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Abstract— Live testing is performed in the production 
environment. In such environment, test activities have to be 
orchestrated properly to avoid interferences with normal usage 
traffic. Conducting live testing activities manually is error prone 
because of the size and the complexity of the system as well as the 
required complex orchestration of different tasks. Furthermore, it 
would be impossible to react to failures and contain them in due 
time without automation. Live testing requires a high level of 
automation. This automation comes with several challenges 
especially in contexts such as cloud and zero touch networks 
because of the diversity of the software composing them. In this 
paper  we discuss the challenges of automating live testing for 
cloud systems. We propose an architecture that relies on a 
modeling framework to decouple the specification of testing 
activities from the platforms needed to conduct them.  We propose 
a solution for conducting testing activities on a live system 
according to such a specification. 

Keywords—live testing, cloud, UML Testing Profile, test 
architecture, automation 

I. INTRODUCTION  
Live testing is the activity of testing a system in the 

production environment without disturbing its usage. Many 
activities such as fault prediction [21], regression testing after a 
live update, composing web services [11], etc., are expected to 
rely on live testing in the future. Live testing can be either 
deployment time testing or service time testing [4, 3]. 
Deployment time testing is performed when a system is 
deployed but it is not yet serving users. Service time testing is 
performed while the system is serving its users. 

Live testing requires a high level of automation. The test 
preparation phase does not only consist of deploying the test 
configuration, but also on setting up test isolation 
countermeasures to reduce potential disturbances. In addition, 
executing a crashing error revealing test case may lead to 
failures that need to be contained and recovered from in a timely 
manner. Testing related activities such as test planning, test 
execution and orchestration, test completion, etc., require 
automation for live testing to be conducted successfully. 

Automating live testing for systems such as cloud systems 
has several challenges. The software involved in building such 

systems, as well as the test cases used to validate them often 
come from different sources; therefore, one cannot expect to 
interact-with/test all parts of the system using the same runtime 
environment (the same technology), or the same methodology 
(passive, active, metamorphic, etc.). Moreover, the diversity of 
the sources of software and test cases implies that they often use 
different configuration management platforms for test 
preparation and/or software reconfiguration. The dynamicity of 
cloud systems is yet another challenge for the automation of live 
testing of cloud systems as the frequently changing state of the 
system may jeopardize the applicability of test cases at certain 
points of time due to unmet preconditions for instance. Online  
testing methods [20] are well suited to deal with such challenges; 
however, they remain unsupported by the commonly used test 
runtime environments. In addition, existing test runtime 
environments are concerned only by test execution without 
considering test preparation and completion. Furthermore, they 
usually do not support multiple test case description languages. 
Thus, there is a need for a solution to tackle test automation of 
cloud systems. 

Testing involves many activities such as planning, 
preparation, execution, and completion [19]. Reducing human 
intervention in these activities is a step forward towards 
automating live testing for cloud systems. In this paper we 
propose an architecture for such automation. This architecture is 
composed of two main building blocks, the Test Planner and the 
Test Execution Framework, each of which is responsible for a 
subset  of the testing activities. To deal with the challenges 
related to the diversity of platforms encountered in cloud 
systems, we use UML Testing Profile (UTP) [16] to provide a 
platform independent representation of all the artifacts involved 
in the information flow of our proposed architecture. We map 
relevant elements in the artifacts involved in our architecture to 
UTP concepts. We also propose an execution semantics that the 
Test Execution Framework will associate with each model 
element that represents an entity involved in tests execution and 
orchestration. The execution semantics is not only useful for 
automatic orchestration of testing activities, but also for tracking 
the progress of these activities and reacting to them 
appropriately.  
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The rest of this paper is organized as follows. In Section II 
we review the related work and go through the challenges of the 
automation of live testing. We provide an overall picture of our 
proposed solution and its components in Section III. Section IV 
describes the first building block of our proposed solution, i.e. 
the Test Planner, and the method it uses for test suite generation. 
In Section V we map the concepts in our solution to the UTP 
concepts. In Section VI we show how this mapping can help 
automating testing activities in production by associating 
execution semantics to UTP concepts. We conclude in Section 
VII.  

