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Abstract—To improve the performance of bug localization, 
there is necessity to solve the lexical mismatch between the natural 
language in the bug report and the programming language in the 
source file. A similarity integration method for bug localization is 
proposed, in which the similarity between bug report and source 
file is calculated by information retrieval (IR) and word embedding. 
More specifically, IR technique is used to collect the exact matches 
between bug report and source file. The terms in the bug report and 
the potential source files of different code tokens are connected by 
word embedding technique, which is used to complement with IR 
technique. Finally, deep neural network (DNN) is utilized to 
integrate extracted features to get the correlation between bug 
reports and source files. The experimental results show that the 
proposed approach outperforms several existing bug localization 
approaches in terms of Top N Rank, MAP, and MRR. 

Keywords—software bug localization, information retrieval, word 
embedding, similarity integration, bug report 

I. INTRODUCTION 
Software quality is vital for the success of a software project 

[1]. Developers often allow users and testers to submit bugs to 
the software bug tracking system (Bugzilla, MantisBT). Bug 
localization systems sort the source files based on the correlation 
between the given bug report and source files. The developers 
check the files from the ranked list to find the relevant faulty files. 
However, for a large system, the number of defects may range 
from hundreds to thousands [2], so the effectiveness and 
timeliness of bug localization will affect the reliability and 
availability of the software. 

The existing bug localization techniques can be categorized 
into three main groups. The first category is spectrum-based 
which execute the program and collect its execution information, 
track the running state of the software system, and localize the 
possible defetcts [3][4][5]. It is a time-consuming process. The 
second category is based on information retrieval (IR), which 
mainly based on the text information of the source code, and 
usually use bug reports to locate relevant source files. Zhou et al. 
[1] proposed the BugLocator method, which locates the relevant 
source files based on a revised vector space model (rVSM) that 
considers previously fixed similar bug reports. Saha et al. [6] 
proposed the BLUiR method, which uses the structural 
information of the source file and the bug report to locate bugs. 
Wong et al. [7] used the most similar code snippets in a given 

bug report to represent the source file. They also analyzed stack 
traces given in the bug report to improve the accuracy of bug 
localization. Youm et al. [8] proposed a comprehensive method 
of BLIA, which locates software bugs utilizing texts and stack 
traces in bug reports, structured information and change histories 
of source files. All of the above IR-based techniques focus on 
the term weight of natural language text, however they ignore 
the semantic similarity which could improve the bug localization 
accuracy. 

Machine learning is a well-known approach applied for bug 
localization. Ye et al. [9] used adaptive learning to sort features 
from source files, API descriptions, bug-fixing, and change 
history. Later, Ye et al. [10] introduced a new word embedding 
method to solve the lexical gap between programming language 
and natural language, and used the text similarity algorithm 
proposed by Mihalcea et al. [11] to calculate the semantic 
similarity between source files and bug reports. However, API 
documents contain text that involves more general tasks than 
project-specific defect behavior, which can affect bug 
localization performance. Recently, bug localization model 
based on deep learning has also been proposed. Yan et al. [12] 
used the concepts of enhanced convolution neural network, word 
embedding and feature detection to locate buggy files to improve 
the accuracy of bug localization. However, the integration of 
several deep neural network (DNN) models makes it more 
complex and difficult to accurately adjust the parameters of the 
model [12]. 

Based on the state of the art review of the existing bug 
localization techniques, the lexical mismatch between the bug 
report described in natural language and the source file written 
in programming language will affect the accuracy of bug 
localization. In IR-based software bug localization, terms are 
represented discretely and the correlation between source file 
and bug report is determined by the exact matches between them. 
Thus, the lexical mismatch problem is particularly important in 
IR-based bug localization. Word embedding projects bug reports 
and source files into the embedding space, and the rare or no 
apparent terms in the query can be retrieved. Moreover, 
Word2vec is widely used in similar bug recommendation and 
code search/retrieval. Yang et al. [13] proposed a novel approach 
to recommend similar bugs, which combines traditional IR 
technique and word embedding technique. Nguyen et al. [14] 
indicated that combining traditional IR with Word2Vec in fact 
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achieves better retrieval accuracy. Therefore, a novel similarity 
integration method for software bug localization is proposed, 
which IR and word embedding techniques are used to calculate 
the similarity between source files and bug reports. In addition, 
the text properties (token matching, stack traces and fixed bug 
reports) of source files and bug reports are analyzed. In order to 
capture the nonlinear relationship between features, DNN is 
utilized to integrate the surface text similarity, semantic 
similarity and text properties features. 

