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Abstract—Blockchains (BCs) are claimed to have immutability,
distributed consensus, established trust, distributed identity and
eternal verifiable, and sound like the ultimate security unim-
peachable technology. At the time, however, new age security
attacks on the key components of BCs are emerging, which
are very sophisticated and can cause huge irreparable damages,
including network-based attacks, consensus & ledger-based at-
tacks, smart contract-based attacks, and wallet-based attacks.
This paper proposes to use bigraph theory to model BC attack
meta-model, and automatically generate attack graphs for BC
security evaluation. Bigraphical sorting mechanism is used to
depict configuration of BC systems, and bigraphical reaction
rules are designed to characterize attack templates and attacker
behaviours. Adaptive exploit flow approach is proposed to reduce
the complexity of matching algorithm guided by interested attack
exploits, and probability is introduced into bigraphs to measure
the capability of attackers. Preliminary experiments have shown
the validity of the proposed approach.

Index Terms—attack graph generation, bigraphical reaction
rules, blockchain network.

I. INTRODUCTION

Bitcoin [23] is a rare case where practice seems to be ahead

of theory. There are tremendous opportunities for the research

community to tackle the many open questions about Bitcoin,

especially its pillar technology, blockchain.

Blockchains (BCs) are considered to have immutability,

distributed consensus, established trust, distributed identity and

eternal verifiable claims, and the technology has been expected

to be applied to many fields. However, a series of cyber-

attacks against digital currencies has left the important services

industry, such as finance, insurance, charity, and government

sectors, wondering whether new blockchain technology can

be made secure enough from criminals. It is indispensable to
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(No. 61872011), and the Ministry of Science and Technology of China (No.
2018YFB1402700).

carry out the security risk analysis on BC systems to evaluate

how much the systems can achieve its promises and intentions.
A blockchain is composed of four key modules in terms of

its hierarchy from the system’s point of view:

• Peer-to-peer network and high-speed network;

• Consensus engine and distributed ledger;

• Scripting and virtual execution environment for smart

contracts;

• Wallet applications

When the target of BC attacks is Peer-to-peer network

or high-speed network, the attackers may launch Eclipse

attack [49] and Sybil attack [21]. In a P2P Network-based

blockchains, a node will depend on ”x” number of nodes

selected using a Peer selection strategy to have its view of

the distributed ledger. But if an attacker can manage to make

the node to choose all the ”x” number of nodes from the

attacker’s malicious nodes alone, then the attacker can eclipse

the original ledger’s view and present his own manipulated

ledger to the node.
Sybil attack targets the whole network, instead of eclipsing

a user’s view of the true ledger as Eclipse attack does. In

a Sybil attack, an attacker will flood the network with a

large number of nodes with pseudonymous identities and

try to influence the network. Both Eclipse attack and Sybil

attack aim at gradually getting control over the blockchain

system, eventually achieving double spending or obtaining

illegal assets.
When the target of BC attacks is consensus engine and

distributed ledger, there are more instances in category of

consensus mechanism and mining-based attacks, including

selfish mining attack [41], mining malware [42], 51% attack

[43], time-jack attack [44], Finney attack [45], and race attack

[46]. For example, many blockchains consider the longest

chain to be the true latest version of the ledger, and a selfish

miner can try to keep building blocks in stealth mode on top

of the existing chain, and when he can build a lead of greater
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than two or more blocks than the current chain in the network,

he can publish his private fork, which will be accepted as a

new truth as it is the longest chain. 51% attack is possible

when a miner or a group of miners controls 51% or more of

the mining power of the blockchain network. Though it is very

difficult to happen for large networks, the possibility of a 51%
attack is higher in small networks. Once a group has majority

control over transactions on a blockchain network, it can

prevent specific transaction or even reverse older transactions.

These types of attacks exploit the consensus mechanisms, and

eventually conquer blockchain systems.

Smart contracts are completely automated contracts, which

execute transactions in an agreed upon way between partici-

pants, with inputs from the real world and without intervention

from any middlemen. Once started, a smart contract cannot

be stopped. The transaction once completed and written into

blockchain becomes immutable. This gives a guarantee to

participants of returns based on their performance, as agreed

upon while entering the contract. But what would happen if

the smart contract has bugs: Millions of dollars are in stake

and no one can change it. The DAO attack [47] is such an

attack or attack vector relating to smart contracts. The program

vulnerabilities of smart contracts are exploited, thus leading to

huge irreparable damages.

Wallets act as clients in blockchain systems. Parity multisig

wallet attack [48] was the case of a vulnerability with the

parity client wallet hacked by an attacker resulting in holding

up of 500,000 Ether. Multisig wallet functionality (Multisig

wallet is like a joint account in bank with multiple owners)

used a centralized library contract. However, they left some

critical functions open, resulting in a vulnerability, which was

exploited by the attacker. Wallet attacks lead to huge losses of

user assets.

Blockchain systems have more complex decentralized net-

work structures, consensus hosts don′t trust with each other,

and independently run agreed up smart contracts. Analysing

and defending such large and complex blockchain networks

both from insides and outsides attacks is an uphill task.

This paper would develop an approach to performing security

assessment and evaluation to protect blockchains from those

attacks.

Attack graph [34] is a modelling tool, representing all attack

scenarios in a visual data structure, and serve as a basis for

risk analysis, defence, detection, and forensics. An exhaus-

tive attack graph of a network provides omni-bearing view

of its security posture, enabling the quantitative assessment.