II. RELATED WORK AND CHALLENGES 
Several architectures have been proposed for tests 

orchestration. The authors in [9] highlight three tasks that such 
an architecture should be able to perform: 1) observation, i.e. 
ability to collect information; 2) stimulation, i.e. ability to 
stimulate the system; and 3) reaction, i.e. an event, such as a 
detected error, should trigger a reaction at the level of the system 
under test (SUT) as much as it does at the level of the test system 
itself. In other words adaptation at the level of the SUT should 
lead to adaptation at the level of the test system too. The 
architectures mentioned in the literature can be classified into 
passive tests vs active tests orchestration architectures. [9 and 
11] describe architectures that can be used to manage passive 
tests (monitoring) in production. [1, 3, 5, 6, 7, 10, and 12] 
propose solutions that can be used for active tests orchestrations. 
Another classification of these architectures can be established 
based on what triggers the testing activities; from this 
perspective, one can distinguish between interactive 
architectures and event driven architectures. Interactive 
architectures are the ones in which testing activities are triggered 
by human intervention (e.g. system administrator). Such 
architectures include [6, 7, and 13] as they launch testing 
activities when an administrator submits a request through a 
GUI or a CLI. Event driven architectures rely on events, such as 
the expiration of a timer, to trigger testing activities. The most 
commonly considered event is a system reconfiguration as it 
requires regression testing to evaluate the new state of the 
system. Reconfigurations can be simple adaptations such as a 
change in the binding of web services (e.g. the work in [9]); or, 
they can be additions or removals of one or more components 
(e.g. [5, 10]). Other types of events such as the expiration of 
timers to establish periodic checks [1, 3, 12], when the 
component is being looked up or called [1, 3], when an error is 
detected and the fault needs to be localized [2], etc., are also 
considered in the literature in event driven architectures. These 
architectures and solutions are used to orchestrate various types 
of tests. Yardstick [6] for instance, is used for pre-deployment 
testing of infrastructures’ performance, capacity, availability, 
and the infrastructure’s ability to properly run lifecycle 
operations on Virtual Network Functions (VNFs) and Network 
Services. Fortio operator [7] is yet another tool proposed by the 
Kubernetes community to run load tests on microservices in a 
Kubernetes managed environment. NetFlix Chaos Monkey [12] 
is one of the commonly discussed projects when it comes to live 
testing. It enables performing resiliency testing through fault 
injection in the production environment. Gremlin [14] is another 
tool, which is developed by IBM, for resiliency testing. 
Although it was not evaluated for live testing, but it is claimed 

to be easily portable to a production environment. Unlike Chaos 
Monkey, Gremlin injects faults at network level and not code 
level thus allowing for a better applicability across different 
technologies.  

The approaches discussed so far indeed have the potential to 
be adapted to safe use in a production environment (as not all of 
them deal with test interferences); however, they remain limited 
to specific test types (load, performance, resiliency, etc.), and/or 
to specific test items (infrastructure, specific software, etc.). As 
a result, a test engineer who uses these approaches will have to 
make their own test scripts to schedule these tests and 
orchestrate them; which can be time and effort consuming as it 
has to be done every time the system needs to be tested. It can 
also be error prone due to the complexity and size of the 
production systems. Furthermore, of the three tasks mentioned 
in [9], these architectures are capable of stimulating and 
observing the SUT; however, their reaction capabilities are 
limited to reactions at the level of the SUT only. [8 and 10] are 
some of the few works that address how the test system should 
be maintained in reaction to an adaptation or a change in the 
SUT. The approach proposed in [8] reacts at the level of the test 
system by changing a label that it assigns to test cases which can 
be either ACTIVE or INACTIVE. A test case label may switch 
if the test case, for instance, was applicable under a previous 
service bindings, but when the binding has changed it became 
inapplicable. At every test sessions, the architecture is only 
allowed to select from test cases that have the ACTIVE label. 
The work in [10] relies on a different approach with the aim of 
decoupling the test case specification from the test case 
implementation. As a result, at every test session all the test 
cases are eligible to be chosen; however, in response to a system 
adaptation or reconfiguration, the architecture changes how that 
test case is implemented by associating it with a different set of 
test tasks (which are concrete implementations of test cases). 

From this review of the related work we can identify a 
number of challenges that need to be addressed to automate live 
testing.  They can be summarized as follows: 

• Challenge#1: Test cases come from different 
sources (software vendor, test teams, third party). 
They may be written in different languages and 
require different runtime environments for 
execution. On the other hand, converting all 
available test cases to one programming or 
modeling language is unpractical (at the moment as 
it has to be done manually), and sometimes even 
unfeasible (test cases whose  logic is inaccessible 
for the system owner). 

• Challenge#2: Test cases coming from different 
vendors typically imply also that the test 
configurations for these test cases are deployed 
differently. Therefore setting up the test 
configurations may require different environments 
or tools depending on the test case. 