The main contributions of this paper are: 

1) A novel similarity integration method for software bug 
localization is proposed, DNN is utilized to integrate the 
similarity of IR, word embedding and text properties. 

2) The proposed approach is compared with the five 
existing software bug localization approaches in four dataset. 
The experimental results show that the proposed approach has 
statistical significance and substantial improvement. 

The remainder of this paper is arranged as follows: The 
research motivation is introduced in Section II. Section III 
proposes a similarity method for software bug localization in 
detail. Next, the similarity integration method is applied to bug 
localization in Section IV. And experimental demonstration and 
full comparison between the proposed approach and the 
benchmark approach in Section V. Finally, the conclusion and 
future work are described in Section VI. 

II. MOTIVATION 
In this section, the motivation of this paper is presented. The 

application of word embedding in bug localization is described 
in section A. And the text properties in bug localization are 
introduced in section B. 

A. Word embedding in bug localization 

Traditional IR models use local representations of terms for 
query-document matching. In IR-based bug localization, VSM 
assumes that each word is independent and distributed. It only 
uses the frequency of each word to describe the text of source 
file and bug report, without recording any context information 
between words. The most straight-forward use case for term 
embeddings in IR is to enable inexact matching in the 
embedding space [15]. Ye et al. [10] experiments show that word 
embedding can be effectively applied to software bug 
localization and achieve good results. 

Word embedding refers to the distribution representation of 
words in a vector space in which similar words are close to each 
other [16]. Based on a large number of corpus training, each 
word is mapped to a certain dimension of vector, and the 
relationship between two words is expressed by cosine distance. 
The word embedding model record the co-occurrence 
relationship between words mapped in low dimensional space. 
At one hand, the word embedding reduces the dimension and the 
sparseness of vector representation. On the other hand, it can 
mine the association attributes between words to improve the 
accuracy of vector semantics. However, the mapping process 
will cause lots of independent vocabulary information loss by 
training the co-occurrence of words and mapping them into low 
dimensional space. 

Table I. The specific methods in five IR-based bug localization techniques 

Therefore, traditional IR technique focuses on the 
relationship between different documents in the whole corpus. 
Word embedding technique pays more attention to the 
relationship between words and the context in which they appear. 
These two types of techniques are complement with each other. 
In this paper, IR and word embedding techniques are used to 
transform the source file and bug report into digital vector 
representation. 

B. The text properties in bug localization 

The five classical bug localization techniques based on IR 
are analyzed and summarized (BugLocator [1], BLUiR [6], 
BRTracer [7], AmaLgam [17], BLIA [8]), as show in Table I. 

For VSM, each document is expressed as a vector of token 
weights typically computed as a product of token frequency and 
inverse document frequency (TFIDF) of each token. Cosine 
similarity is widely used to determine how close the two vectors 
are [1]. Important information like class and method names often 
get lost in the relatively large number of variable names and 
comments terms due to the term weighting function (TFIDF) [6]. 
This problem can be overcome by analyzing the structure of 
source file and bug report and giving higher weight to the exact 
matches between them. The fixed bug reports mean that user 
often submits many similar bug reports that correspond to 
different errors that affect the same buggy program elements 
[17]. And frequently modified source files will increase the 
probability of bugs. For stack trace, bug reports often contain 
stack-trace information, which may provide direct clues for 
possible faulty files [7]. Research on stack traces such as 
Schröter et al. [18] shows that 90% of the buggy source files are 
in the top 10 stack traces. Segment and version control refer to 
divide a source file into a series of segments and historical data 
of source file changes, respectively. 

