
A Similarity Integration Method based Information
Retrieval and Word Embedding in Bug Localization

Shasha Cheng
College of Computer Science Technology

Nanjing University of Aeronautics and
Astronautics

Collaborative Innovation Center of Novel
Software Technology and

Industrialization
Nanjing, China

shasha@nuaa.edu.cn

Xuefeng Yan
College of Computer Science Technology

Nanjing University of Aeronautics and
Astronautics

Collaborative Innovation Center of Novel
Software Technology and

Industrialization
Nanjing, China

yxf@nuaa.edu.cn

Arif Ali Khan
College of Computer Science Technology

Nanjing University of Aeronautics and
Astronautics

Collaborative Innovation Center of Novel
Software Technology and

Industrialization
Nanjing, China

 arif.khan@nuaa.edu.cn

Abstract—To improve the performance of bug localization,
there is necessity to solve the lexical mismatch between the natural
language in the bug report and the programming language in the
source file. A similarity integration method for bug localization is
proposed, in which the similarity between bug report and source
file is calculated by information retrieval (IR) and word embedding.
More specifically, IR technique is used to collect the exact matches
between bug report and source file. The terms in the bug report and
the potential source files of different code tokens are connected by
word embedding technique, which is used to complement with IR
technique. Finally, deep neural network (DNN) is utilized to
integrate extracted features to get the correlation between bug
reports and source files. The experimental results show that the
proposed approach outperforms several existing bug localization
approaches in terms of Top N Rank, MAP, and MRR.

Keywords—software bug localization, information retrieval, word
embedding, similarity integration, bug report

I. INTRODUCTION
Software quality is vital for the success of a software project

[1]. Developers often allow users and testers to submit bugs to
the software bug tracking system (Bugzilla, MantisBT). Bug
localization systems sort the source files based on the correlation
between the given bug report and source files. The developers
check the files from the ranked list to find the relevant faulty files.
However, for a large system, the number of defects may range
from hundreds to thousands [2], so the effectiveness and
timeliness of bug localization will affect the reliability and
availability of the software.

The existing bug localization techniques can be categorized
into three main groups. The first category is spectrum-based
which execute the program and collect its execution information,
track the running state of the software system, and localize the
possible defetcts [3][4][5]. It is a time-consuming process. The
second category is based on information retrieval (IR), which
mainly based on the text information of the source code, and
usually use bug reports to locate relevant source files. Zhou et al.
[1] proposed the BugLocator method, which locates the relevant
source files based on a revised vector space model (rVSM) that
considers previously fixed similar bug reports. Saha et al. [6]
proposed the BLUiR method, which uses the structural
information of the source file and the bug report to locate bugs.
Wong et al. [7] used the most similar code snippets in a given

bug report to represent the source file. They also analyzed stack
traces given in the bug report to improve the accuracy of bug
localization. Youm et al. [8] proposed a comprehensive method
of BLIA, which locates software bugs utilizing texts and stack
traces in bug reports, structured information and change histories
of source files. All of the above IR-based techniques focus on
the term weight of natural language text, however they ignore
the semantic similarity which could improve the bug localization
accuracy.

Machine learning is a well-known approach applied for bug
localization. Ye et al. [9] used adaptive learning to sort features
from source files, API descriptions, bug-fixing, and change
history. Later, Ye et al. [10] introduced a new word embedding
method to solve the lexical gap between programming language
and natural language, and used the text similarity algorithm
proposed by Mihalcea et al. [11] to calculate the semantic
similarity between source files and bug reports. However, API
documents contain text that involves more general tasks than
project-specific defect behavior, which can affect bug
localization performance. Recently, bug localization model
based on deep learning has also been proposed. Yan et al. [12]
used the concepts of enhanced convolution neural network, word
embedding and feature detection to locate buggy files to improve
the accuracy of bug localization. However, the integration of
several deep neural network (DNN) models makes it more
complex and difficult to accurately adjust the parameters of the
model [12].

Based on the state of the art review of the existing bug
localization techniques, the lexical mismatch between the bug
report described in natural language and the source file written
in programming language will affect the accuracy of bug
localization. In IR-based software bug localization, terms are
represented discretely and the correlation between source file
and bug report is determined by the exact matches between them.
Thus, the lexical mismatch problem is particularly important in
IR-based bug localization. Word embedding projects bug reports
and source files into the embedding space, and the rare or no
apparent terms in the query can be retrieved. Moreover,
Word2vec is widely used in similar bug recommendation and
code search/retrieval. Yang et al. [13] proposed a novel approach
to recommend similar bugs, which combines traditional IR
technique and word embedding technique. Nguyen et al. [14]
indicated that combining traditional IR with Word2Vec in fact

180

2020 IEEE 20th International Conference on Software Quality, Reliability and Security (QRS)

978-1-7281-8913-0/20/$31.00 ©2020 IEEE
DOI 10.1109/QRS51102.2020.00034

achieves better retrieval accuracy. Therefore, a novel similarity
integration method for software bug localization is proposed,
which IR and word embedding techniques are used to calculate
the similarity between source files and bug reports. In addition,
the text properties (token matching, stack traces and fixed bug
reports) of source files and bug reports are analyzed. In order to
capture the nonlinear relationship between features, DNN is
utilized to integrate the surface text similarity, semantic
similarity and text properties features.