• Challenge#3: Test cases may be of different 
nature. Passive tests such as monitoring, active 
tests, or metamorphic tests; they all differ in the 
way their configurations are deployed, how they 
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should be executed, and how/when their verdicts 
are generated/fetched. 

• Challenge#4: Existing tools of test case execution 
such as ETSI TTCN [17] Test Architecture, assume 
that only the test cases are executed in the SUT, 
however, one may need to use an online testing 
method to test some properties of the system. 
Online testing [20] is a viable solution to deal with 
non-determinism and the dynamicity of the runtime 
state of modern systems such as clouds. Therefore, 
a proper solution for automation of live tests needs 
to support them. 

Today these challenges are not properly dealt with in 
practice as we have shown in this section. In fact, system 
maintainers who encounter them end up either orchestrating the 
tests manually, or creating ad hoc scripts that will solve the 
problem for a few test sessions at best. These methods of test 
orchestration are unpractical because they are not reusable, error 
prone as these scripts are often made manually, and rarely deal 
with all the various failures that may take place during the 
testing activities. 

III. AN ARCHITECTURE FOR AUTOMATION OF LIVE TESTING  
In this paper we propose an architecture for the automation 

of live testing of cloud systems. We aim at tackling the 
challenges we identified in the previous section.  

The first step for dealing with these challenges is to decouple 
the representation of the system and the artifacts involved in the 
testing activities from any platform. The second step is to 
specify how this representation is processed and used to achieve 
the goals, i.e. automate testing activities in production.  

Testing activities such as planning, preparation, execution, 
completion, etc., need to be automated for live testing to be 
properly conducted. Unlike test planning, other activities such 
as preparation and execution depend heavily on the platform of 
the SUT. In other words, due to platform dependencies a good 
solution for test execution for microservice based systems for 
instance may not be good enough for ETSI Network Function 
Virtualization (NFV) [22] based systems. However, a good 
solution for test planning is reusable regardless of the platform 
of the SUT provided the SUT can be modeled at the right level 
of abstraction. Therefore, when designing a solution to automate 
live tests one has to take into consideration to what extent each 
activity may depend on the target platform on which the solution 
would be applied to be considered a good solution to automate. 
Taking this into consideration, we grouped activities that heavily 
depend on the target platform into one of the building blocks of 
our solution; and grouped the activities that may be reused 
across several contexts into another building block. Therefore, 
we propose the architecture shown in Fig. 1 to automate testing 
activities in production. The architecture is composed of the Test 
Planner (reusable building block) and the Test Execution 
Framework (target platform dependent block). The Test Planner 
is responsible of generating the test package. The test package is 
generated as a response to an event taking into consideration the 
test cases in the test repository and the current state of the system 
(system information). The test package is then fed to the Test 

Execution Framework which executes it on a live system while 
maintaining the disruption level within a tolerable range.    

A. System information 
This artifact represents the knowledge about the SUT that is 

required to properly conduct testing activities. It includes system 
configuration, runtime state, available software packages and 
their properties, and data collected or used by other management 
frameworks (availability management, scalability management, 
virtualization management, etc.).  

B. Test Repository  
The test repository stores test cases and test design methods 

along with the test goals they achieve. Test goals may be of 
various granularity ranging from the exercise of a path in a 
software (same granularity as test requirement in UTP); to 
system wide acceptance testing (same granularity as test 
objective in UTP).  Other test case related information such as 
history of execution times, fault exposure rates, etc., are also 
stored in the test repository. Similarly, the test repository has 
information about test design techniques such as their required 
inputs and whether they are online or offline test design 
techniques. The test cases, test design techniques (both online 
and offline), and the test goals in the repository come from 
developers, software vendors, or the system administrator. The 
extra information is collected after each test session as the test 
case execution environment allows it. This extra information is 
then used to update the test repository accordingly.  

C. Event 
An event is what triggers a test session. Events are 

configured at the level of an instance of this architecture, or 
created by the system maintainer or by a third party software to 
launch an on demand test session. Events created by third party 
software are of several types including events triggered by other 
management frameworks (for some specific types of regression 
testing, or to assist in root cause analysis for instance); as well 
as events created by some system components to ensure they are 
using services from the right components as stated in [3].   

D. Test package 
A test package consists of a test suite and a test plan. The test 

suite includes test suite items which are test cases and/or test 

Fig. 1. Overall abstract architecture 
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design techniques that were selected from the test repository to 
respond to the received event.  