From Table I, VSM, structure, fixed bug reports, and stack 
traces are the most frequently used text properties in bug 
localization. The proposed approach does not further analyze 
other information (bug-fixing, code change history and so on) 
that can be mined from software repositories and bug databases. 
Therefore, in this paper, the VSM is used to calculate the text 
similarity between source files and bug reports, and structure, 
fixed bug reports and stack traces as text properties to improve 
the accuracy of software bug localization. 

III. SIMILARITY INTEGRATION METHOD BASED ON IR AND WORD 
EMBEDDING 

In this section, the proposed approach is elaborated. First, 
abstract syntax tree (AST) and part of speech (POS) are used to 
preprocess the source files and bug reports. Then the surface text 
similarity and semantic similarity of the source file and bug 

Approach BugLocator BLUiR BRTracer AmaLgam BLIA
VSM      

Structure      
Fixed bug reports      

Stack traces      
Segment      

Version history      
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report are calculated by IR and word embedding. Finally, DNN 
is used to integrate the analysis data. 

A. Data preprocessing 
The purpose of text preprocessing is to decompose the bug 

report and source file into terms that can be analyzed by IR 
technique. In this paper, the source files are transformed into an 
AST and the class names, method names, variables and 
comments can be extracted. Bug reports are also parsed to get 
summary, description, fixed files and stack traces. The Camel 
Case splitting [19] is used to segment the combined words. For 
example, "EventMouse" is split into "Event" and "Mouse". The 
English stop words such as "is" and "the" in the bug report and 
source file are removed. The keywords such as "private" and 
"public" are also removed from the source file. The standard 
Porter Stemmer1  performs stem extraction to restore derived 
words into the root form, so that similar words can appear in the 
same form after processing. 

In the natural language processing, POS tagging helps to 
make full use of the semantic knowledge contained in English 
words and sentences, and the important information in software 
components is contained in nouns [20]. Fig.1 shows the POS 
tagging results of the summary of the number 80120 AspectJ bug 
report by Stanford Tagger, and 'CTabFolder', 'layout', 'pixel' and 
'right' are nouns. From the extracted nouns, 'CTabFolder' directly 
specifies the buggy file 'CTabFolder.java'. Therefore, the lexical 
weight of POS as nouns in source files and bug reports should 
be increased. 

B. Similarity calculation based on IR and word embedding 
The surface text similarity and semantic similarity between 

the bug reports and source files are represented by cosine 
distance. The similarity between them is represented by the 
maximum similarity value of the bug report with all methods and 
the whole document. The steps of calculating similarity between 
bug reports and source files are described as follows in detail. 

Firstly, among a group of pre-trained words in skip-gram, 
some words may not exist, which are randomly initialized and 
can be fine-tuned during training. Ye et al. [10] confirmed that 
training text embedding using Wikipedia corpora and project-
specific corpora (Eclipse and Java) has similar performance, and 
Wikipedia corpora have more vocabulary, which is beneficial to 
the deep learning model. Therefore, the proposed approach uses 
the open source Word2vec of google as the training tool, divides 
the text in the wiki corpus into training data and test data. And 
then the skip-gram model is used to train and obtain the vectors 
of each word in the training data. The vectors of each word 
dimension 100, 200 and 300 are obtained in the training data 
respectively. Through the experiment, the vector dimension is 
chosen as 300 to achieve the best effect of similarity calculation. 

Secondly, VSM is commonly used to treat each text as a set 
of vectors, which is used to calculate TFIDF value for all terms 
in source files and bug reports. The larger source file has a higher 
error probability [1], the length score of the source file is 
combined with the result of cosine similarity. 

                                                           
1 http://tartarus.org/martin/PorterStemmer/. 

<bug id="80120" opendate="2004-12-03 11:43:00" fixdate="2004-12-06 12:11:00">
    <buginformation>
         <summary>CTabFolder layout puts top right item one pixel to far to the right</
summary>
    </buginformation>
</bug>

Stanford Tagger

('CTabFolder', 'NN'), ('layout', 'NN'), ('puts', 'VBZ'), ('top', 'JJ'), ('right', 'JJ'), ('item', 
'NN'), ('pixel', 'NN'), ('right', 'NN')

  
Fig. 1. BugID=80120 using POS results in AspectJ 

org.aspectj.ajde.BuildOptionsAdapter 
interface does not yet support the 
new AspectJ 1.1 compiler options. 
These need to be added to the 
interface, any old or renamed options 
deprecated, and then the correct 
processing needs to happen within 
Ajde to pass these options to the 
compiler. This enhancement is 
needed by the various IDE projects 
for there AspectJ 1.1 support.