The main contributions of this paper are:

1) A novel similarity integration method for software bug
localization is proposed, DNN is utilized to integrate the
similarity of IR, word embedding and text properties.

2) The proposed approach is compared with the five
existing software bug localization approaches in four dataset.
The experimental results show that the proposed approach has
statistical significance and substantial improvement.

The remainder of this paper is arranged as follows: The
research motivation is introduced in Section II. Section III
proposes a similarity method for software bug localization in
detail. Next, the similarity integration method is applied to bug
localization in Section IV. And experimental demonstration and
full comparison between the proposed approach and the
benchmark approach in Section V. Finally, the conclusion and
future work are described in Section VI.

II. MOTIVATION
In this section, the motivation of this paper is presented. The

application of word embedding in bug localization is described
in section A. And the text properties in bug localization are
introduced in section B.

A. Word embedding in bug localization

Traditional IR models use local representations of terms for
query-document matching. In IR-based bug localization, VSM
assumes that each word is independent and distributed. It only
uses the frequency of each word to describe the text of source
file and bug report, without recording any context information
between words. The most straight-forward use case for term
embeddings in IR is to enable inexact matching in the
embedding space [15]. Ye et al. [10] experiments show that word
embedding can be effectively applied to software bug
localization and achieve good results.

Word embedding refers to the distribution representation of
words in a vector space in which similar words are close to each
other [16]. Based on a large number of corpus training, each
word is mapped to a certain dimension of vector, and the
relationship between two words is expressed by cosine distance.
The word embedding model record the co-occurrence
relationship between words mapped in low dimensional space.
At one hand, the word embedding reduces the dimension and the
sparseness of vector representation. On the other hand, it can
mine the association attributes between words to improve the
accuracy of vector semantics. However, the mapping process
will cause lots of independent vocabulary information loss by
training the co-occurrence of words and mapping them into low
dimensional space.

Table I. The specific methods in five IR-based bug localization techniques

Therefore, traditional IR technique focuses on the
relationship between different documents in the whole corpus.
Word embedding technique pays more attention to the
relationship between words and the context in which they appear.
These two types of techniques are complement with each other.
In this paper, IR and word embedding techniques are used to
transform the source file and bug report into digital vector
representation.

B. The text properties in bug localization

The five classical bug localization techniques based on IR
are analyzed and summarized (BugLocator [1], BLUiR [6],
BRTracer [7], AmaLgam [17], BLIA [8]), as show in Table I.

For VSM, each document is expressed as a vector of token
weights typically computed as a product of token frequency and
inverse document frequency (TFIDF) of each token. Cosine
similarity is widely used to determine how close the two vectors
are [1]. Important information like class and method names often
get lost in the relatively large number of variable names and
comments terms due to the term weighting function (TFIDF) [6].
This problem can be overcome by analyzing the structure of
source file and bug report and giving higher weight to the exact
matches between them. The fixed bug reports mean that user
often submits many similar bug reports that correspond to
different errors that affect the same buggy program elements
[17]. And frequently modified source files will increase the
probability of bugs. For stack trace, bug reports often contain
stack-trace information, which may provide direct clues for
possible faulty files [7]. Research on stack traces such as
Schröter et al. [18] shows that 90% of the buggy source files are
in the top 10 stack traces. Segment and version control refer to
divide a source file into a series of segments and historical data
of source file changes, respectively.

From Table I, VSM, structure, fixed bug reports, and stack
traces are the most frequently used text properties in bug
localization. The proposed approach does not further analyze
other information (bug-fixing, code change history and so on)
that can be mined from software repositories and bug databases.
Therefore, in this paper, the VSM is used to calculate the text
similarity between source files and bug reports, and structure,
fixed bug reports and stack traces as text properties to improve
the accuracy of software bug localization.

III. SIMILARITY INTEGRATION METHOD BASED ON IR AND WORD
EMBEDDING

In this section, the proposed approach is elaborated. First,
abstract syntax tree (AST) and part of speech (POS) are used to
preprocess the source files and bug reports. Then the surface text
similarity and semantic similarity of the source file and bug

Approach BugLocator BLUiR BRTracer AmaLgam BLIA
VSM

Structure
Fixed bug reports

Stack traces
Segment

Version history

181

report are calculated by IR and word embedding. Finally, DNN
is used to integrate the analysis data.