The test plan provides the road map of the test execution and 
specifies a set of partially ordered Test Suite Item runs (TSIs), 
each TSI is an application of one or more test suite items under 
a  given test configuration. This approach allows for grouping 
according to different criteria. For example, grouping together 
TSIs if setting up a test configuration is costly and/or disruptive, 
and there are more than one test suite items that apply to it. In 
this case one needs to setup this configuration only once during 
a test session and run all the test suite items that apply to it before 
tearing it down. In other cases TSIs applicable to the same test 
configuration may be grouped separately based on the criticality 
of the services they may impact.  

Information on how the tests should be executed such as test 
configurations, test preparations e.g. isolation countermeasures, 
contingency plans to fix/contain crashing errors detected during 
the tests, etc., are also included in the test plan. 

E. Test Planner 
The Test Planner is responsible of generating the test 

package in response to a received event. Taking into 
consideration the received event, the Test Planner starts by 
selecting the test goals which respond/correspond to that event. 
After test goals selection, the Test Planner proceeds with the 
selection of test cases or test design techniques that can achieve 
the selected test goals. The selected test suite items will compose 
the test suite in the test package. The Test Planner relies on the 
information in the test repository, especially the mapping 
between test cases/test design techniques to the test goals they 
achieve, to select these tests cases and test design techniques. 
Later in this paper we describe our proposal for how this test 
suite is made based on the received event. 

To complete the test package, the Test Planner generates a 
test plan. This test plan is generated taking into consideration the 
extra information available about each selected test case as well 
as the knowledge available about the system (system 
information). This information helps to decide which isolation 
method and contingency plan to use for each test case or set of 
test cases. As a result, test plan generation is a complicated 
process that involves making some decisions that if made 
inappropriately may lead to unnecessary, or even intolerable, 
disruptions in the system. The test plan generation is out of scope 
of this paper. 

The generated test package is then given to the Test 
Execution Framework to execute. After the execution, the Test 
Planner updates, when applicable, the test repository using the 
information collected about each executed test case. More 
details about test suite generation are provided in the Section IV. 

F. Test Execution Framework (TEF) 
The Test Execution Framework (TEF) takes a test package 

as input and executes it on a live system. Executing a test suite 
consists of running the test suite items according to the test plan. 
The test plan is composed of partially ordered TSIs (test suite 
item runs) each of which combines a test configuration with at 
least one test suite item. Such grouping allows flexibility in 
scheduling TSIs according to their test configurations to enable 
a less intrusive test execution. 

In order to automate testing activities in production, TEF 
implements different execution semantics for each one of the 
aforementioned concepts as it will be described in Section VII. 

IV. THE TEST PLANNER AND TEST SUITE GENERATION 
The Test Planner’s responsibilities are mainly related to test 

planning and test design activities. This clearly reflects on the 
main artifacts it is responsible of generating, i.e. the test package 
which is composed of a test suite and a test plan. In this section 
we go through our proposed approach for the automation of test 
design activities. We aim to automate the test planning in our 
future work. 

A. Types of events 
The Test Planner generates the test package in response to 

an event. As a result, the test design activities are conducted 
according to the received event. We identified the following list 
of event types: 

• Periodic event: some parts of the system need to be 
checked periodically. In fact, those parts even though 
unchanged, they may be impacted by a change in their 
environment. A periodic test helps ensuring that some 
subsystems are always functioning correctly in the 
production environment. This type of events, such as 
for healthcheck, is specified as a set of test goals and a 
period of how frequently they should be achieved.  

• Change in the system:  a reconfiguration is usually a 
reason to perform regression tests. Therefore, a change 
in the system is considered an event that can trigger a 
live test session. The Test Planner can be made aware 
of a change either: 1) by registering to the notifications 
of the configuration manager; or 2) by being invoked 
directly by the configuration manager after a given 
reconfiguration.  

• New test goal: addition of a new test goal to the 
repository should trigger a test session to achieve the 
new test goal. In fact, adding a new test goal may be 
accompanied by addition of new test case(s) the 
execution of which may reveal errors that were not 
detected previously. It is also possible that the new test 
goal is achieved using a combination of test cases that 
were not used together before, which may reveal new 
errors as well. 