Such assessments, when performed on-line, help a blockchain

network system to thwart the attacks by removing off the pre-

conditions of the attacks. This will prevent blockchain attacks,

such as 51% attacks.

Major approaches to attack graph generation include state

enumeration based approaches, topological vulnerability anal-

ysis (TVA) [16], logic programming based approach and

network security planning architecture approach [4]. Among

the rest, state enumeration based approaches are based on

model checking. TVA requires an extensive knowledge base of

known vulnerabilities and attack techniques. One requirement

of logical attack graph is that the cause of an attacker’s

potential privilege should be expressible as a propositional

formula in terms of network configuration information.

The issues with current research approaches when applied to

generate attack graphs for blockchain systems are summarized

as follows:

• Lacking a meta-model: Different approaches have dif-

ferent advantages, but don′t provide a meta-model to

depict the common or shared characteristics of network

domains, such as blockchain network;

• A variety of types of attack graphs: Different approaches

define and develop different types of attack graphs,

including scenario graphs, exploit dependency attack

graph, logical attack graph, and multiple-prerequisite

attack graph. This paper only uses bigraphs to build a

meta-model, create blockchain attack models, and auto-

generate attack graphs;

• Strong assumptions: To improve the performances of

attack graph generation, different approaches present dif-

ferent solutions with different assumptions. Those as-

sumptions may be no longer valid in blockchain network,

such as the monotonicity assumption [1], and need to

develop an adaptive solution to deal with.

This paper proposes to apply bigraph theory to model and

automatically generate attack graphs. The contributions of this

paper regarding attack graph generation are summarized as

follows:

• Build a meta-model of blockchain attacks: The physical

world of blockchain network and its vulnerabilities are

abstracted and mapped to bigraphical signature and sort-

ing mechanism as shown in Figure 1;

• Create reaction rules and bigraphs: A set of bigraphical

reaction rules are constructed to depict the attack tem-

plates of attackers, and a set of place graphs and link

graphs to describe attacker’s profiles and configuration;

• Model uncertainty of attacker’s behaviours: The paper

extends the expression capability ofbigraphical reaction

rules by accommodating the probabilities of blockchain

attacks into the rules.

• Optimize performance with adaptive exploit flow: In BC

network, the monotonicity assumption is no longer valid.

To alleviate the burden of computation, this paper defines

attack exploit flow to generate the attack graph efficiently,

instead of taking the advantages of monotonicity assump-

tion.

The rest of the paper is organized as follows. Section

II gives a brief introduction to bigraphs and bigraphical

reactive systems (BRSs). Section III describes modelling of

BC network vulnerabilities using bigraph theory. Section IV

illustrates attack graph generation with execution of BRSs,

and compares with previous work. Section V describes the

optimization of the proposed approach. Section VI presents the

experimental results with the developed tools by the authors’
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Fig. 1. From a Physical World to Bigraphs

team and Section VII discusses related work. Section VIII

gives the conclusions of the paper.

II. BIGRAPHS AND BIGRAPHICAL REACTION SYSTEMS

The section introduces the static structure of bigraphs,

dynamics of BRS, and bigraphical operations, which will

be used to model the conference of blockchain network,

attacker’s behaviours and constructions of blockchain network

for simulation and analysis.

A. Modelling Static Structures with Bigraphs

The two typical traits of structures in a blockchain network

are containment and connections. A blockchain network con-

sists of a set of validation nodes, each of which contains a

set of hosts, and in turn, each of which are installed a variety

of software. This forms a hierarchical structure. On the other

hand, the elements in a blockchain network are connected with

each other, e.g., programs are communicating by sending and

receiving messages, and hosts are linked together by cables.

An attacker uses a terminal to launch an intrusion attack. These

are the examples of connections. A bigraph can be used to

describe such structures.

A bigraph represents orthogonal notions of locality and

connectivity through two separate graph structures: a place

graph and a link hyper-graph. It is formally defined as follows.

Definition 1 (Bigraph). A bigraph is

B = (VB, EB, ctrlB, prntB, linkB) :
< m,X >→< n, Y >

(1)

where a pair 〈j,X〉 represents an interface where j ≥ 0,

indicating the number of sites or roots where a site is a place-

holder that can be replaced with a root, and X is a set of

(inner or outer) names; VB is a set of nodes, EB is a set of

hyper-edges, ctrlB is a control map that assigns controls to

nodes, prntB is a parent map that defines the tree structure

in the place graph, and linkB is a link map that defines the

link structure. The inner interface 〈m,X〉 indicates that the

bigraph has (m + 1) sites, and a set of inner names X . The

outer interface 〈n, Y 〉 indicates that the bigraph has (n + 1)
roots and a set of outer names Y .