Description of bug report

Interface:[ 0.35   -0.03  -0.04   0.31]

Support:[-1.23e-01 -2.01e-01 -3.32e-01  1.22e-01]

New:[3.40e-01  1.37e-01 -2.53e-01  4.34e-01]

Compiler: [-2.68e-01 -3.62e-01 -3.83e-01  3.15e-02]

Option: [ 3.58e-01 -4.32e-03 1.94e-01 -2.47e-02]

These: [-1.96e-01 -1.39e-01 3.45e-01 -1.42e-01]

Need: [ 1.20e-01  1.42e-01 5.66e-02  1.54e-02]

Add: [ 2.25e-03  3.56e-01 -3.45e-02  2.91e-01]

300 dimensions word vector of bug report   
Fig. 2. Transforming description in bug report into vectors using skip-gram 

 LenScores #terms = 1
1+e- ×nor(#terms) (1) 

In the above equation, #terms refers to the number of terms 
in the source file s and  (  > 0) adjust the preference for larger 
files. By setting this parameter, a better balance between 
increasing large files and reducing noise in large files can be 
achieved [1]. The value of surface similarity between bug report 
b and source file s is measured by following the equation. 

 VSM b,s =cos(b,s)×LenScores(#terms) (2) 

Thirdly, bug report contains summary and description, which 
are composed by the natural language. Fig.2 shows an example 
of converting description of the number 29769 AspectJ bug 
report into a 300D numeric vector by using the trained skip-gram. 

The source file is consist of various code tokens in the 
programming language, which is different from the bug report. 
Some keywords frequently appear in the source code, which may 
affect the performance of skip-gram. In order to reduce the 
influence of keywords that frequently appear in the source code, 
the proposed approach combines skip-gram and TFIDF to 
represent the source file and bug report by vector. Because the 
representation method of skip-gram model based on word 
embedding can mine the associated attributes between words. It 
will improve the accuracy of vector semantics. And TFIDF has 
high discrimination for words with high frequency and 
significant in a small number of documents. In other words, 
TFIDF can filter out some common but unimportant words while 
retaining the important words that affect the whole text [20]. 
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 s*= 1
s

wi,stfidfi,si s  (3) 

 b*= 1
b

wi,bi b  (4) 

In the above equations, s  and b  denote the number of 
terms in the source file and bug report. wi,s (wi,b) is the word 
vector of a term i in the source file s (bug report b) by using the 
skip-gram model. tfidfi,s  is the TFIDF weight of term i in the 
source file s. And s* and b* represent as numeric vector of the 
source file and bug report respectively. 

Finally, defects are usually located in a small part of the code, 
for example a method. When the source file is large, its 
corresponding norm will also be large, which will result in a 
small cosine similarity with the bug report, even though one 
method in the file may be actually very relevant for the same bug 
report [9]. Therefore, the AST is used to divide the source file 
into methods to calculate the similarity between each method 
and bug report. Each method m  is regarded as a separate 
document and the cosine distance is used to calculate the 
similarity between method and bug report. Then the maximum 
value of the bug report similarity with all methods and the whole 
document is employed to represent the surface lexical similarity 
and semantic similarity. The specific equations are as follows:  

 SurfaceSim=max({rVSM(b,s)} {rVSM(b,m)|m s}) (5) 

 SemanticSim=max({cos(b*,s*)} {cos(b*,m*)|m s}) (6) 

C. DNN for similarity integration 
The linear model is difficult to capture the nonlinear 

relationship between features, it may limit the performance of 
bug localization. The combination of DNN and nonlinear 
function is expected to perform better than the linear 
combination based on IR adaptive learning [21]. DNN is a series 
of algorithms in the artificial neural network (ANN). The 
purpose of DNN is to express the high-level abstraction in data 
by using the model structure with multiple nonlinear 
transformations. DNN is a forward-propagation ANN. There are 
many hidden layers between input and output layers, among 
which the higher layer can combine features from the lower layer. 
DNN has excellent capacity, it has been successful in dealing 
with the high complexity nonlinear relationship between input 
and output. Therefore, DNN is used to combine features, and 
enough training data are used to learn the weight of features from 
the nonlinear function. 

