable, the test repository using the
information collected about each executed test case. More
details about test suite generation are provided in the Section IV.

F. Test Execution Framework (TEF)
The Test Execution Framework (TEF) takes a test package

as input and executes it on a live system. Executing a test suite
consists of running the test suite items according to the test plan.
The test plan is composed of partially ordered TSIs (test suite
item runs) each of which combines a test configuration with at
least one test suite item. Such grouping allows flexibility in
scheduling TSIs according to their test configurations to enable
a less intrusive test execution.

In order to automate testing activities in production, TEF
implements different execution semantics for each one of the
aforementioned concepts as it will be described in Section VII.

IV. THE TEST PLANNER AND TEST SUITE GENERATION
The Test Planner’s responsibilities are mainly related to test

planning and test design activities. This clearly reflects on the
main artifacts it is responsible of generating, i.e. the test package
which is composed of a test suite and a test plan. In this section
we go through our proposed approach for the automation of test
design activities. We aim to automate the test planning in our
future work.

A. Types of events
The Test Planner generates the test package in response to

an event. As a result, the test design activities are conducted
according to the received event. We identified the following list
of event types:

• Periodic event: some parts of the system need to be
checked periodically. In fact, those parts even though
unchanged, they may be impacted by a change in their
environment. A periodic test helps ensuring that some
subsystems are always functioning correctly in the
production environment. This type of events, such as
for healthcheck, is specified as a set of test goals and a
period of how frequently they should be achieved.

• Change in the system: a reconfiguration is usually a
reason to perform regression tests. Therefore, a change
in the system is considered an event that can trigger a
live test session. The Test Planner can be made aware
of a change either: 1) by registering to the notifications
of the configuration manager; or 2) by being invoked
directly by the configuration manager after a given
reconfiguration.

• New test goal: addition of a new test goal to the
repository should trigger a test session to achieve the
new test goal. In fact, adding a new test goal may be
accompanied by addition of new test case(s) the
execution of which may reveal errors that were not
detected previously. It is also possible that the new test
goal is achieved using a combination of test cases that
were not used together before, which may reveal new
errors as well.

• Test request: to avoid limiting the applicability of our
architecture, we propose the concept of test request to
include the cases not covered by the previous types of
events. Therefore, a test request may be submitted by
an administrator or a third-party software. This test
request can be of one of the following types:

o Used as an aggregation of periodic events: the
administrator may want to run some system
checks together for a period of a time. In this
case, a test request can be used to aggregate
the periodic events associated with these
system checks.

o A set of test goals to achieve: at any point an
administrator or a third party software may

145

initiate a test session by submitting this type
of test requests. It is composed of a set of test
goals to be achieved, which are selected from
the repository. This type of test requests is
mainly practical for test goals that are
achieved using test design techniques and not
test cases as there is another type of requests
that can be used to invoke specific test cases.

o A set of fault-revealing test goals: when a
fault revealing test goal is achieved, errors are
detected if the fault to be revealed is present.
The main purpose of a test request consisting
of such test goals is to localize the faults
behind these errors. Hence this type of test
requests is mainly used to trigger system
diagnostics. An administrator or a third party
software may give the Test Planner a set of
fault-revealing test goals and the Test Planner
will have to generate a test package that can
help localize the faults behind the errors that
manifest when one or more of these test goals
are achieved.

o A set of test cases: a set of test cases to be
executed may be requested by the
administrator or a third-party software.

B. Test Suite Generation
The test suite is one of the components of the test package

that the Test Planner generates to respond to an event. Therefore,
taking into consideration the received event, the Test Planner
follows different strategies to select the test suite items that will
compose the test suite. The method we propose for this purpose
follows the following rules:

• If the received event is a periodic event happening for
the first time, the Test Planner selects test cases and test
design techniques that are able to achieve the test goals
specified by this event. This is a straightforward
process as the mapping between the test cases/test
design techniques and the test goals they achieve is
already stored in the test repository.