Bigrah B consists of a place graph BP = (VB, ctrlB,
prntB) : m → n, and a link graph BL = (VB, EB, ctrlB,
linkB) : X → Y , and written as B = 〈BP ,BL〉. The bigraphs

will be used to build the static structures for generating attack

graphs as described in Section III.A.
Definition 2 (Signature Σ): A signature Σ for a bigraph is

represented as a quintuple:

Σ = (Θ, C, ar,Γ,Φ) (2)

where Θ = {ΘP ,ΘL} is a non-empty set of sorts, ΘP is the

place sorts, and ΘL is the link sorts; C = {c1 : θ1, . . . , ck :
θk, . . . , cn : θn} is a set of sorted controls, θk ∈ ΘP indicating

the place sort of control ck ; ar : C → ω is a function

assigning a finite ordinal (the arity) to each control, and

ar(ck) = ark; Γ : ω → ΘL is a function assigning one sort to

each arity, that is, for control ck , the ith port is assigned sort

θi ∈ ΘL; Φ is the formation rules, and represented as sorting

logic to provide some constraints on bigraphs.
The bigraphical signature as to bigraphs is similar to

the Object Constraint Language (OCL) as to UML, which

appeared as an effort to overcome the limitations of UML

when it comes to precisely specifying detailed aspects of a

system design [8]. OCL has now become a key component

of model-driven engineering technique for expressing model

transformations, well-formed rules, or code-generation tem-

plates. The bigraphical signature is the built-in mechanism in

bigraphs to express the constraints and rules on containments,

connections, the number of ports, port types, logic relations

among the elements. It supports to define and create new

domain-specific meta-model, and facilitates to build domain

models, and performs simulations and analysis. This paper

abstracts the common features of blockchain attacks and uses

the bigraphical signature to build a meta-model for auto-

generation of attack graphs, as described in Section III.A.
In his book [20], Milner defines operations of composition,

juxtaposition, parallel and merge on bigraphs, and defines sig-
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natures and sorting logic to represent constraints on bigraphs

for specific domains. These operations can be used to build

up a blockchain network from scratch in the simulation, and

add and remove nodes during the processing.

B. Modelling Dynamic Behaviours with BRSs

Taken together, a bigraph signature and a set of reaction

rules is called a bigraphical reactive system that should be

thought of as a kind of language definition, with the signa-

ture describing the syntax, and the reactions describing the

semantics.

Definition 3 (Bigraphical Reactive System, BRS). The

notation BG(Σ, R) is used to denote a bigraphical reactive

system with a signature Σ (the set of constituent controls),

and a set of reaction rules R.

Each reaction rule has two portions at two side of →, the

left of the arrow is called redex and the right reactum. One can

understand that the redex is the state before the reaction rule

firing, and the reactum is the state after the reaction rule firing.

This paper uses bigraphcal reaction rules to model the attack

templates, and attacker’s behaviours as described in Section

III.B.

Definition 4 (Bigraphical Labelled Transition System, B-

LTS): A bigraphical labelled transition system is a quadruple:

B − LTS = (Agt,Red,Apl, T ra)

where Agt is a set of agents, Red is a set of redexes, Apl ⊆
Agt × Red is the applicability relation, Tra ⊆ Apl × Agt
is the transition relation. One can understand that if an agent

and a redex meet the composition operation condition, the

reaction rule can be fired, then the agent and the redex have

the applicability relation, apl, ap ∈ Agt×Red; after the firing

or transition, tra, a new agent is obtained, tra ∈ Apl ×Agt.
Definition 5 (Attack Graph): A attack graph or AG is a

tuple G = (Agt,Red,Apl, T ra,AgtS), where AgtS ∈ Agt is

a set of attack success agents.

Bigraph-based attack graph allows to analyse risks to

blockchain network in a way with more refined granularities

by taking advantages of bigraph modelling capability. The

following section will present modelling attack graphs with

bigraphs.

III. MODELLING ATTACK GRAPHS WITH BIGRAPHS

The attack graph can be automatically generated given three

types of inputs: attack templates, a configuration file, and

an attacker profile [1]. This section describes the approaches

to modelling configurations with bigraph agents and attack

templates with bigraphical reaction rules.

A. Building a static structure for generating attack graphs in
BC

The general signature, Σ = (Θ, C, ar,Γ,Φ) defined

in Section II is instantiated to adapt modelling BC

attacks to generate the attack graphs. Let ΘP =
{validationNode, host, software, vulnerability, attacker,
priviledge} be the place sort, to specify the validation nodes

performing consensus protocols, hosts carrying out tasks

of validation nodes, software installed, vulnerability of BC

networks, attackers and privileges in BC.

Let ΘL = {connect, install, hasV ul, isV ul, exploit,
hasPri, hasV alue} be the link sort, presenting binary or

unary relations, including connections, software installation,

having vulnerability, is-a vulnerability, attacker’s exploits on

BC, someone having a privilege, and having some value;

and C = {V Node : validationNode,Host : host, SW :
software, V ul : vulnerability, AT : exploit, Pri :
priviledge} be the set of sorted controls to indicate different

types of controls defined by the place sorts.

ar : C → ω is a function assigning a finite or-

dinal (the arity) to each control, and the Γ : ω →
θL(θL ∈ ΘL) is a function assigning a link sort to

each port of a control, i.e., Γ ◦ ar = {V Nnode∗ :
connect; install, SW∗ : install;hasV ul; exploit, V ul∗ :
IsV ul, AT∗ : hasPri, Pri∗ : hasV alue}, indicating that the

controls V Node, SW, V ul and AT have 0 ∼ n number of

ports, and each port can be assigned the corresponding sorts

after the colon, separated by a semicolon. For example, the

control SW has 0 ∼ n number of ports with either install,
or hasV ul, or exploit sorts.