Positive pairs are created through all the corresponding the 
fixed bug reports and their buggy files. Moreover, negative pairs 
are created by selecting source files that are similar in text and 
do not contain defects for each bug report. The features from 
each bug report and source file are extracted, feature vectors are 
respectively constructed using the similarity calculation based 
on IR and word embedding. The two feature vectors are 
considered as an input for DNN. The DNN transforms features 
using nonlinear functions into the hidden layer, and classifies 
these features by linear functions in output layer. In DNN, the 
hidden layer has abstract effect, and the number of hidden layers 
determine the ability of feature extraction. In order to get the best 

effect of the proposed approach, the number of hidden layers of 
DNN are set to 1000 and the number of nodes are set to 1000-
1100. The output is a separate score to indicate the likelihood 
that the source file contains defects relative to the bug report. 

IV. A SIMILARITY INTEGRATION METHOD FOR SOFTWARE 
BUG LOCALIZATION 

A. Analyze the text properties of bug reports and source files 
According to the section of motivation, token matching 

(structure), stack traces and fixed bug reports are analyzed in the 
proposed approach. 

Token matching: The information such as file name, 
method names, class names and comments in the source file are 
used to match the summary and description of the bug report 
respectively. The similarity between the source file and bug 
report is represented by the number of token matches. 

Stack traces: The regular expression .*? \((.*?)\) is used to 
extract the stack traces from the description of bug report. The 
reciprocal of the ranking of the source file in the stack traces is 
used to measure the similarity between the source file and the 
bug report [7]. 

Fixed bug reports: The multi-label classification algorithm 
is applied to each bug report. The terms in the fixed bug reports 
as input and their located source files as tags. The features are 
extracted from bug reports to make better use of multi-label 
classification algorithm. The summary of bug report is an 
important feature because it tends to use concise sentences to 
express what the defect is. Therefore, the TFIDF weight of terms 
in the summary part of the preprocessed bug report is taken as a 
feature. And the TFIDF weight of POS tag noun set in bug report 
is taken as another feature. The independent classifier is trained 
for each label using a multinomial naive Bayes classifier as the 
base classifier for a one-vs.-the-rest (OvR) method. Then, given 
the new bug report, it will output the probability score of the 
source file to be located. 

B. Framework of Similarity integration method in bug 
localization 
The similarity integration method based on IR and word 

embedding is applied to software bug localization, and the 
overall framework is shown in Fig.3. A better IR-based bug 
localization technique should include both lexical matching and 
semantic matching. Thus, on the basis of analyzing the text 
properties of source files and bug reports, IR and word 
embedding are further used to calculate the similarity between 
them to solve the problem of lexical mismatch. The analysis data 
are integrated by DNN to capture the nonlinear relationship 
between features. When there is enough training data, the weight 
of each feature (surface text similarity, semantic similarity and 
text properties) from the nonlinear combination can be reflected, 
in order to sort the source files that may contain defects.  

Based on the similarity integration method described in 
above section, DNN is utilized to combine the five features of 
surface text similarity based on IR, semantic similarity based on 
word embedding, token matching, stack traces and fixed bug 
reports, as shown in Fig.4. The result is correlation scores 
between the bug report and all source files. 
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Fig. 3. The Overall Framework of the proposed approach 
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Fig. 4. DNN-based for similarity integration 

Table II. The statistics of the Benchmark Dataset 

Project Time Range #Bug Reports #Source Files 
AspectJ 03/01-01/14 593 4439 
Eclipse 10/01-01/14 6495 3545 

JDT 10/01-01/14 6247 8184 
SWT 02/02-01/14 4151 1552 

V. EMPIRICAL EVALUATION 

A. Experimental Setting 
Benchmark DataSet: In order to evaluate the effectiveness 

of the proposed approach, the dataset used in experiments come 
from Ye et al. [9] (Table II). The same dataset have been 
previously used in other bug localization techniques (i.e. 
LR+WR [10], DeepLoc [12]). 