A. Data preprocessing
The purpose of text preprocessing is to decompose the bug

report and source file into terms that can be analyzed by IR
technique. In this paper, the source files are transformed into an
AST and the class names, method names, variables and
comments can be extracted. Bug reports are also parsed to get
summary, description, fixed files and stack traces. The Camel
Case splitting [19] is used to segment the combined words. For
example, "EventMouse" is split into "Event" and "Mouse". The
English stop words such as "is" and "the" in the bug report and
source file are removed. The keywords such as "private" and
"public" are also removed from the source file. The standard
Porter Stemmer1 performs stem extraction to restore derived
words into the root form, so that similar words can appear in the
same form after processing.

In the natural language processing, POS tagging helps to
make full use of the semantic knowledge contained in English
words and sentences, and the important information in software
components is contained in nouns [20]. Fig.1 shows the POS
tagging results of the summary of the number 80120 AspectJ bug
report by Stanford Tagger, and 'CTabFolder', 'layout', 'pixel' and
'right' are nouns. From the extracted nouns, 'CTabFolder' directly
specifies the buggy file 'CTabFolder.java'. Therefore, the lexical
weight of POS as nouns in source files and bug reports should
be increased.

B. Similarity calculation based on IR and word embedding
The surface text similarity and semantic similarity between

the bug reports and source files are represented by cosine
distance. The similarity between them is represented by the
maximum similarity value of the bug report with all methods and
the whole document. The steps of calculating similarity between
bug reports and source files are described as follows in detail.

Firstly, among a group of pre-trained words in skip-gram,
some words may not exist, which are randomly initialized and
can be fine-tuned during training. Ye et al. [10] confirmed that
training text embedding using Wikipedia corpora and project-
specific corpora (Eclipse and Java) has similar performance, and
Wikipedia corpora have more vocabulary, which is beneficial to
the deep learning model. Therefore, the proposed approach uses
the open source Word2vec of google as the training tool, divides
the text in the wiki corpus into training data and test data. And
then the skip-gram model is used to train and obtain the vectors
of each word in the training data. The vectors of each word
dimension 100, 200 and 300 are obtained in the training data
respectively. Through the experiment, the vector dimension is
chosen as 300 to achieve the best effect of similarity calculation.

Secondly, VSM is commonly used to treat each text as a set
of vectors, which is used to calculate TFIDF value for all terms
in source files and bug reports. The larger source file has a higher
error probability [1], the length score of the source file is
combined with the result of cosine similarity.

1 http://tartarus.org/martin/PorterStemmer/.

<bug id="80120" opendate="2004-12-03 11:43:00" fixdate="2004-12-06 12:11:00">
 <buginformation>
 <summary>CTabFolder layout puts top right item one pixel to far to the right</
summary>
 </buginformation>
</bug>

Stanford Tagger

('CTabFolder', 'NN'), ('layout', 'NN'), ('puts', 'VBZ'), ('top', 'JJ'), ('right', 'JJ'), ('item',
'NN'), ('pixel', 'NN'), ('right', 'NN')

Fig. 1. BugID=80120 using POS results in AspectJ

org.aspectj.ajde.BuildOptionsAdapter
interface does not yet support the
new AspectJ 1.1 compiler options.
These need to be added to the
interface, any old or renamed options
deprecated, and then the correct
processing needs to happen within
Ajde to pass these options to the
compiler. This enhancement is
needed by the various IDE projects
for there AspectJ 1.1 support.

Description of bug report

Interface:[0.35 -0.03 -0.04 0.31]

Support:[-1.23e-01 -2.01e-01 -3.32e-01 1.22e-01]

New:[3.40e-01 1.37e-01 -2.53e-01 4.34e-01]

Compiler: [-2.68e-01 -3.62e-01 -3.83e-01 3.15e-02]

Option: [3.58e-01 -4.32e-03 1.94e-01 -2.47e-02]

These: [-1.96e-01 -1.39e-01 3.45e-01 -1.42e-01]

Need: [1.20e-01 1.42e-01 5.66e-02 1.54e-02]

Add: [2.25e-03 3.56e-01 -3.45e-02 2.91e-01]

300 dimensions word vector of bug report
Fig. 2. Transforming description in bug report into vectors using skip-gram

 LenScores #terms = 1
1+e- ×nor(#terms) (1)

In the above equation, #terms refers to the number of terms
in the source file s and (> 0) adjust the preference for larger
files. By setting this parameter, a better balance between
increasing large files and reducing noise in large files can be
achieved [1]. The value of surface similarity between bug report
b and source file s is measured by following the equation.

 VSM b,s =cos(b,s)×LenScores(#terms) (2)

Thirdly, bug report contains summary and description, which
are composed by the natural language. Fig.2 shows an example
of converting description of the number 29769 AspectJ bug
report into a 300D numeric vector by using the trained skip-gram.