There are a set constraints in Φ, among them, some are

constraints on ΘP , and the rest on ΘL, represented in sort

logic [28]. The following presents four examples:

θP1 : The children of VNode nodes must be Host nodes:

V Node(u) ∧ u.v ⇒ Host(v)

θP2 : The children of Host nodes must be SW nodes:

Host(u) ∧ u.v ⇒ SW (v)

θL1 : A connect port i of a permissioned node u can be only

linked to connect port j of another permissioned node v:

V Node(u) ∧ u@i : connect = V Node(v) ∧ v@j : connect

θL2 : The hasPri port i of an attacker node can be only linked

to hasValue port j of a privileged node:

AT (u) ∧ u@i : hasPri = Pri(v) ∧ v@j : hasV alue

B. Modelling configuration with agents

The configuration gives detailed information about BC

system to be analysed including the topology of the network

connecting among participates and configuration of network

elements [1], such as validation nodes in the consortium

blockchain system, consensus algorithm modules installed as

shown on the right in Figure 2, where there are four validation

nodes (b:Node through e:Node) that are connected through

specified ports, and permitted to participate consensus voting

in a consortium blockchain system.

The attacker profile contains information about the assumed

attacker’s capabilities, with a port on the attacker control, to

indicate its possession as well as skill level as shown on the
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Fig. 2. Modelling configuration of BC system

left in Figure 2, where the attacker has one port to connect to

a privilege level.

In addition to the formalism and visual structures, bigraphs

can be represented in textual term language [3], and a B−LTS
can be generated by a term rewriting approach that applies

rewriting on reaction rules to enable a system with dynamic

behaviour. The following is the corresponding formula in Term

language, an internal expression of bigraph processed by a

matching algorithm.

# Controls
%active Greater:2; Less:2; GreaterOrEqual:2;
%active LessOrEqual:2; Equal:2;NotEqual:2;
%active Exist:1; InstanceOf:2;
%active Attacker:1; ConsortiumBlockchain:1;
%active Node:2;Consensus:1;

# Model
%agent a:Attacker[idle]
b:ConsortiumBlockchain[idle].
(d:Node[idle,a:edge].g:Consensus[idle]|
c:Node[idle,a:edge].i:Consensus[idle] |
e:Node[idle,a:edge].h:Consensus[idle] |
f:Node[idle,a:edge].j:Consensus[idle]);

It is noted that the shapes and colors of controls, nodes and

edges have no semantics regarding modelling BC systems and

attacks, but just for visual purposes.

C. Modelling attack templates and attacker behaviours with
rules

Attack templates represent generic or hypothesized attacks

including conditions, such as operating system version, which

must hold for the attack to be possible. Bigraphical reaction

rules represent the dynamics of the system analysed, reflecting

the configuration changes and attacker behaviours. Figure 3

shows a reaction rule where the left of the arrow is the

redex, the same as Figure 2, and the right is the reactum
indicating that an attacker takes an action, pretends a legal IP

and smoothly gets through firewall of a consortium blockchain

system, and obtains higher probability to further attack the

system.

Upon the rules, one can also specify the condition of

reaction with Boolean expression, the input/output batch data,

the assignment of variables, probabilities of reaction rules, and

timing mechanism as shown at the bottom in Figure 3 .

After the attacker goes through the firewall, the attacker

launches attacks to all validation nodes, as shown in Figure 4,

where red edges in the reactum indicate sniffing ports on these

nodes. As a result, the attacker successfully attacks a node,

e.g., b, while the rest of other nodes survive. Furthermore,

the attacker hacks the consensus module within the node.

Eventually, the attacker makes the node drop out of voting. The

attacker may choose DOS attack, and this causes the time-out

for the node to send messages to other nodes, and achieve the

same purpose. Each possible step of attacks can be represent

as a reaction rule.

If the consortium applies Byzantine fault tolerant (BFT)

algorithm [9], BC system still works normally even there is

one node attacked out of four nodes, i.e., BC system still

creates blocks and stores in distributed ledgers (DL) thanks

to the fault-tolerance of BFT. However, when there are two

consensus modules on two v-nodes (i.e., validation nodes)

attacked and curbed, the BC system could not produce blocks

any more, i.e., in a paralysed situation. Unfortunately, when

three consensus modules on three v-nodes are overcame, the

BC system is totally under the control of the attacker, as the

assumption of BFT is violated and the guarantee no longer

keeps true.

IV. GENERATING ATTACK GRAPHS WITH BRS

This section presents a matching algorithm to generate

bigraphical labelled transition system (B-LTS, see Definition

4) that can characterize attack graphs, and describes the

architecture of the proposed approach to fulfil the tasks.

A. Bigraphical Matching Algorithm

This paper uses the term language in the matching algorithm

to perform bigraphical pattern matching and carry out the

bigraphical simulation. The matching process determines the

presence of a redex of reaction rule r inside a particular

bigraph A, and replaces the redex with the reactum, obtaining

a new bigraph A
′
. Different from the matching algorithm in

[29], the algorithm in this paper takes into considerations the

attack-aware information in each agent (bigraph without sites)

that is changing as time goes on. The granularity reaches down

to the node (instance) level instead of the control (abstract)

level, and it uses conditions on the reactions, including logic

expressions, time and probabilities. Algorithm 1 shows the

bigraph matching algorithm using the term language.