• If the received event is a periodic event and no
reconfiguration or test goal addition happened since the
last instance of this event, the Test Planner should reuse
the same test suite from the last time an instance of this
event occurred. We proceed this way for the reason that
since the system has not undergone any change, this
means that the same test cases/test design techniques
are applicable and will be chosen for this instance of
the event as for its previous instance. This is like a
heuristic that we use to save some time in this activity
as querying it may be time consuming.

• If the received event is a periodic event, and there was
a reconfiguration or test goals were added since the last
instance of this event; this event is treated as if it is
happening for the first time. In fact, a change in the
system or in the content of the test repository may
require a different set of test suite items to achieve the
same test goals as previous instances (before the

change). Therefore, a reselection of test cases and test
design techniques is deemed necessary in this case.

• If the received event is an addition of new test goals,
then the Test Planner should select the test suite items
that achieve the newly added test goals. The addition
of a test goal leads to existing or new test cases/test
design techniques be mapped to it. As a result, one
needs to check if achieving this new test goal may
reveal any errors that were not detected previously.
Using the mapping information from the test
repository, one can deduce the set of test cases/test
design techniques needed to achieve this new test goal.

• If the received event is a reconfiguration, the Test
Planner will use an approach for regression test case
selection/generation to select the test cases. Several
approaches may be used to deal with this kind of event.
For instance, a test design technique that is stored in the
repository may simply perform an impact analysis and
come up with a set of regression test goals from the
repository to be achieved. In this case the Test Planner
will select test cases and test design techniques that
achieve the selected test goals to compose the test suite.
Another approach to deal with this event is by having
a default regression test case selection/generation
technique that will be invoked whenever a
reconfiguration takes place.

• If the event is a test request:

o If the test request is an aggregation of periodic
events it is handled the same way as a periodic
event.

o If the test request consists of a set of test goals
to be checked, the Test Planner selects the set
of test cases and test design techniques to be
used to achieve the requested test goals. This
is done based on the information from the
repository that maps each test goal to the test
cases/test design techniques that achieve it.

o If the test request consists of a set of fault-
revealing test goals, the Test Planner first
identifies other test goals that are related to
the requested test goals and which (if
achieved) can help localize the faults. After
identifying those goals, the Test Planner
selects test cases and test design techniques
that are able to achieve the selected test goals.
The identification of the related test goals can
be done by invoking a default fault
localization technique.

o If the test request consists of a set of requested
test cases, the test suite will be composed of
the requested test cases.

V. MODELING FRAMEWORK
In this section we describe how we address the first step of

dealing with the challenges outlined in Section II, i.e. decoupling

146

the representation of the system and the artifacts involved in
testing activities from the target platform.

Modeling techniques, especially UML, are commonly used
for platform independent modeling of systems. Therefore, we
propose to use UML to provide a platform independent
representation of our targeted systems and artifacts. Note that
this representation is not only needed to model the artifacts and
to have an exchange format for them (between the building
blocks of our architecture), but also to track the progress of the
testing activities and accordingly invoke appropriate behaviors.
We chose UML Testing Profile (UTP) [16] to model all the
artifacts in play in our architecture including the test plan. The
choice of UTP was based on the following rationales:

• UTP covers a wide range of testing activities and it is
aligned with industry testing standards [18, 19].

• UTP is a UML profile, and therefore some of the
inherited concepts from UML allow for flexibility,
extendibility, and interoperability with existing tools.

• The flexibility offered by UTP to model verdicts and
arbitration specifications allows capturing of runtime
errors. As a result, using UTP will not limit the
capability of the architecture to detect failures and react
to them.

• UTP allows the reuse of all concepts used in UML to
model behaviors, including the use of UML’s
CombinedFragment. Therefore, it supports a wide
range of patterns of scheduling such as sequential,
parallel, alternative, etc., which allows us to deal with
Challenge#3.

UTP offers plenty of opportunities to automate the
orchestration of testing activities in production. However, some
minor modifications may be needed to cover all bases. These
minor modifications can be summarized as follows:

• UTP as-is does not allow associating an
ArbitrationSpecification with a ProcedureInvocation
element. This constraint needs to be relaxed if we want
to be able to arbitrate actions taken in the setup phase
(for setting up isolation countermeasures), teardown
actions, or the execution of test generation actions
when invoking a test design technique.