The source file is consist of various code tokens in the
programming language, which is different from the bug report.
Some keywords frequently appear in the source code, which may
affect the performance of skip-gram. In order to reduce the
influence of keywords that frequently appear in the source code,
the proposed approach combines skip-gram and TFIDF to
represent the source file and bug report by vector. Because the
representation method of skip-gram model based on word
embedding can mine the associated attributes between words. It
will improve the accuracy of vector semantics. And TFIDF has
high discrimination for words with high frequency and
significant in a small number of documents. In other words,
TFIDF can filter out some common but unimportant words while
retaining the important words that affect the whole text [20].

182

 s*= 1
s

wi,stfidfi,si s (3)

 b*= 1
b

wi,bi b (4)

In the above equations, s and b denote the number of
terms in the source file and bug report. wi,s (wi,b) is the word
vector of a term i in the source file s (bug report b) by using the
skip-gram model. tfidfi,s is the TFIDF weight of term i in the
source file s. And s* and b* represent as numeric vector of the
source file and bug report respectively.

Finally, defects are usually located in a small part of the code,
for example a method. When the source file is large, its
corresponding norm will also be large, which will result in a
small cosine similarity with the bug report, even though one
method in the file may be actually very relevant for the same bug
report [9]. Therefore, the AST is used to divide the source file
into methods to calculate the similarity between each method
and bug report. Each method m is regarded as a separate
document and the cosine distance is used to calculate the
similarity between method and bug report. Then the maximum
value of the bug report similarity with all methods and the whole
document is employed to represent the surface lexical similarity
and semantic similarity. The specific equations are as follows:

 SurfaceSim=max({rVSM(b,s)} {rVSM(b,m)|m s}) (5)

 SemanticSim=max({cos(b*,s*)} {cos(b*,m*)|m s}) (6)

C. DNN for similarity integration
The linear model is difficult to capture the nonlinear

relationship between features, it may limit the performance of
bug localization. The combination of DNN and nonlinear
function is expected to perform better than the linear
combination based on IR adaptive learning [21]. DNN is a series
of algorithms in the artificial neural network (ANN). The
purpose of DNN is to express the high-level abstraction in data
by using the model structure with multiple nonlinear
transformations. DNN is a forward-propagation ANN. There are
many hidden layers between input and output layers, among
which the higher layer can combine features from the lower layer.
DNN has excellent capacity, it has been successful in dealing
with the high complexity nonlinear relationship between input
and output. Therefore, DNN is used to combine features, and
enough training data are used to learn the weight of features from
the nonlinear function.

Positive pairs are created through all the corresponding the
fixed bug reports and their buggy files. Moreover, negative pairs
are created by selecting source files that are similar in text and
do not contain defects for each bug report. The features from
each bug report and source file are extracted, feature vectors are
respectively constructed using the similarity calculation based
on IR and word embedding. The two feature vectors are
considered as an input for DNN. The DNN transforms features
using nonlinear functions into the hidden layer, and classifies
these features by linear functions in output layer. In DNN, the
hidden layer has abstract effect, and the number of hidden layers
determine the ability of feature extraction. In order to get the best

effect of the proposed approach, the number of hidden layers of
DNN are set to 1000 and the number of nodes are set to 1000-
1100. The output is a separate score to indicate the likelihood
that the source file contains defects relative to the bug report.

IV. A SIMILARITY INTEGRATION METHOD FOR SOFTWARE
BUG LOCALIZATION

A. Analyze the text properties of bug reports and source files
According to the section of motivation, token matching

(structure), stack traces and fixed bug reports are analyzed in the
proposed approach.

Token matching: The information such as file name,
method names, class names and comments in the source file are
used to match the summary and description of the bug report
respectively. The similarity between the source file and bug
report is represented by the number of token matches.

Stack traces: The regular expression .*? \((.*?)\) is used to
extract the stack traces from the description of bug report. The
reciprocal of the ranking of the source file in the stack traces is
used to measure the similarity between the source file and the
bug report [7].

Fixed bug reports: The multi-label classification algorithm
is applied to each bug report. The terms in the fixed bug reports
as input and their located source files as tags. The features are
extracted from bug reports to make better use of multi-label
classification algorithm. The summary of bug report is an
important feature because it tends to use concise sentences to
express what the defect is. Therefore, the TFIDF weight of terms
in the summary part of the preprocessed bug report is taken as a
feature. And the TFIDF weight of POS tag noun set in bug report
is taken as another feature. The independent classifier is trained
for each label using a multinomial naive Bayes classifier as the
base classifier for a one-vs.-the-rest (OvR) method. Then, given
the new bug report, it will output the probability score of the
source file to be located.