Let R be a set of reaction rules, Cr be the number of

controls in each reaction rule, Ca be the number of controls

in an agent, and those controls are either nested one by

another, or at the same level of the containments; and L be

the reaction steps or lengths. The computation complexity

of bigraph matching is O(|R| · M), where M represents

Ca · Cr, and the computation complexity to generate a B-
LTS is O(|R| ·M · L). Assume each reaction rule fires once

along the reaction path, the computation complexity of bigraph

matching is O((|R|)2 ·M).

B. Architecture of the Proposed Approach

Figure 5 shows the architecture of the proposed approach,

which consists of two portions, bigraphical modeller (BigM)
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Fig. 3. Modelling attack templates with reaction rules

Fig. 4. Modelling attack templates with more reaction rules

of attack graphs as described in the previous section, and

bigraphical simulation (BigSIM) to generate attack graphs.

1) Bigraphical modeller, BigM: Setting on top of the archi-

tecture, BigM provides three major functions, specifying the

signature, modelling agents, and modelling reaction rules.

The signature defines the place sort and link sort related

to attack graphs for BC system. For example, the place sort

can specify that consensus algorithm is installed in a physical

machine, and the machine is sitting inside a safe zone of a

validation node participating in block creating, voting, and

storing; while the link sort can specify that consensus ma-

chines has three ports, corresponding to membership module,

smart contract module, and distributed ledger module.

The agent is a bare bigraph, i.e., it has no site, and played

as the start state of system configuration. The reaction rules

depicts the dynamic behaviours of BC system, especially from

the attack point of view. For example, a redex of a reaction

represents an attack with user permission, and reactum depicts

that the attack obtains the root permission.

In addition, BigM tool allows to model conditions of

reaction rules, specify the probabilities of rules fired, and

define the attributes of models to be checked. Term language

is used as the internal representation of agents and reaction

rules.

2) Bigraphical Simulation, BigSIM: It uses rewriting tech-

nology to perform matching and deriving. New bigraph states

of B-LTS will be searched respectively by breadth-first search

to find the matching bigraph and implement replacement, in

order to complete the derivation process of the system model.

BigSIM produces attack graphs automatically, and presents to

users in a visual way.

V. OPTIMIZATION OF GENERATING ATTACK GRAPHS

This section first investigates the characteristics of BC

system, and reaches a conclusion that the monotonicity as-

sumption cannot be applied in BC system for attack graph gen-

eration. Then possible optimization approaches are discussed.

A. Discussion on monotonicity in BC system

Hewett and Kijsanayothin propose a methodology that uses

a host-centric modelling approach together with a monotonic-

ity assumption [1] to alleviate the scalability problem of model

checkers. The monotonicity assumes that the pre-conditions of

an exploit that are once validated remain true. Not even future

exploits can invalidate these pre-conditions. As the number

of exploits increases, the number of validated pre-conditions

increases, a monotone (non-decreasing) behaviour.

However, in a BC system, e.g., with four v-nodes, when

a v-node is ruled out by consensus mechanism, the v-node

will be carried out a thorough health check, eradicate the pre-

conditions of exploits. and get recovered by synchronizing

missed blocks from other three normal v-nodes, and obtaining
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Fig. 5. Architecture of the proposed approach based on bigraph theory

the missed ones from them that sustain the normal behaviours

of BC system. After self-healing, the attacked v-node joins

back to the BC activities.

Figure 6 shows the initial state of BC system, where v-node

a has 99 blocks and missed one block due to a BC attack.

Reaction rule in Figure 7 depicts that the health check (H-

check) is activated by the BFT consensus result, and reaction

rule in Figure 8 illustrates that synch module in v-node a
autonomously takes action to pull the missed block from

other three v-nodes and renders v-node a back to normal. The

corresponding term language representations of reaction rule

in Figure 7 are illustrated as follows:

Fig. 6. One v-node misses a block due to an attack with some exploit

%rule Figure 7 a:Node[a:edge].(e:Ledger[idle].
f:Blockchain_99_[idle] | g:Sync[idle,idle] |
q:H_CHECK[idle] | $0) | b:Node[a:edge].
(h:Ledger[idle].i:Blockchain_100_ |
j:Sync[idle,idle] | s:H_CHECK[idle] | $1) |

c:Node[a:edge].(k:Ledger[idle].l:Blockchain_100_ |
m:Sync[idle,idle] |r:H_CHECK[idle] | $2) |
d:Node[a:edge].(n:Ledger[idle].o:Blockchain_100_ |
p:Sync[idle,idle] | t:H_CHECK[idle] | $3) ->
a:Node[a:edge].(e:Ledger[idle].
f:Blockchain_99_[b:edge] | g:Sync[idle,idle] |
q:H_CHECK[b:edge] | $0) |
b:Node[a:edge].(h:Ledger[idle].i:Blockchain_100_ |
j:Sync[idle,idle] |s:H_CHECK[idle] | $1) |
c:Node[a:edge].(k:Ledger[idle].l:Blockchain_100_ |
m:Sync[idle,idle] | r:H_CHECK[idle] | $2) |
d:Node[a:edge].(n:Ledger[idle].
o:Blockchain_100_ | p:Sync[idle,idle] |
t:H_CHECK[idle] | $3){};

As a result, an attacker has to back-track and this invalidates

the assumption of monotonicity, thus host-centric approach

become unsuitable. In order to handle the scalability problem

for generating attack graphs in BC system, this paper explores

the following methods.