• Test request: to avoid limiting the applicability of our 
architecture, we propose the concept of test request to 
include the cases not covered by the previous types of 
events. Therefore, a test request may be submitted by 
an administrator or a third-party software. This test 
request can be of one of the following types: 

o Used as an aggregation of periodic events: the 
administrator may want to run some system 
checks together for a period of a time. In this 
case, a test request can be used to aggregate 
the periodic events associated with these 
system checks. 

o A set of test goals to achieve: at any point an 
administrator or a third party software may 
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initiate a test session by submitting this type 
of test requests. It is composed of a set of test 
goals to be achieved, which are selected from 
the repository. This type of test requests is 
mainly practical for test goals that are 
achieved using test design techniques and not 
test cases as there is another type of requests 
that can be used to invoke specific test cases. 

o A set of fault-revealing test goals: when a 
fault revealing test goal is achieved, errors are 
detected if the fault to be revealed is present. 
The main purpose of a test request consisting 
of such test goals is to localize the faults 
behind these errors. Hence this type of test 
requests is mainly used to trigger system 
diagnostics. An administrator or a third party 
software may give the Test Planner a set of 
fault-revealing test goals and the Test Planner 
will have to generate a test package that can 
help localize the faults behind the errors that 
manifest when one or more of these test goals 
are achieved. 

o A set of test cases: a set of test cases to be 
executed may be requested by the 
administrator or a third-party software.  

B. Test Suite Generation 
The test suite is one of the components of the test package 

that the Test Planner generates to respond to an event. Therefore, 
taking into consideration the received event, the Test Planner 
follows different strategies to select the test suite items that will 
compose the test suite. The method we propose for this purpose 
follows the following rules: 

• If the received event is a periodic event happening for 
the first time, the Test Planner selects test cases and test 
design techniques that are able to achieve the test goals 
specified by this event. This is a straightforward 
process as the mapping between the test cases/test 
design techniques and the test goals they achieve is 
already stored in the test repository. 

• If the received event is a periodic event and no 
reconfiguration or test goal addition happened since the 
last instance of this event, the Test Planner should reuse 
the same test suite from the last time an instance of this 
event occurred. We proceed this way for the reason that 
since the system has not undergone any change, this 
means that the same test cases/test design techniques 
are applicable and will be chosen for this instance of 
the event as for its previous instance. This is like a 
heuristic that we use to save some time in this activity 
as querying it may be time consuming.  

• If the received event is a periodic event, and there was 
a reconfiguration or test goals were added since the last 
instance of this event; this event is treated as if it is 
happening for the first time. In fact, a change in the 
system or in the content of the test repository may 
require a different set of test suite items to achieve the 
same test goals as previous instances (before the 

change). Therefore, a reselection of test cases and test 
design techniques is deemed necessary in this case. 

• If the received event is an addition of new test goals, 
then the Test Planner should select the test suite items 
that achieve the newly added test goals. The addition 
of a test goal leads to existing or new test cases/test 
design techniques be mapped to it. As a result, one 
needs to check if achieving this new test goal may 
reveal any errors that were not detected previously. 
Using the mapping information from the test 
repository, one can deduce the set of test cases/test 
design techniques needed to achieve this new test goal. 

• If the received event is a reconfiguration, the Test 
Planner will use an approach for regression test case 
selection/generation to select the test cases. Several 
approaches may be used to deal with this kind of event. 
For instance, a test design technique that is stored in the 
repository may simply perform an impact analysis and 
come up with a set of regression test goals from the 
repository to be achieved. In this case the Test Planner 
will select test cases and test design techniques that 
achieve the selected test goals to compose the test suite. 
Another approach to deal with this event is by having 
a default regression test case selection/generation 
technique that will be invoked whenever a 
reconfiguration takes place. 

• If the event is a test request: 

o If the test request is an aggregation of periodic 
events it is handled the same way as a periodic 
event. 

o If the test request consists of a set of test goals 
to be checked, the Test Planner selects the set 
of test cases and test design techniques to be 
used to achieve the requested test goals. This 
is done based on the information from the 
repository that maps each test goal to the test 
cases/test design techniques that achieve it. 

o If the test request consists of a set of fault-
revealing test goals, the Test Planner first 
identifies other test goals that are related to 
the requested test goals and which (if 
achieved) can help localize the faults. After 
identifying those goals, the Test Planner 
selects test cases and test design techniques 
that are able to achieve the selected test goals. 
The identification of the related test goals can 
be done by invoking a default fault 
localization technique. 

o If the test request consists of a set of requested 
test cases, the test suite will be composed of 
the requested test cases.  

V. MODELING FRAMEWORK 
In this section we describe how we address the first step of 

dealing with the challenges outlined in Section II, i.e. decoupling 
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the representation of the system and the artifacts involved in 
testing activities from the target platform.  