B. Framework of Similarity integration method in bug
localization
The similarity integration method based on IR and word

embedding is applied to software bug localization, and the
overall framework is shown in Fig.3. A better IR-based bug
localization technique should include both lexical matching and
semantic matching. Thus, on the basis of analyzing the text
properties of source files and bug reports, IR and word
embedding are further used to calculate the similarity between
them to solve the problem of lexical mismatch. The analysis data
are integrated by DNN to capture the nonlinear relationship
between features. When there is enough training data, the weight
of each feature (surface text similarity, semantic similarity and
text properties) from the nonlinear combination can be reflected,
in order to sort the source files that may contain defects.

Based on the similarity integration method described in
above section, DNN is utilized to combine the five features of
surface text similarity based on IR, semantic similarity based on
word embedding, token matching, stack traces and fixed bug
reports, as shown in Fig.4. The result is correlation scores
between the bug report and all source files.

183

Bug report

Source files

Data processing
POS AST

Word Embedding

TFIDF

File Size

Surface
similarity

Semantic
similarity

Extract
stack traces

Token
matching

Stack
traces

Previously fixed
bug reports

 Similarity
integration

Final Ranked filesmulti-label
classification

Fixed bug
reports

Fig. 3. The Overall Framework of the proposed approach

Surface
similarity

Semantic
similarity

Token
matching Stack traces Fixed bug

reports

i

h

o

Integration Similarity

Fig. 4. DNN-based for similarity integration

Table II. The statistics of the Benchmark Dataset

Project Time Range #Bug Reports #Source Files
AspectJ 03/01-01/14 593 4439
Eclipse 10/01-01/14 6495 3545

JDT 10/01-01/14 6247 8184
SWT 02/02-01/14 4151 1552

V. EMPIRICAL EVALUATION

A. Experimental Setting
Benchmark DataSet: In order to evaluate the effectiveness

of the proposed approach, the dataset used in experiments come
from Ye et al. [9] (Table II). The same dataset have been
previously used in other bug localization techniques (i.e.
LR+WR [10], DeepLoc [12]).

Because the number of source files in the dataset are very
large, there will be a large number of unrelated source files for a
bug report, it is impossible to train all negative pairs. Therefore,
based on the source file samples used by Ye et al. [9], the top
300 source files in the surface similarity based on IR are selected
as negative samples for training. For the final similarity
calculation, all the source files in the dataset will be sorted. The
bug reports from each benchmark dataset are sequenced

chronologically by its submission time, and divide the bug report
into two parts, 80% of which are used as the training set (older
defect) and the other 20% are used as the test set (newer defect).

B. Evaluation metrics
Three metrics are used to measure the performance of the

proposed bug localization technique.

(1) Top N Rank

Top N Rank is the number of bug reports that contain buggy
source files that appear in the top N (N=1,5,10) files returned.
Given a bug report, if the top N ranking results contain at least
one source file needed to repair the bug, the bug is considered to
be located. The higher value of the metric, the better
performance of bug localization.

(2) Mean Average Precision (MAP)

MAP provides a measure of the quality of software bug
localization when there are multiple related files in a query. The
average accuracy of a single query is the average of the query
accuracy.

 AvgPi=
P(j)×pos(j)

number of positive instances
M
i=1 (7)

In the above formula, j is the rank, M is the number of
retrieved instances, pos(j) indicating whether the instances j are
relevant. P(j) is the accuracy at the end of the ranking j, defined
as follows:

 P(j)= number of positive instances in top j position
j

 (8)

The MAP for a series of queries is the mean of the average
accuracy of all queries. The higher value of the MAP, the better
performance of bug localization.

(3) Mean Reciprocal Rank (MRR)

MRR is an evaluation statistics of a series of possible results
produced by multiple queries. The reciprocal ranking of a query
is the reciprocal of the ranking of the first correct answer,
calculated as follows:

 MRR= 1
M

1
f-ranki

M
i=1 (9)

The total number of bug reports is M, f-ranki indicating the
position of the corresponding buggy source file in the sorted list
of the i bug report. The higher value of the MRR, the better
performance of bug localization.

C. Results and Analysis
In order to comprehensively evaluate the performance of the

proposed approach and its components in bug localization, the
following research questions are answered.

RQ1: How effective is the proposed approach for bug
localization and it outperforms than other bug localization
approaches?

184

RQ2: Does the integrated similarity score generated using
the proposed approach works better than the five incomplete
versions similarity scores?

To answer the above questions, the proposed approach is
applied to four dataset (Table II), and a list of buggy files are
returned. The performance of the proposed approach is evaluated
by Top N Rank, MAR, and MRR.

1) Research and analysis of RQ1:

To verify the effectiveness of the proposed approach, it
compared with the five bug localization approaches, i.e.
BugLocator [1], LR [9], LR+WE [10], DNNLoc [22] and
DeepLoc [12]. BugLocator is the bug localization based on IR,
LR and LR+WE are based on machine learning, DNNLoc and
DeepLoc are based on deep learning.