• UTP offers concepts to model test logs. However, these
test logs are associated only with test cases and test
procedures. In online testing methods, one needs to log
the test design activities too. Therefore, we may need
two types of logs to be associated with a
TestDesignTechnique element:

o TestDesignTechniqueLog: to log test design
activities. The structure of this log is specified
by a TestDesignTechniqueLogStructure
element associated with the
TestDesignTechnique.

o TestCaseLog: if the online testing method
generates new test cases the TestCaseLog is
also associated with the
TestDesignTechnique element. The structure
of the logs of the generated test cases is
specified by the TestCaseLogStructure
element associated with the
TestDesignTechnique.

This extension will help us deal with the representation and
modeling aspect of Challenge#4. The remaining aspect of this
challenge related to the behavior is dealt with at the level of TEF
and will be described later in this document.

 The mapping between the concepts we propose, and the
ones defined in UTP is shown in Table I. This mapping enables
expressing test plans as TestExecutionSchedules that run UTP
TestCases. UTP TestCases consist of one or more test cases
provided by the vendor or the developer (along with a test
configuration) enhanced with some isolation countermeasures
that need to be set up before the execution of the test case (which
is a UTP TestProcedure), and that need to be torn down at the
end. UTP TestProcedures may be modeled using UML
concepts. UTP also offers the possibility of specifying
TestProcedures using other languages as OpaqueBehavior (a
concept inherited from UML). Therefore, this mapping helps us
properly deal with Challenge#1.

Test goals that are associated with test cases in the repository
are modeled as UTP TestRequirement. Test goals that are
associated with test design techniques are modeled as UTP

TABLE I. MAPPING THE ARTIFACTS IN THE ABSTRACT ARCHITECTURE TO UTP
CONCEPTS

Abstract Architecture concepts UTP concepts
Test repository Set of pairs (TestContext,

aggregate of test logs)
Test case as in the repository TestProcedure
Test design technique as in the
respoitory

TestDesignTechnique

Test suite item in the test plan ProcedureInvocation (e.g.
TestProcedure, or
TestDesignTechnique invocation)
in the main phase of a TestCase

TSI TestCase
Test package TestContext
Test suite TestSet
Test plan TestExecutionSchedule
Periodic event Triplet (TestLevel, TestType,

TestDesignInput)+ time data
Test request: test goals to be
achieved

Subset of TestRequirements or
TestObjectives that are in the test
repository

Test request: fault revealing test
goals

A set of of TestRequirements or
TestObjectives (not necessarily in
the test repository)

Test related metadata TestLogs
Test related metadata specification TestLogStructure
Test results Verdicts (Pass, Fail, Inconclusive)
Failure detection during test
execution

Verdicts (error, customized
verdicts)

Test preparation including the
setting up of isolation
countermeasure

TestCase setup procedure
invocation

Test completion including the
cleanup of isolation
countermeasure

TestCase teardown procedure
invocation

Test goal TestRequirement or TestObjective

147

TestObjective. The main difference between the two is that a
TestRequirement is a contribution of a test case towards
achieving a TestObjective. However, a TestObjective is defined
as the stopping criterion of testing activities. Both TestObjective
and TestRequirement can be specified informally using natural
language, or formally using a machine understandable language
such as ETSI TPlan [15]. Expressing TestRequirements and
TestObjectives using formal languages may open the door for
further processing of these model elements and make them more
suitable for other purposes of live testing such as diagnostics.

Test configurations in UTP include modeling the
configuration of the test component as well as the configuration
of the test item (system or component under test). Two patterns
are proposed in UTP specification to model these
configurations, the one we are recommending is modeling these
configurations as constraints. Although UML has a language for
constraints specifications, but similar to behaviors, it also allows
the usage of other languages. Test configurations may be
specified in various languages such as ansible playbook
language, puppet DSL, chef DSL, etc.; as a result, one may use
this feature of UML to specify test configurations as constraints
expressed in languages that deployment management engines

can process. Therefore, such use of UTP is useful for dealing
with Challenge#2.