 

Modeling techniques, especially UML, are commonly used 
for platform independent modeling of systems. Therefore, we 
propose to use UML to provide a platform independent 
representation of our targeted systems and artifacts. Note that 
this representation is not only needed to model the artifacts and 
to have an exchange format for them (between the building 
blocks of our architecture), but also to track the progress of the 
testing activities and accordingly invoke appropriate behaviors. 
We chose UML Testing Profile (UTP) [16]  to model all the 
artifacts in play in our architecture including the test plan. The 
choice of UTP was based on the following rationales: 

• UTP covers a wide range of testing activities and it is 
aligned with industry testing standards [18, 19]. 

• UTP is a UML profile, and therefore some of the 
inherited concepts from UML allow for flexibility, 
extendibility, and interoperability with existing tools. 

• The flexibility offered by UTP to model verdicts and 
arbitration specifications allows capturing of runtime 
errors. As a result, using UTP will not limit the 
capability of the architecture to detect failures and react 
to them. 

• UTP allows the reuse of all concepts used in UML to 
model behaviors, including the use of UML’s 
CombinedFragment. Therefore, it supports a wide 
range of patterns of scheduling such as sequential, 
parallel, alternative, etc., which allows us to deal with 
Challenge#3.  

UTP offers plenty of opportunities to automate the 
orchestration of testing activities in production. However, some 
minor modifications may be needed to cover all bases. These 
minor modifications can be summarized as follows: 

• UTP as-is does not allow associating an 
ArbitrationSpecification with a ProcedureInvocation 
element. This constraint needs to be relaxed if we want 
to be able to arbitrate actions taken in the setup phase 
(for setting up isolation countermeasures), teardown 
actions, or the execution of test generation actions 
when invoking a test design technique. 

• UTP offers concepts to model test logs. However, these 
test logs are associated only with test cases and test 
procedures. In online testing methods, one needs to log 
the test design activities too. Therefore, we may need 
two types of logs to be associated with a 
TestDesignTechnique element: 

o TestDesignTechniqueLog: to log test design 
activities. The structure of this log is specified 
by a TestDesignTechniqueLogStructure 
element associated with the 
TestDesignTechnique. 

o TestCaseLog: if the online testing method 
generates new test cases the TestCaseLog is 
also associated with the 
TestDesignTechnique element. The structure 
of the logs of the generated test cases is 
specified by the TestCaseLogStructure 
element associated with the 
TestDesignTechnique. 

This extension will help us deal with the representation and 
modeling aspect of Challenge#4. The remaining aspect of this 
challenge related to the behavior is dealt with at the level of TEF 
and will be described later in this document. 

 The mapping between the concepts we propose, and the 
ones defined in UTP is shown in Table I. This mapping enables 
expressing test plans as TestExecutionSchedules that run UTP 
TestCases. UTP TestCases consist of one or more test cases 
provided by the vendor or the developer (along with a test 
configuration) enhanced with some isolation countermeasures 
that need to be set up before the execution of the test case (which 
is a UTP TestProcedure), and that need to be torn down at the 
end. UTP TestProcedures may be modeled using UML 
concepts. UTP also offers the possibility of specifying 
TestProcedures using other languages as OpaqueBehavior (a 
concept inherited from UML). Therefore, this mapping helps us 
properly deal with Challenge#1. 

Test goals that are associated with test cases in the repository 
are modeled as UTP TestRequirement. Test goals that are 
associated with test design techniques are modeled as UTP 

TABLE I.  MAPPING THE ARTIFACTS IN THE ABSTRACT ARCHITECTURE TO UTP
CONCEPTS  

Abstract Architecture concepts UTP concepts 
Test repository Set of pairs (TestContext, 

aggregate of test logs) 
Test case as in the repository TestProcedure 
Test design technique as in the 
respoitory 

TestDesignTechnique 

Test suite item in the test plan ProcedureInvocation (e.g. 
TestProcedure, or 
TestDesignTechnique invocation) 
in the main phase of a TestCase 

TSI  TestCase 
Test package TestContext 
Test suite TestSet 
Test plan TestExecutionSchedule 
Periodic event Triplet (TestLevel, TestType, 

TestDesignInput)+ time data 
Test request: test goals to be 
achieved 

Subset of TestRequirements or 
TestObjectives that are in the test 
repository 

Test request: fault revealing test 
goals 

A set of of TestRequirements or 
TestObjectives (not necessarily in 
the test repository) 

Test related metadata TestLogs 
Test related metadata specification TestLogStructure  
Test results Verdicts (Pass, Fail, Inconclusive) 
Failure detection during test 
execution 

Verdicts (error, customized 
verdicts) 

Test preparation including the 
setting up of isolation 
countermeasure 

TestCase setup procedure 
invocation 

Test completion including the 
cleanup of isolation 
countermeasure 

TestCase teardown procedure 
invocation 

Test goal TestRequirement or TestObjective 
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TestObjective. The main difference between the two is that a 
TestRequirement is a contribution of a test case towards 
achieving a TestObjective. However, a TestObjective is defined 
as the stopping criterion of testing activities. Both TestObjective 
and TestRequirement can be specified informally using natural 
language, or formally using a machine understandable language 
such as ETSI TPlan [15]. Expressing TestRequirements and 
TestObjectives using formal languages may open the door for 
further processing of these model elements and make them more 
suitable for other purposes of live testing such as diagnostics. 