Table III shows the overall performance comparison of the
proposed approach with the given five bug localization
approaches. And the proposed approach has improved the
performance on Top N Rank, MAP and MRR. The Table III
shows that the proposed approach has improved by more than
50% on Top@N (N=1,5,10), MAP and MRR on average
compared with BugLocator. This is because BugLocator only
uses rVSM and fixed bug reports to calculate the similarity
between source files and bug reports, but the proposed approach
also considers token matching, stack traces and semantic
similarity. Therefore, using IR for further analysis of text
properties and semantic similarity can greatly improve the
performance of bug localization.

Compared with LR, the proposed approach increased the
performance by 21.2-68.1% on Top@5, MAP and MRR raised

Table III. Consist of the results for the proposed approach, BugLocator, LR,
LR+WE,DNNLoc and DeepLoc. The most effective approaches for the

four dataset are highlighted in bold font

by 47.0% and 54.0% respectively. Compared with LR+WE,
Top@1 and Top@5 increased by 19.2%-77.0% and 3.0-31.8%
respectively, and MAP and MRR are also increased. LR and
LR+WE pay more attention to using APIs as additional
information in the source file to make up for lexical mismatch.
However, surface text similarity and text properties are not
considered.

Therefore, compared with bug localization based on IR and
machine learning, the conclusion can be drew that both IR and
word embedding techniques are compatible with each other, and
their combination could improve the accuracy of bug
localization. In addition, LR and LR+WE use learning to ranking
for linear combination of similarity. And in this paper, DNN is
used for similarity integration. As shown in Table III, it can be
found that the latter can further improve the performance of
software bug localization.

In the dataset AspectJ, Top@1, Top@10 are lower than
DNNLoc and MAP is lower than DeepLoc. This is because the
bug fixing recency and frequency used in DNNLoc and
DeepLoc and the change history of source files for bugs contains
useful information for identification of fault-prone files.
Therefore, in the future, the change history of source files are
taken into account to further improve the accuracy of our
proposed approach. Moreover, compared with DNNLoc, MAP
and MRR increased by 27.9% and 28.9% respectively. Top@1,
Top@5, Top@10 are on the whole increased. Compared with
DeepLoc, Top@1, Top@5, Top@10 and MRR increased by
18.8%, 10.6%, 9.1% and 20.2% respectively. The result shows
that the DNN model can be trained better in the case of a large
number of bug reports and sample pairs, and the proposed
approach is basically better than the deep learning based bug
localization.

2) Research and analysis of RQ2:

For verify the performance of the features combination
similarity score produced by the proposed approach, it compared
with five incomplete versions, which are called Sub1 (only using
rVSM to calculate surface text similarity), Sub2 (only using
word embedding to calculate semantic similarity), Sub3 (only
using text properties to analysis the relevance between bug
reports and source files), Sub1+Sub3 (rVSM and text properties)
and Sub2+Sub3 (word embedding and text properties).

From Fig.5 to Fig.10, the proposed approach performs better
than the five incomplete versions in all aspects of measurement.
Sub1 is obviously the most effective method in this paper, thus
using rVSM to calculate surface text similarity can effectively
improve the accuracy of bug localization. At the same time, only
calculating semantic similarity itself cannot achieve high
precision. But further analysis Sub2 based on Sub1+Sub3,
Top@5, Map and MRR are increased by 9.2%, 7.1% and 7.3%
respectively. Consequently, the analysis of semantic similarity is
also significantly important for software bug localization. By
adding Sub3 to Sub1 (Sub1+Sub3), MAP and MRR increased
by 9.4% and 10.0% respectively. Add Sub3 to Sub2
(Sub2+Sub3), all metrics have improved significantly. Therefore,
it is of great significance to analyze the text properties of source
files and bug reports based on text similarity and semantic
similarity.

Project Approach Top@1 Top@5 Top@10 MAP MRR

AspectJ

Our Approach 46.1% 76.5% 84.2% 0.38 0.60
BugLocator 22.0% 46.0% 58.0% 0.28 0.36

LR 20.2% 45.5% 61.1% 0.25 0.33
LR+WE 29.0% 58.0% 74.0% 0.30 0.45
DNNLoc 47.8% 71.2% 85.0% 0.32 0.52
DeepLoc 45.0% 71.0% 80.0% 0.42 0.51

Eclipse

Our Approach 47.2% 74.7% 83.5% 0.48 0.59
BugLocator 29.0% 50.0% 60.0% 0.33 0.38

LR 36.5% 60.1% 70.7% 0.40 0.47
LR+WE 39.0% 60.0% 71.0% 0.40 0.46
DNNLoc 45.8% 70.5% 78.2% 0.41 0.51
DeepLoc 45.0% 70.0% 79.0% 0.43 0.53