B. Exploit flow for attack actions

In a BC system, there are a volume of v-nodes, and the num-

ber of v-nodes increases and decreases dynamically. Each v-

node is a cluster with a plethora of hosts or machines, commu-

nication facility, and storages. Each host/machine installs/un-

installs a variety of software, and mounts/dismounts a bunch

of hardware. To represent such dynamics of BC system would

need a pile of reaction rules, and the number of states in the

labelled transition system will increase explosively.

This paper identifies attack exploits to concentrate on

attacking-related behaviours regarding to bigraphical reaction

rules. Three types of attack exploits are specified, exploit-

define, exploit-computation-use, and exploit-predicate-use.
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Fig. 7. The synch module of the node with missed block initiates synchronization

Fig. 8. The missed block is obtained by synch, and BC system gets back to normal

• Exploit-define: An attack exploit structure that appears in

reactum and does not appear in redex in a reaction rule.

• Exploit-cuse: An attack exploit structure that appears in

redex and does not appear in reactum in a reaction rule.

• Exploit-puse: An attack exploit structure that appears

both in redex and reactum in a reaction rule.

Attack exploit flow keeps tracing the attack-define, attack-

cuse and attack-puse, and generates attack graph eventually.

Two exploit flow-based strategies to generate attack graphs are

proposed that select a set of reaction paths such that the set

of paths meet the all-exploit-defs or all-exploit-uses criteria.

The all-exploit-defs criterion selects a set of reaction paths π
in B-LTS, such that π covers each definition of each exploit

specified, to some use of exploits; and the all-exploit-uses

criterion selects a set of reaction paths π, such that π covers

each definition of each exploit specified, to each use of exploit.

The exploit-flow approach is different from traditional data

flow testing in two aspects, summarized as follows: def-

use pairs on the identified paths in the program regarding

variables, and execution paths must be known beforehand; on

the other hand, def-use pair on the reaction rules regarding

a static structure of a sub-bigraph, flows can be identified

based on reaction rules without generating execution paths,

and simulation can also generate possible execution paths to

reveal attack paths.

VI. EXPERIMENT AND ANALYSIS

A. Experiment setting

The experiment sets up a BC consortium with four v-nodes,

representing four independent parties without mutual trusting.

Each v-node has machines to install consensus module, smart

contracts, synch module, and distributed ledger. The consor-

tium has a firewall, and each v-node has its own firewall. The

initial setting is depicted with the bigraph agent in Figure

2. The dynamic aspects of BC system are described with 14

reaction rules, and listed as follows.

1) An attacker attacks successfully the firewall of BC

consortium

2) An attacker attacks the firewall of each v-node in the

consortium

3) An attacker attacks successfully one firewall on one v-

node in the consortium

4) An attacker attacks successfully the consensus module

on one v-node in the consortium

5) One of the attacked nodes in the consortium is aban-

doned by the consortium

6) The attacker successfully attacks a firewall on the second

node in the consortium

7) The attacker successfully attacks the consensus module

on the second node in the consortium

8) The attacker successfully attacks the consensus module

on a node in the consortium

9) The second node attacked in the consortium is aban-

doned by the consortium

10) The attacker successfully attacks a firewall on the third

node

11) The attacker successfully attacks the consensus module

on the third node in the consortium

12) The attacker attacks successfully the consensus module

on a v-node in the consortium
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Algorithm 1 BigraphMatching (A, R)

Input: Bigraph A (an initial agent), and a set of reaction

rules R;

Output: A set of new bigraphs, A;

1: for each reaction rule r in R do
2: flag = findMatch(agent, redex); // redex of r

3: if (flag==TRUE AND timeConstraints == TRUE AND

reactionProbability ≥P) then A = A ∪ { A | replace

redex in A with reactum in r }
4: end for
5: return a set of new bigraphs

Method:findMatch (agt, red)

Input: Term agt from an agent, term red from a redex of a

rule;

Output: A flag to indicate whether the match is found;

1: if (agt.termType == PREFIX && red.termType == PRE-

FIX)

2: then matchPrefixPrefix(agt, red) // Parameter agt is a

prefix, Parameter red is a prefix; recursively match both

the prefixes and suffixes in agt and red; if yes, return

TRUE, otherwise return FALSE

3: else if (agt.termType == PARALLER && red.termType

== PREFIX)

4: then matchParallerPrefix(agt, red) //Parameter agt is a

paraller, Parameter red is a prefix; return FALSE

5: else if (agt.termType == PREFIX && red.termType ==

PARALLER)

6: then matchPrefixParaller(agt, red) //Parameter agt is a

prefix, Parameter red is a paraller; if red has only one

non-site sub-node, recursively match the sub-node with

agt; if yes, return TRUE, otherwise return FALSE

7: else if (agt.termType == PARALLER && red.termType

== PARALLER)

8: then matchParallerParaller(agt, red) // Parameters agt and

red are both parallers; recursively match the nodes of agt

and red; if yes, return TRUE, otherwise return FALSE;

9: else if (red.termType == TermType.SITE)

10: then matchTermSite(agt, redex) //Parameter agt is a term,

Parameter red is a site, return TRUE

11: else if (agt.termType == NIL && red.termType == NIL)

12: then matchNilTerm(agt, red) // Parameter agt is a Nil,

Parameter red is a term; if term red is a site or Nil, return

TRUE, otherwise return FALSE

13: return a set of new bigraphs

13) An attacker attacks successfully the consensus modules

on two v-nodes in the consortium

14) Two v-nodes are attacked, and BC consortium cannot

create new blocks

Two tools are developed to support modelling and simu-

lation analysis, BigM and BigSIM. BigM is used to model

the agent and the reaction rules, and BigSIM to perform

the simulation by matching the configuration with rules, and

TABLE I
COMPARISON WITH AND WITHOUT EXPLOIT FLOW

Compare Reaction rules States Time (second)

Exploit flow 14 related 12 1-1.5

Not applying 40 in total 32 4-5

automatically output labelled transition system to represent

attack graphs.