Test configurations in UTP include modeling the 
configuration of the test component as well as the configuration 
of the test item (system or component under test). Two patterns 
are proposed in UTP specification to model these 
configurations, the one we are recommending is modeling these 
configurations as constraints. Although UML has a language for 
constraints specifications, but similar to behaviors, it also allows 
the usage of other languages. Test configurations may be 
specified in various languages such as ansible playbook 
language, puppet DSL, chef DSL, etc.; as a result,  one may use 
this feature of UML to specify test configurations as constraints 
expressed in languages that deployment management engines 

can process. Therefore, such use of UTP is useful for dealing 
with Challenge#2.  

 The mapping will also allow us to detect failures during 
execution as the verdict type provided by UTP allows it. To 
address this, we propose using the UTP provided verdict “error” 
as a concept to model failures of actions for which it is not clear 
whether the problem during the execution is caused by a 
problem in the test component or the test item. Moreover, UTP 
allows the creation of user customized verdicts. In our opinion, 
since the implementation of a test component may be part of an 
implementation of this architecture; the implementer can draw 
up a list of possible problems that can occur to the test 
component (test component’s failure modes), create their 
customized verdicts, and then the implementation of this 
environment can decide which actions to take to recover the 
failed test component based on the customized verdict that was 
issued. Note that this approach can also be used with test 
components of some test environment about which the system 
maintainer has enough knowledge. 

Fig. 2. Execution semantics of the TestExecutionSchedule 
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VI. TEST EXECUTION FRAMEWORK 
In this section we describe our approach to address the 

second step of dealing with the challenges outlined in Section II, 
i.e. the behavior associated by the building blocks of the 
architecture to each element of the artifacts representation. 
Therefore, this section will mainly focus on the TEF, and how it 
processes the artifacts generated by the Test Planner according 
to the execution semantics we propose. This execution 
semantics is used for: 

• The automatic orchestration and control of testing 
activities in production. 

• Tracking the progress of testing activities by 
monitoring the state of each runtime object involved in 
the orchestration of testing activities. The TEF, through 
this tracking, is then able to orchestrate the testing 
activities and becomes aware of any mishaps that may 
take place during this orchestration. 

The first test plan model element with which we associate an 
execution semantics is the TestExecutionSchedule which is also 
a runtime object that is used by the TEF to track and control a 
test session. It is a composed of a set of partially ordered TSIs. 
A TSI is modelled in our test plan as a UTP TestCase, its setup 
and teardown phases are composed of ProcedureInvocation 
elements (to setup/teardown the test configuration); and its main 
phase is composed of a set of invocations of TestProcedures 
and/or TestDesignTechniques. A TestExecutionSchedule is able 
to receive four administrative operations: EXECUTE, 
SUSPEND, RESUME, and ABORT (Fig. 2.).  

EXECUTE is the only operation that can be invoked on a 
TestExecutionSchedule when it is first created. Upon the 
invocation of this operation the TestExecutionSchedule moves 
to the Initializing state, and the TEF performs all preparations 
necessary for the whole TestExecutionSchedule. After the 
preparations the TestExecutionSchedule moves to the Executing 

state, and the TEF starts invoking TestCases according to the 
specification of the test plan. TestCases can be specified: 

• sequentially,  

• using a CompoundProceduralElement which allows 
for TestCases to be executed in parallel, or  

• as alternatives based on specified conditions (like 
switch blocks in programming).  

Just like any UML specified behavior, a 
TestExecutionSchedule can use any combination of these 
facilities to model the schedule for the TestCases. The same also 
applies to the invocations within a TestCase in the 
TestExecutionSchedule (a.k.a ProcedureInvocations, such as 
TestProcedure and TestDesignTechnique invocations). 
Therefore, at any time one can have either a single TestCase 
running, or multiple TestCases running at the same time. In the 
TestExecutionSchedule the partial order is specified through a 
control flow, which is specified by control flow kind of links 
among the above constructs. The invocations to be made after 
the completion of a TestCase are decided based on the construct 
it belongs to and the target(s) of the control flow link(s) that have 
the completed TestCase as source.  