JDT

Our Approach 48.9% 67.0% 81.9% 0.49 0.58
BugLocator 19.0% 40.0% 51.0% 0.29 0.37

LR 30.0% 55.2% 68.1% 0.34 0.42
LR+WE 41.0% 65.0% 75.0% 0.42 0.52
DNNLoc 40.3% 65.0% 74.3% 0.34 0.45
DeepLoc 43.0% 65.0% 77.0% 0.44 0.53

SWT

Our Approach 60.2% 82.7% 89.8% 0.62 0.70
BugLocator 22.0% 39.0% 52.0% 0.27 0.31

LR 28.3% 58.2% 70.0% 0.36 0.41
LR+WE 34.0% 57.0% 71.0% 0.38 0.45
DNNLoc 35.2% 69.0% 80.3% 0.37 0.45
DeepLoc 39.0% 66.0% 77.0% 0.40 0.49

185

Fig. 5. Top@K Accuracy with the proposed approach and five sub-approach

for the AspectJ dataset

Fig. 6. Top@K Accuracy with the proposed approach and five sub-approach

for the Eclipse dataset

Fig. 7. Top@K Accuracy with the proposed approach and five sub-approach

for the JDT dataset

Fig. 8. Top@K Accuracy with the proposed approach and five sub-approach

for the SWT dataset

Fig. 9. MAP Accuracy with the proposed approach and five sub-approach

Fig. 10. MRR Accuracy with the proposed approach and five sub-approach

Five incomplete versions have different performance in
different dataset. These results show that it is reasonable to use
DNN to integrate the analysis data to capture the non-linear
relationship between features. Moreover, combine Sub1, Sub2
and Sub3 into a final score through DNN, and the weakness of
one part in different dataset can be made up by other parts.

D. Threats to Validity
In this section, the effectiveness and generalizability of the

proposed approach are discussed.

The internal validity is related to the experimental error and
the implementation of the proposed method. The quality of bug
report will affect the performance of bug localization. In the
future, query expansion, query replacement, term selection [23]
will be learned to reformulate the bug report to improve the
accuracy of the proposed approach.

The external validity indicates the generalizability of the
proposed approach. In this paper, experimental dataset are used
in the previous research [9][10][12], which are open source
projects by java language. However, the proposed approach is
not applied to other open source projects or industrial projects.
Therefore, the proposed approach will be applied to open source
projects for other programming languages in the future.

The construct validity refers to the applicability of metrics
used in experimental evaluation. To reduce this threat, three
metrics including Top N Rank, MRR and MAP are used in this
paper. These metrics are widely used in related researches
[1,2,6-10], which adequately capture different aspects of
performance and there is little threat to construct validity.

186

VI. CONCLUSION AND FUTURE WORK
The developers of software project need to locate relevant

faulty files for each received bug report to solve the system
problems. However, it is inefficient to search a large number of
source files. Bug localization techniques attempt to automate the
process and sort the relevant source files for each bug report.

In this paper, a novel similarity integration method for
software bug localization is proposed to solve the problem of
lexical mismatch in IR based bug localization. rVSM is used to
calculate the surface text similarity between the bug reports and
source files. The skip-gram model and TFIDF are applied to
convert the source files and bug reports into digital vectors to
express the semantic similarity between them. Moreover, the
text properties of the source files and bug reports are also taken
into consideration. Finally, DNN is used to integrate the above
features to get the sorting list of source files related to the bug
report. The proposed approach is verified in four dataset, and
experimental results show that IR and word embedding are
compatible each other, for achieving bug localization with
higher accuracy. The empirical results further reveal that the
proposed approach has better performance than several existing
bug localization approaches based on IR and machine learning
techniques.

In the future, the features of source files and bug reports will
be analyzed, such as the call relationship between source files,
the frequency of bug fixing, etc. Using more meaningful features
to improve the accuracy of bug localization. Many deep learning
methods will be explored to further improve the performance of
the proposed approach. Finally, the proposed approach will be
applied to other dataset to verify its effectiveness.

ACKNOWLEDGMENT
This work is supported by the National Key R&D Program

of China: Key Technology Research and Platform Development
for Cloud Manufacturing Based on Open Architecture, under
Grant No.: 2018YFB1702700.

REFERENCES
[1] J. Zhou, H. Zhang, and D. Lo. “Where should the bugs be fixed? - more

accurate information retrieval-based bug localization based on bug reports,”
International Conference on Software Engineering, IEEE, 2012, pp. 14–24.

[2] Khatiwada, S., Tushev, M., & Mahmoud. “A. Just enough semantics: An
information theoretic approach for IR-based software bug localization,”
Information and Software Technology, 2017, pp. 45–57.

[3] Abreu, Rui, Peter Zoeteweij, Rob Golsteijn, and Arjan J. C. van Gemund.
“A practical evaluation of spectrum-based fault localization,” Journal of
Systems & Software, vol. 82, no. 11, Nov. 2009, pp. 1780–1792.