The modelling and simulation is running on Dell machine

with CPU Intel (R) Core i5-4210U@1.70GHz, RAM 8GB,

installed Windows 10 Pro 64bit.

B. Results and analysis

By applying the matching algorithm described in Section

IV-A, BigSIM generates the labelled transition system, i.e.,

attack graph, where the terminal nodes represent successful

attack by attackers, as shown in Figure 9. The attack graph

starts from the agent bigraph, and ends up in three states,

F , I , and L, corresponding to three bigraphs, percentage

numbers on the arrows indicate the probabilities that the

attacks can success, and the numbers within the states of F , I ,

L, indicate the largest joint probabilities of successful attacks

from possible paths.

Bigraph F indicates that the consensus module on only

one v-node gets attacked, and the v-node cannot participate

in voting, while the BC system works as normal, i.e., blocks

are produced as usual. Bigraph I indicates that the consensus

modules on two v-nodes get attacked, and make the BC

system unable to reach consistent results, i.e., blocks cannot be

produced any more. Bigraph L indicates the worst case where

the attacker seizes the BC system with three v-nodes under its

control, and can do whatever he wants to do. Compared with

bigraphs I and L, bigraph F has higher probability to reach,

up to 0.0066%, against 0.005% and 0.0048%. That is there is

higher probability for BC system to work normally with fault

tolerance capability.

When adding more reaction rules to BC system, BRS will

match these rules and derive more bigraph states, leading

to increasing of computation time. Figure 10 shows another

attack graph generated by BigSIM automatically, where there

are 40 reaction rules in total, and does not apply exploit flow

approach. AE state indicates that three v-nodes are successfully

attacked, AB state two v-nodes and BC state only one v-

node. To reduce the computation effort, this paper applies

exploit flow approach to prune the unrelated branches that have

no-possibility to be attacked. Table I shows the comparison

between approaches with and without exploit flow, where the

former generates 32 states vs. 12 states in the later, and taking

4 to 5 seconds vs. 1 to 1.5 seconds.

VII. RELATED WORK

The attack graph is one of the security assessment models

for modelling cyber attacks. It was first proposed by Phillip

and Swiler [34] in the 1990s. The attack graph is a directed
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Fig. 9. Generating attack graph based on bigraph theory with exploit flow approach

Fig. 10. Generating attack graph without applying exploit flow approach

graph consisting of vertices and directed edges which de-

scribes the attack sequence and attack effect that an attacker

may launch.

At present, there are three main methods for generating

attack graphs: the first one is the method using model check-

ing. In order to obtain an attack scenario, such a model must

contain all the network states to make the model too complex,

and the generated attack graph is very large. Ritchcy [31] et

al. proposed this method for the first time. The elements in

the network are first encoded, including descriptions of the

host, reachability between hosts, the attacker’s starting point,

and the attacks available to the attacker. After the modelling

is completed, a finite state machine model is used to represent

the change of the network state, and then the detection tool

SMV is used to find out whether there is a violation of the

security setting in the network, that is, a counterexample. But

the model is too simple to represent some complex attacks.

Sheyner [32] et al. improved the model in 2002, using the

NuSMV developed by SMV to find the counterexamples in the

network, and gave all the paths to reach this counterexample,

so that the attack graph can be used to further analyse the

network environment.

The second method is to generate an attack graph based

on the idea of graph theory. Ammann [1] et al. proposed

a graph-based search method in 2002, and pointed out that

there is a scalability problem in the generation method of

model detection. It is difficult to directly generate an attack

graph for a relatively simple network. Feng Huiping [13] et al.

proposed a vulnerability analysis model based on reliability

theory, and used the model detection iterative algorithm to

search the state set technology to automatically construct the

attack graph. Compared with the model checking method,

this method has relatively good spatial complexity and time

complexity. However, the attack template required to generate

an attack scenario cannot be flexibly added or modified, and

the scale of the attack graph is not solved.

The third method is proposed by Bhattacharya [5] and

Ghosh, who use intelligent planning techniques to automat-

ically build state diagrams. Since the traditional method of

constructing an attack graph requires a comprehensive analysis

of the interaction between the target network and the state of

the attacker, there is inevitably a problem of state explosion,

resulting in an excessively large attack graph, which greatly

reduces the practicality of attack graph. In order to solve

this problem, the researchers have proposed some ways to

solve this problem. Noel [30] [17] [24] [25] [26] et al. used

the method of hierarchical merging and adjacency matrix to

reduce the number of nodes in the attack graph, making

the generation of the attack graph easier to visualize, and

not fundamentally solving the problem of the scale of the

attack graph. Li [18] et al. proposed a forward search attack

graph generation algorithm based on hypergraph partitioning.