While the TestExecutionSchedule is in the Executing state, 
the TEF keeps invoking TestCases using the Execute_TSI 
message. From the initial Idle state, the invoked TestCase goes 
to the Executing state (Fig. 5.) via a Setting Up state, and 
completes after a Tearing Down state. In all these states the 
TestCase invokes different procedures composing the TestCase 
using the Execute_PI message. According to the TestCase state 
these procedure invocations (Fig. 3. And Fig. 4.) can be setting 

Fig. 3. Execution semantics of ProcedureInvocation and TestProcedure 
Invocation 

Fig. 4. Execution semantics of the TestDesignTechnique invocation 
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up/tearing down a test configuration and/or isolation 
countermeasures, or running a test case or a test design 
technique. In the later case, the invocation is for a 
TestDesignTechnique with the execution semantics shown in 
Fig. 4.; in the other cases the procedure invoked follows the 
execution semantics shown in Fig. 3., this includes the 
invocation of TestProcedures. When the execution of a 
procedure stops, its associated arbitration specification is 
invoked still in the Executing state. This leads to the creation of 
a verdict. If the verdict is None, PASS, FAIL, or 
INCONCLUSIVE, the invocation is deemed as successful, the 
invoked procedure goes to the Done state. If the verdict is a 
customized verdict, the TEF should be capable of taking 
recovery actions depending on the received customized verdict, 
because customized verdicts are produced only if the failure of 
an action was caused by the failure of a test component. The TEF 
then tries to recover from the failure and reinvoke the failed 
action. If this retrying exceeds a pre-specified number of times, 
the procedure goes to the Suspended State. Finally, if the 
produced verdict is ERROR, the procedure is deemed as failed, 
goes to the Failed state. In any case the procedure notifies the 
TestCase about the result, which then proceeds depending on the 
procedure’s state. If the procedure’s state is:  

• Done: the TestCase proceeds to the next invocation(s);  

• Suspended: the TestCase goes to the Suspended state, 
and therefore the TestExecutionSchedule also goes to 
the SuspendedByError state; 

• Failed: the TestCase also fails and notifies the 
TestExecutionSchedule. As a result the whole test 
session is deemed as failed.  

 If the TestExecutionSchedule goes to the Suspending state, 
the TEF waits for all the currently running TestCases to either 
complete (Done state), in which case it moves into the 
Suspended state; or if any TestCase is suspended then the 
TestExecutionSchedule moves to the SuspendedByError state.  

Once the TestExecutionSchedule is in the SuspendedByError 
state, the administrator can either fix/repair the system and 
resume the test session, or abort the test session. If a TestCase 
that is in Executing state goes to Failed state while the 
TestExecutionSchedule is in the Suspending or the Executing 
state, the TestExecutionSchedule goes to the Failed State and the 
whole test session will be deemed as failed.  

The SUSPEND administrative operation is used to suspend 
a test session. Upon the reception of this administrative 
operation, the TestExecutionSchedule goes to the Suspending 
state and waits for all currently running TestCases. As described 
from the Suspending state the TestExecutionSchedule may go to 
the Suspended state, to the SuspendedByError state or to the 
Failed state depending on the results of the currently running 
TestCases. If in the Suspended and the SuspendedByError 
states, the administrator can either decide to resume the test 
session later using the RESUME operation, or abort the test 
session using the ABORT operation. In the latter case it is left to 
the administrator to perform any required teardown or clean-up 
actions. 

VII. CONCLUSION  
Live testing has become a necessity as the production 

environments have become bigger and more complex and 
impossible or unfeasible to recreate it in the test environments. 
The automation of test activities is a must for live testing among 
others due to the complexity of the production environment and 
the need for short reaction times. In this paper, we highlighted 
the challenges of automating live testing, and showed the 
limitations of existing approaches in addressing them as they are 
either limited to a specific target platform (e.g. TTCN), specific 
method of testing (active vs passive), or specific test types 
(performance, resiliency, etc.).  

We proposed an architecture to enable the automation of 
testing activities in the production environment. We also 
proposed the use of UTP as the specification language for testing 
activities planning. We associated an execution semantics with 
the UTP concepts that are relevant to the automated 
orchestration of test activities. As part of the proposed Test 
Planner in our architecture, we outlined the main principles for 
a test suite generation method. As future work we plan to 
complete the work on the Test Planner by developing a method 
for automating the test plan generation. We also aim to apply 
this architecture for live testing of microservice based 
architectures.  
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