Because the number of source files in the dataset are very 
large, there will be a large number of unrelated source files for a 
bug report, it is impossible to train all negative pairs. Therefore, 
based on the source file samples used by Ye et al. [9], the top 
300 source files in the surface similarity based on IR are selected 
as negative samples for training. For the final similarity 
calculation, all the source files in the dataset will be sorted. The 
bug reports from each benchmark dataset are sequenced 

chronologically by its submission time, and divide the bug report 
into two parts, 80% of which are used as the training set (older 
defect) and the other 20% are used as the test set (newer defect). 

B. Evaluation metrics 
Three metrics are used to measure the performance of the 

proposed bug localization technique. 

(1) Top N Rank 

Top N Rank is the number of bug reports that contain buggy 
source files that appear in the top N (N=1,5,10) files returned. 
Given a bug report, if the top N ranking results contain at least 
one source file needed to repair the bug, the bug is considered to 
be located. The higher value of the metric, the better 
performance of bug localization. 

(2) Mean Average Precision (MAP) 

MAP provides a measure of the quality of software bug 
localization when there are multiple related files in a query. The 
average accuracy of a single query is the average of the query 
accuracy. 

 AvgPi=
P(j)×pos(j)

number of positive instances
M
i=1  (7) 

In the above formula, j  is the rank, M is the number of 
retrieved instances, pos(j) indicating whether the instances j are 
relevant. P(j) is the accuracy at the end of the ranking j, defined 
as follows: 

 P(j)= number of positive instances in top j position
j

 (8) 

The MAP for a series of queries is the mean of the average 
accuracy of all queries. The higher value of the MAP, the better 
performance of bug localization. 

(3) Mean Reciprocal Rank (MRR) 

MRR is an evaluation statistics of a series of possible results 
produced by multiple queries. The reciprocal ranking of a query 
is the reciprocal of the ranking of the first correct answer, 
calculated as follows: 

 MRR= 1
M

1
f-ranki

M
i=1  (9) 

The total number of bug reports is M, f-ranki indicating the 
position of the corresponding buggy source file in the sorted list 
of the i bug report. The higher value of the MRR, the better 
performance of bug localization. 

C. Results and Analysis 
In order to comprehensively evaluate the performance of the 

proposed approach and its components in bug localization, the 
following research questions are answered. 

RQ1: How effective is the proposed approach for bug 
localization and it outperforms than other bug localization 
approaches? 
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RQ2: Does the integrated similarity score generated using 
the proposed approach works better than the five incomplete 
versions similarity scores? 

To answer the above questions, the proposed approach is 
applied to four dataset (Table II), and a list of buggy files are 
returned. The performance of the proposed approach is evaluated 
by Top N Rank, MAR, and MRR. 

1) Research and analysis of RQ1: 

To verify the effectiveness of the proposed approach, it 
compared with the five bug localization approaches, i.e. 
BugLocator [1], LR [9], LR+WE [10], DNNLoc [22] and 
DeepLoc [12]. BugLocator is the bug localization based on IR, 
LR and LR+WE are based on machine learning, DNNLoc and 
DeepLoc are based on deep learning. 

Table III shows the overall performance comparison of the 
proposed approach with the given five bug localization 
approaches. And the proposed approach has improved the 
performance on Top N Rank, MAP and MRR. The Table III 
shows that the proposed approach has improved by more than 
50% on Top@N (N=1,5,10), MAP and MRR on average 
compared with BugLocator. This is because BugLocator only 
uses rVSM and fixed bug reports to calculate the similarity 
between source files and bug reports, but the proposed approach 
also considers token matching, stack traces and semantic 
similarity. Therefore, using IR for further analysis of text 
properties and semantic similarity can greatly improve the 
performance of bug localization. 