[4] J. A. Jones and M. J. Harrold. “Empirical evaluation of the tarantula
automatic fault-localization technique,” International Conference on
Automated Software Engineering, IEEE, 2005, pp. 273–282.

[5] J. A. Jones, M. J. Harrold, and J. Stasko. “Visualization of test information
to assist fault localization,” International Conference on Software
Engineering, IEEE, 2002, pp. 467–477.

[6] R.K. Saha, M. Lease, S. Khurshid, D.E. Perry. “Improving bug localization
using structured information retrieval,” IEEE/ACM International
Conference on, ACM, 2013, pp. 345–355.

[7] Wong, C.P., Xiong, Y., Zhang,H., Hao, D., Zhang,L. & Mei, H. “Boosting
bug-report-oriented fault localization with segmentation and stack-trace
analysis,” International conference on software maintenance and evolution,
IEEE, 2014, pp. 181–190.

[8] Youm KC, Ahn J, Lee E. “Improved bug localization based on code change
histories and bug reports,” Information & software Technology, vol. 82,
2017, pp. 177-192.

[9] X. Ye, R. Bunescu, and C. Liu. “Learning to rank relevant files for bug
reports using domain knowledge,” International Symposium on
Foundations of Software Engineering, ACM, 2014, pp. 689–699.

[10] X. Ye, H. Shen, X. Ma, R. Bunescu, and C. Liu. “From word embeddings
to document similarities for improved information retrieval in software
engineering,” International Conference on Software Engineering (ICSE),
2016, pp. 404–415.

[11] Mihalcea, Rada, C. Corley, and C. Strapparava. “Corpus-based and
knowledge-based measures of text semantic similarity,” National
Conference on Artificial Intelligence & the Eighteenth Innovative
Applications of Artificial Intelligence Conference, 2006, pp. 775–780.

[12] Yan Xiao, Jacky Keung, Kwabena E. Bennin, Qing Mi. “Improving bug
localization with word embedding and enhanced convolutional neural
networks,” Information & Software Technology, vol 105, 2019, pp. 17-29.

[13] Yang, Xinli, David Lo, Xin Xia, Lingfeng Bao, and Jianling Sun.
“Combining Word Embedding with Information Retrieval to Recommend
Similar Bug Reports,” IEEE International Symposium on Software
Reliability Engineering, IEEE, 2016.

[14] T. V. Nguyen, A. T. Nguyen, H. D. Phan, T. D. Nguyen, and T. N. Nguyen.
“Combining word2vec with revised vector space model for better code
retrieval,” International Conference on Software Engineering Companion,
2017, pp. 183–185.

[15] Bhaskar Mitra and Nick Craswell. “Neural Models for Information
Retrieval,” arXivpreprint arXiv: 1705.01509, 2017.

[16] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean. “Distributed
representations of words and phrases and their compositionality,”
Advances in Neural Information Processing Systems, 2013, pp. 3111–3119.

[17] Wang, S., & Lo, D. “AmaLgam+: Composing rich information sources for
accurate bug localization,” Journal of Software: Evolution and Process.
2016, pp. 921–942.

[18] Schröter A, Bettenburg N & Premraj. “Do stack traces help developers fix
bugs?” IEEE working conference on mining software repositories, IEEE,
2010, pp. 118-121.

[19] Binkley, David W., Marcia Davis, Dawn J. Lawrie, and Christopher
Morrell. “To camelcase or under_score,” IEEE International Conference on
Program Comprehension, IEEE, 2009, pp. 158–167.

[20] Capobianco, G., Andrea De Lucia, R. Oliveto, Annibale Panichella, and S.
Panichella. “Improving IR-Based Traceability Recovery via Noun-Based
Indexing of Software Artifacts,” Journal of Software Maintenance and
Evolution: Research and Practice, vol. 26, 2013, pp. 743–762.

[21] Arisoy, Ebru, Tara N. Sainath, Brian Kingsbury, and Bhuvana
Ramabhadran. “Deep Neural Network Language Models,” Proceedings of
the NAACL-HLT 2012 Workshop: Will We Ever Really Replace the N-
Gram Model? On the Future of Language Modeling for HLT, 2012, pp.
20–28.

[22] Lam, An Ngoc, Anh Tuan Nguyen, Hoan Anh Nguyen, and Tien N.
Nguyen. “Bug Localization with Combination of Deep Learning and
Information Retrieval,” 2017 IEEE/ACM 25th International Conference on
Program Comprehension (ICPC), 2017, pp. 218–229.

[23] Rahman, Mohammad Masudur, and Chanchal K. Roy. “Improving IR-
Based Bug Localization with Context-Aware Query Reformulation,”
Proceedings of the 2018 26th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering, 2018, pp. 621–632.

187