Before the attack graph is generated, the host with the same

characteristics is merged and the attack graph is generated

from the target node to the attacker to reduce the storage

attacker. The additional resources required by the current state

effectively reduce the number of edges and nodes in the attack

graph, further reducing the scale of the attack graph, and

improving the attack graph generation efficiency of large-scale

complex networks. But it can only be applied to vulnerability

[19] analysis of some special networks. Dawkins [7] uses the

strategy of limiting the attack step to generate the attack tree

based on the breadth-first search algorithm. However, because

the breadth-first search algorithm is adopted in his proposed
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method, there may be a situation that when the maximum

attack step is reached, the target state is still not reached,

resulting in a large number of non-target state leaf nodes in

the generated attack tree.

Ammann [1] et al. first proposed the monotonic hypothesis

of the attacker’s ability, that is, the attacker’s ability to attack

during the attack is constantly increasing, and the ability that

has been acquired in each atomic attack will not be lost.

The complexity of attack graph construction is reduced from

exponential complexity to polynomial complexity. Ou [2] [27]

et al. proposed a method based on logic programming technol-

ogy to generate logical attack graphs. The specific method is

to propose a logic-based network security analyser MulVAL,

which can carry out on more hosts, multi-level network

security analysis and reasoning further reduce the complexity

of generating attack graphs, and experimentally verify that the

method can generate 1000 host-scale network attack graphs

within 20 minutes. Based on the AGML modelling language,

Chen Feng [10] uses attack mode filtering technology, attribute

compression technology and instantiation checking technology

to pre-process attack exploits and attributes, thus reducing the

complexity of the algorithm. Ye Yun [37] et al. adopted the

AGML modeling language proposed in [10] to reduce the

number of matches and reduce the complexity of the algorithm

by pre-classifying the target environment attributes according

to the host and predicates.

Fan Zihua [38] et al. proposed a Rete-based attack graph

construction method, which has good construction efficiency

and can be used to construct attack graphs in large-scale

networks. Moulin [22] et al. describe a way to automatically

build attack graphs in the network by using time logic.

Qing Dapeng [19] et al. proposed a depth-first attack graph

generation method. The depth-first search algorithm was used

to find the attack path in the network. The strategy of limiting

the number of attack steps and the success probability of the

attack path was used to reduce the scale of the attack graph

and pass the experiment. Experiments show that the method

can effectively remove redundant edges and nodes in the attack

graph, thus reducing the scale of the attack graph.

Shi Hao [33] proposed the attack graph generation method

based on expert knowledge. This method stands on the

perspective of the network administrator and assumes that

the network topology is known, so that the attack graph

can be generated from the key nodes of the network. The

generated attack graph is simple and effective, rarely has

unnecessary redundant information, and is useful for analysing

the generated attack graph. Qin Hu [15] et al. proposed

an attack graph generation method based on the privilege

lifting matrix. The matrix describes the attacker’s privilege

escalation process during the attack process, which reduces

the algorithm complexity of generating the attack graph and is

beneficial to the attack graph generation in large-scale network

environment.

While bigraph has been extensively developed in the last

20 years, yet significant work is still needed to address large

problems. Perrone [28] provides a sorting logic [11] that

always produces well-behaved sorting predicates, and this

paper uses the logic as a mechanism to constraint place graphs

and link graphs. However, the completeness of the sorting

logic needs to be investigated in the future. Bigraphs are

created to model the behaviours of large mobile systems [36],

context-aware system [35] [6], and information processing

applications [14], but have not been applied to generate attack

graphs yet.

Faithful [12] developed a software tool, BigRed, for editing

the signature, bigraphical agent, and BRS rules in the term

languages. The tool does not support modelling the sorting

information, and does not have data elements in its model.

BigM [39] is a new tool by extending BigRed with more

advanced features, adding sorting information to allow users

to allocate place sort to each control and link sort to each port;

realizing the sorting logic user interface by adding constraints

in the bigraphical models; developing a data model to store

data, using bigraphical signature to specify its class, attributes

and instances; supporting to specify the guard conditions and

probability specification on the reaction rules.

Another important software tool to support the applica-

tions is BigSIM [39], a bigraphical simulator implemented

using Scala [40], which extends BigMC, a bigraphical model

checker, developed by Gian [29] using C++. BigMC does not

support sorting logic, timing specification, relational expres-

sions and guard conditions on reaction rules. BigSIM evolves

BRSs based on current agents and reaction rules represented

by a term language to simulate the real world transitions.

VIII. CONCLUSION

This paper explores the characteristics of BC system, where

tolerance and self-healing mechanisms are applied, and thus

the monotonicity assumption is not suitable for the attack

graph generation. Although model checking approach is well

applied in automatic generation of attack graphs, current model

checking tools do not provide a comprehensive approach to

model the three aspects of attack graphs, i.e., attack templates,

configuration and attacker profiles. This paper proposes to

apply bigraph theory to attack graph generation. Place sort and

link sort are used to model configuration of BC system and

attacker profile, and bigraphical reaction rules to model attack

templates and attacker behaviours. Bigraphical matching algo-

rithm derives labelled transition system to automatically gener-

ate attack graphs. To mitigate matching complexity, this paper

proposes to apply exploit flow mechanism to accelerate the

attack graph generation by concentrating on interested exploit

pattern related to attacks. Preliminary results of the experiment

show the exploit flow approach shows good performance in

terms of time consumption. More experiments and evaluations

will be carried out in the future work.
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