Compared with LR, the proposed approach increased the 
performance by 21.2-68.1% on Top@5, MAP and MRR raised  

Table III. Consist of the results for the proposed approach, BugLocator, LR, 
LR+WE,DNNLoc and DeepLoc. The most effective approaches for the 

four dataset are highlighted in bold font 

by 47.0% and 54.0% respectively. Compared with LR+WE, 
Top@1 and Top@5 increased by 19.2%-77.0% and 3.0-31.8% 
respectively, and MAP and MRR are also increased. LR and 
LR+WE pay more attention to using APIs as additional 
information in the source file to make up for lexical mismatch. 
However, surface text similarity and text properties are not 
considered. 

Therefore, compared with bug localization based on IR and 
machine learning, the conclusion can be drew that both IR and 
word embedding techniques are compatible with each other, and 
their combination could improve the accuracy of bug 
localization. In addition, LR and LR+WE use learning to ranking 
for linear combination of similarity. And in this paper, DNN is 
used for similarity integration. As shown in Table III, it can be 
found that the latter can further improve the performance of 
software bug localization. 

In the dataset AspectJ, Top@1, Top@10 are lower than 
DNNLoc and MAP is lower than DeepLoc. This is because the 
bug fixing recency and frequency used in DNNLoc and 
DeepLoc and the change history of source files for bugs contains 
useful information for identification of fault-prone files. 
Therefore, in the future, the change history of source files are 
taken into account to further improve the accuracy of our 
proposed approach. Moreover, compared with DNNLoc, MAP 
and MRR increased by 27.9% and 28.9% respectively. Top@1, 
Top@5, Top@10 are on the whole increased. Compared with 
DeepLoc, Top@1, Top@5, Top@10 and MRR increased by 
18.8%, 10.6%, 9.1% and 20.2% respectively. The result shows 
that the DNN model can be trained better in the case of a large 
number of bug reports and sample pairs, and the proposed 
approach is basically better than the deep learning based bug 
localization. 

2) Research and analysis of RQ2: 

For verify the performance of the features combination 
similarity score produced by the proposed approach, it compared 
with five incomplete versions, which are called Sub1 (only using 
rVSM to calculate surface text similarity), Sub2 (only using 
word embedding to calculate semantic similarity), Sub3 (only 
using text properties to analysis the relevance between bug 
reports and source files), Sub1+Sub3 (rVSM and text properties) 
and Sub2+Sub3 (word embedding and text properties). 

From Fig.5 to Fig.10, the proposed approach performs better 
than the five incomplete versions in all aspects of measurement. 
Sub1 is obviously the most effective method in this paper, thus 
using rVSM to calculate surface text similarity can effectively 
improve the accuracy of bug localization. At the same time, only 
calculating semantic similarity itself cannot achieve high 
precision. But further analysis Sub2 based on Sub1+Sub3, 
Top@5, Map and MRR are increased by 9.2%, 7.1% and 7.3% 
respectively. Consequently, the analysis of semantic similarity is 
also significantly important for software bug localization. By 
adding Sub3 to Sub1 (Sub1+Sub3), MAP and MRR increased 
by 9.4% and 10.0% respectively. Add Sub3 to Sub2 
(Sub2+Sub3), all metrics have improved significantly. Therefore, 
it is of great significance to analyze the text properties of source 
files and bug reports based on text similarity and semantic 
similarity. 

Project Approach Top@1 Top@5 Top@10 MAP MRR 

AspectJ 

Our Approach 46.1% 76.5% 84.2% 0.38 0.60 
BugLocator 22.0% 46.0% 58.0% 0.28 0.36 

LR 20.2% 45.5% 61.1% 0.25 0.33 
LR+WE 29.0% 58.0% 74.0% 0.30 0.45 
DNNLoc 47.8% 71.2% 85.0% 0.32 0.52 
DeepLoc 45.0% 71.0% 80.0% 0.42 0.51 

Eclipse 

Our Approach 47.2% 74.7% 83.5% 0.48 0.59 
BugLocator 29.0% 50.0% 60.0% 0.33 0.38 

LR 36.5% 60.1% 70.7% 0.40 0.47 
LR+WE 39.0% 60.0% 71.0% 0.40 0.46 
DNNLoc 45.8% 70.5% 78.2% 0.41 0.51 
DeepLoc 45.0% 70.0% 79.0% 0.43 0.53 