 The mapping will also allow us to detect failures during
execution as the verdict type provided by UTP allows it. To
address this, we propose using the UTP provided verdict “error”
as a concept to model failures of actions for which it is not clear
whether the problem during the execution is caused by a
problem in the test component or the test item. Moreover, UTP
allows the creation of user customized verdicts. In our opinion,
since the implementation of a test component may be part of an
implementation of this architecture; the implementer can draw
up a list of possible problems that can occur to the test
component (test component’s failure modes), create their
customized verdicts, and then the implementation of this
environment can decide which actions to take to recover the
failed test component based on the customized verdict that was
issued. Note that this approach can also be used with test
components of some test environment about which the system
maintainer has enough knowledge.

Fig. 2. Execution semantics of the TestExecutionSchedule

148

VI. TEST EXECUTION FRAMEWORK
In this section we describe our approach to address the

second step of dealing with the challenges outlined in Section II,
i.e. the behavior associated by the building blocks of the
architecture to each element of the artifacts representation.
Therefore, this section will mainly focus on the TEF, and how it
processes the artifacts generated by the Test Planner according
to the execution semantics we propose. This execution
semantics is used for:

• The automatic orchestration and control of testing
activities in production.

• Tracking the progress of testing activities by
monitoring the state of each runtime object involved in
the orchestration of testing activities. The TEF, through
this tracking, is then able to orchestrate the testing
activities and becomes aware of any mishaps that may
take place during this orchestration.

The first test plan model element with which we associate an
execution semantics is the TestExecutionSchedule which is also
a runtime object that is used by the TEF to track and control a
test session. It is a composed of a set of partially ordered TSIs.
A TSI is modelled in our test plan as a UTP TestCase, its setup
and teardown phases are composed of ProcedureInvocation
elements (to setup/teardown the test configuration); and its main
phase is composed of a set of invocations of TestProcedures
and/or TestDesignTechniques. A TestExecutionSchedule is able
to receive four administrative operations: EXECUTE,
SUSPEND, RESUME, and ABORT (Fig. 2.).

EXECUTE is the only operation that can be invoked on a
TestExecutionSchedule when it is first created. Upon the
invocation of this operation the TestExecutionSchedule moves
to the Initializing state, and the TEF performs all preparations
necessary for the whole TestExecutionSchedule. After the
preparations the TestExecutionSchedule moves to the Executing

state, and the TEF starts invoking TestCases according to the
specification of the test plan. TestCases can be specified:

• sequentially,

• using a CompoundProceduralElement which allows
for TestCases to be executed in parallel, or

• as alternatives based on specified conditions (like
switch blocks in programming).

Just like any UML specified behavior, a
TestExecutionSchedule can use any combination of these
facilities to model the schedule for the TestCases. The same also
applies to the invocations within a TestCase in the
TestExecutionSchedule (a.k.a ProcedureInvocations, such as
TestProcedure and TestDesignTechnique invocations).
Therefore, at any time one can have either a single TestCase
running, or multiple TestCases running at the same time. In the
TestExecutionSchedule the partial order is specified through a
control flow, which is specified by control flow kind of links
among the above constructs. The invocations to be made after
the completion of a TestCase are decided based on the construct
it belongs to and the target(s) of the control flow link(s) that have
the completed TestCase as source.

While the TestExecutionSchedule is in the Executing state,
the TEF keeps invoking TestCases using the Execute_TSI
message. From the initial Idle state, the invoked TestCase goes
to the Executing state (Fig. 5.) via a Setting Up state, and
completes after a Tearing Down state. In all these states the
TestCase invokes different procedures composing the TestCase
using the Execute_PI message. According to the TestCase state
these procedure invocations (Fig. 3. And Fig. 4.) can be setting

Fig. 3. Execution semantics of ProcedureInvocation and TestProcedure
Invocation

Fig. 4. Execution semantics of the TestDesignTechnique invocation

149

up/tearing down a test configuration and/or isolation
countermeasures, or running a test case or a test design
technique. In the later case, the invocation is for a
TestDesignTechnique with the execution semantics shown in
Fig. 4.; in the other cases the procedure invoked follows the
execution semantics shown in Fig. 3., this includes the
invocation of TestProcedures. When the execution of a
procedure stops, its associated arbitration specification is
invoked still in the Executing state. This leads to the creation of
a verdict. If the verdict is None, PASS, FAIL, or
INCONCLUSIVE, the invocation is deemed as successful, the
invoked procedure goes to the Done state. If the verdict is a
customized verdict, the TEF should be capable of taking
recovery actions depending on the received customized verdict,
because customized verdicts are produced only if the failure of
an action was caused by the failure of a test component. The TEF
then tries to recover from the failure and reinvoke the failed
action. If this retrying exceeds a pre-specified number of times,
the procedure goes to the Suspended State. Finally, if the
produced verdict is ERROR, the procedure is deemed as failed,
goes to the Failed state. In any case the procedure notifies the
TestCase about the result, which then proceeds depending on the
procedure’s state. If the procedure’s state is:

• Done: the TestCase proceeds to the next invocation(s);

• Suspended: the TestCase goes to the Suspended state,
and therefore the TestExecutionSchedule also goes to
the SuspendedByError state;

• Failed: the TestCase also fails and notifies the
TestExecutionSchedule. As a result the whole test
session is deemed as failed.

 If the TestExecutionSchedule goes to the Suspending state,
the TEF waits for all the currently running TestCases to either
complete (Done state), in which case it moves into the
Suspended state; or if any TestCase is suspended then the
TestExecutionSchedule moves to the SuspendedByError state.

Once the TestExecutionSchedule is in the SuspendedByError
state, the administrator can either fix/repair the system and
resume the test session, or abort the test session. If a TestCase
that is in Executing state goes to Failed state while the
TestExecutionSchedule is in the Suspending or the Executing
state, the TestExecutionSchedule goes to the Failed State and the
whole test session will be deemed as failed.

The SUSPEND administrative operation is used to suspend
a test session. Upon the reception of this administrative
operation, the TestExecutionSchedule goes to the Suspending
state and waits for all currently running TestCases. As described
from the Suspending state the TestExecutionSchedule may go to
the Suspended state, to the SuspendedByError state or to the
Failed state depending on the results of the currently running
TestCases. If in the Suspended and the SuspendedByError
states, the administrator can either decide to resume the test
session later using the RESUME operation, or abort the test
session using the ABORT operation. In the latter case it is left to
the administrator to perform any required teardown or clean-up
actions.

VII. CONCLUSION
Live testing has become a necessity as the production

environments have become bigger and more complex and
impossible or unfeasible to recreate it in the test environments.
The automation of test activities is a must for live testing among
others due to the complexity of the production environment and
the need for short reaction times. In this paper, we highlighted
the challenges of automating live testing, and showed the
limitations of existing approaches in addressing them as they are
either limited to a specific target platform (e.g. TTCN), specific
method of testing (active vs passive), or specific test types
(performance, resiliency, etc.).

We proposed an architecture to enable the automation of
testing activities in the production environment. We also
proposed the use of UTP as the specification language for testing
activities planning. We associated an execution semantics with
the UTP concepts that are relevant to the automated
orchestration of test activities. As part of the proposed Test
Planner in our architecture, we outlined the main principles for
a test suite generation method. As future work we plan to
complete the work on the Test Planner by developing a method
for automating the test plan generation. We also aim to apply
this architecture for live testing of microservice based
architectures.

ACKNOWLEDGMENT
This work has been partially supported by Natural Sciences

and Engineering Research Council of Canada (NSERC) and
Ericsson.

REFERENCES
[1] D. Brenner, C. Atkinson, R. Malaka, M. Merdes, B. Paech, D. Suliman,

Reducing verification effort in component-based software engineering
through built-in testing, Inf. Syst. Front. 9(2–3) (2007) 151–162

[2] Alberto Gonzalez Sanchez, Cost Optimizations in Runtime Testing and
Diagnosis. Phd Thesis, Delft University of Technology, September 2011

[3] Dima Suliman, Barbara Paech, Lars Borner, Colin Atkinson, Daniel
Brenner, Matthias Merdes, Rainer Malaka. The MORABIT Approach to
Runtime Component Testing. Proceedings of the 30th Annual

Fig. 5. Execution semantics of UTP TestCase

150

International Computer Software and Applications Conference
(COMPSAC'06).