JDT 

Our Approach 48.9% 67.0% 81.9% 0.49 0.58 
BugLocator 19.0% 40.0% 51.0% 0.29 0.37 

LR 30.0% 55.2% 68.1% 0.34 0.42 
LR+WE 41.0% 65.0% 75.0% 0.42 0.52 
DNNLoc 40.3% 65.0% 74.3% 0.34 0.45 
DeepLoc 43.0% 65.0% 77.0% 0.44 0.53 

SWT 

Our Approach 60.2% 82.7% 89.8% 0.62 0.70 
BugLocator 22.0% 39.0% 52.0% 0.27 0.31 

LR 28.3% 58.2% 70.0% 0.36 0.41 
LR+WE 34.0% 57.0% 71.0% 0.38 0.45 
DNNLoc 35.2% 69.0% 80.3% 0.37 0.45 
DeepLoc 39.0% 66.0% 77.0% 0.40 0.49 
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Fig. 5. Top@K Accuracy with the proposed approach and five sub-approach 

for the AspectJ dataset 

 
Fig. 6. Top@K Accuracy with the proposed approach and five sub-approach 

for the Eclipse dataset 

 
Fig. 7. Top@K Accuracy with the proposed approach and five sub-approach 

for the JDT dataset 

 
Fig. 8. Top@K Accuracy with the proposed approach and five sub-approach 

for the SWT dataset 

 
Fig. 9.  MAP Accuracy with the proposed approach and five sub-approach 

 
Fig. 10. MRR Accuracy with the proposed approach and five sub-approach  

Five incomplete versions have different performance in 
different dataset. These results show that it is reasonable to use 
DNN to integrate the analysis data to capture the non-linear 
relationship between features. Moreover, combine Sub1, Sub2 
and Sub3 into a final score through DNN, and the weakness of 
one part in different dataset can be made up by other parts. 

D. Threats to Validity 
In this section, the effectiveness and generalizability of the 

proposed approach are discussed.  

The internal validity is related to the experimental error and 
the implementation of the proposed method. The quality of bug 
report will affect the performance of bug localization. In the 
future, query expansion, query replacement, term selection [23] 
will be learned to reformulate the bug report to improve the 
accuracy of the proposed approach. 

The external validity indicates the generalizability of the 
proposed approach. In this paper, experimental dataset are used 
in the previous research [9][10][12], which are open source 
projects by java language. However, the proposed approach is 
not applied to other open source projects or industrial projects. 
Therefore, the proposed approach will be applied to open source 
projects for other programming languages in the future.  

The construct validity refers to the applicability of metrics 
used in experimental evaluation. To reduce this threat, three 
metrics including Top N Rank, MRR and MAP are used in this 
paper. These metrics are widely used in related researches 
[1,2,6-10], which adequately capture different aspects of 
performance and there is little threat to construct validity. 
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VI. CONCLUSION AND FUTURE WORK 
The developers of software project need to locate relevant 

faulty files for each received bug report to solve the system 
problems. However, it is inefficient to search a large number of 
source files. Bug localization techniques attempt to automate the 
process and sort the relevant source files for each bug report. 

In this paper, a novel similarity integration method for 
software bug localization is proposed to solve the problem of 
lexical mismatch in IR based bug localization. rVSM is used to 
calculate the surface text similarity between the bug reports and 
source files. The skip-gram model and TFIDF are applied to 
convert the source files and bug reports into digital vectors to 
express the semantic similarity between them. Moreover, the 
text properties of the source files and bug reports are also taken 
into consideration. Finally, DNN is used to integrate the above 
features to get the sorting list of source files related to the bug 
report. The proposed approach is verified in four dataset, and 
experimental results show that IR and word embedding are 
compatible each other, for achieving bug localization with 
higher accuracy. The empirical results further reveal that the 
proposed approach has better performance than several existing 
bug localization approaches based on IR and machine learning 
techniques. 

In the future, the features of source files and bug reports will 
be analyzed, such as the call relationship between source files, 
the frequency of bug fixing, etc. Using more meaningful features 
to improve the accuracy of bug localization. Many deep learning 
methods will be explored to further improve the performance of 
the proposed approach. Finally, the proposed approach will be 
applied to other dataset to verify its effectiveness.
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