[4] M. Merdes, R. Malaka, D. Sulimani, B. Paech, D. Brenner, C. Atkinson,
Ubiquitous RATs: How Resource-Aware Run-Time Test can improve
Ubiquitous Software Systems. Proceedings of the 6th International
Workshop on Software Engineering and Middleware, SEM 2006,
Portland (USA), pp. 55-62.

[5] Mariam Lahami, Moez Krichen, Mohamed Jmaiel, Safe and efficient
runtime testing framework applied in dynamic and distributed systems,
Science of Computer Programming, 2016.

[6] Yardstick. https://wiki.opnfv.org/display/yardstick/Yardstick. Last
visited, March 28th, 2020.

[7] Fortio operator. https://github.com/verfio/fortio-operator. Last visited,
March, 28th, 2020.

[8] E. M. Fredericks, B. H. C. Cheng, Automated Generation of Adaptive
Test Plans for Self-Adaptive Systems, In the proceedings of the 10th
International Symposium on Software Engineering for Adaptive and Self-
Managing Systems, 2015.

[9] P. H. Deussen, G. Din, I. Schieferdecker, A TTCN-3 Based Online Test
and Validation Platform for Internet Services, In the proceedings of the
6th International Symposium on Autonomous Decentralized Systems,
ISADS 2003, pp. 177-184.

[10] M. Greiler, H. Gross, A. Van Deursen, Evaluation of Online Testing for
Services – A Case Study, in the proceedings of the 2nd International
Workshop on Principles of Engineering Service-Oriented Systems,
PESOS 2003, pp. 36-42.

[11] M. Elqortobi, J. Bentahar, R. Dssouli, Framework for Dynamic Web
Services Composition Guided by Live Testing, in the proc. Of Emerging
Technologies for Developing Countries, AFRICATEK, 2017. Lecture
Notes of the Institute for Computer Sciences, Social Informatics and
Telecommunications Engineering, vol 206. Springer, Cham.

[12] Netflix – Siamian Army,
https://github.com/Netflix/SimianArmy/wiki/Chaos-Monkey. Last
visited, March 28th, 2020.

[13] M. Ali, F. De Angelis, D. Fani, A. Bertolino, G. De Angelis, A. Polini,
An Extensible Framework for Online Testing of Choreographed Services,
in Computer, vol. 47, no. 2, pp. 23-29, Feb. 2014

[14] V. Heorhiadi, S. Rajagopalan, H. Jamjoom, M. K. Reiter, V. Sekar,
Gremlin: Systematic Resilience Testing of Microservices, In the
proceedings of IEEE 36th International Conference on Distributed
Computing Systems, ICDCS 2016, pp. 57-66

[15] ETSI ES 202 553 V1.2.1. Methods for Testing and Specification (MTS);
TPLan: A notation for expressing Test Purposes

[16] Object Management Group. UML Testing Profile 2 (UTP2) Version 2.1
[17] Testing and Test Control Notation Version 3. www.ttcn-3.org
[18] International Software Testing Qualifications Board. www.istqb.org. Last

visited March, 28th, 2020.
[19] ISO/IEC/IEEE: “Software Testing - The International Software Testing

Standard”, ISO29119. www.softwaretestingstandard,org. Last visited
March, 28th, 2020.

[20] T. Cao, P. Felix, R. Castanet, I. Berrada, Online Testing Framework for
Web Services, In the proceedings of the 3rd International Conference on
Software Testing, Verification and Validation, ICST 2010, pp. 363-372.

[21] O. Sammodi, A. Metzger, X. Franch, M. Oriol, J. Marco, K. Pohl, Usage-
based Online Testing for Proactive Adaptation of Service-based
Applications, In the proceedings of the 53th IEEE Annual Computer
Software and Applications Conference, COMPSAC 2011, pp. 582-587.

[22] ETSI Network Function Virtualization.
https://www.etsi.org/technologies/nfv. Last visited March, 28th, 2020.

151

