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Abstract—In Solid State Drives, flash management techniques 
such as wear-leveling and refresh usually assume NAND flash 
memories have the same endurance value. However, the actual 
endurance values differ from blocks to blocks. This reliability 
difference is introduced by process-variation during flash 
fabrication. In recent years, for improving flash management 
techniques, various works have been done on the reliability 
variation of 2D flash memory. As 2D NAND transmitted to 3D 
NAND flash, the vertical structure and multi-layer stacking 
changed the effect of previously known reliability problems. In 
this paper, we are first to characterize the process-variation effects 
on 3D TLC flash reliability. The characterization includes two 
parts: endurance variation and error feature variation. Second, 
we propose an adaptive error prediction scheme to mitigate the 
process-variation effects. This scheme uses the machine-learning 
model to realize the error prediction operation. We also discuss 
the implications of this scheme on main flash management 
techniques.  

Keywords—3D NAND, storage, reliability, process variation, 
error analysis, Machine learning 

I. INTRODUCTION

NAND flash memory has been one of the popular storage 
mediums for the last decades. With the development of process 
technology, NAND flash memory was on a one-year cadence 
for a new generation where other memories were on a two-year 
cadence [1]. The consecutive scaling down of process 
technology results in reliability decrease in flash memory. To 
enhance NAND flash reliability, many strategies have been 
proposed, such as: garbage collection, wear-leveling, and 
refresh. Generally, these strategies use the standard endurance 
value as the limitation of the flash lifetime. However, due to the 
process-variation during fabrication, the actual endurance of 
flash blocks is different from each other. Therefore, previous 
works [2]-[6] have studied the process-variation effects on 2D 
NAND flash memory for improving reliability. 

To overcome the scaling challenge, researchers introduced 
3D NAND flash. Instead of planar arrays in 2D NAND, 3D 
NAND flash memory stacks storage cells vertically in layers [1]. 

Fig. 1 shows the schematic circuit of the 3D NAND flash array. 
The vertical structure of 3D NAND allows increasing storage 
density on equivalent cell area with the planar device. However, 
it also changes the characteristics of the known reliability 
problems in NAND flash memory. At present, most of the 
studies on PV effects are on planar NAND flash. It demands 
more researches on 3D NAND flash as the manufacturing 
technology of flash memory transmitted to the next generation. 
In order to gain a further understanding of the process-variation 
effects on 3D flash reliability, we studied the endurance value 
and error features of different flash blocks through testing. The 
key contributions are as follows: 

 We analyze and characterize the process-variation 
effects on 3D TLC flash reliability. We analyze the 
effects from two aspects: the NAND flash endurance 
distribution and error features. We find that the 
endurance difference between chips is higher than the 
difference in the same chip. And the variance of block 
errors at a later stage is higher than the early stage. 

This work was supported in part by the National Natural Science 
Foundation of China (Grant No. 61874047) and National Key Research and 
Development Project of China (Grant No. 2019YFB1300601). 

Fig. 1. The schematic circuit of 3D NAND flash array. 
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 We propose an error prediction scheme to mitigate the 
process-variation effects, which adaptively estimates the 
number of flash errors. This scheme is based on the 
machine-learning model. Besides, we compare six types 
of machine-learning models and show the accuracy of 
these models. 

 We discuss the implications of our scheme on main flash 
management techniques. 

II. BACKGROUND 

A. Process-variation Effects on NAND Flash Reliability 
With manufacturing technology scaling, process-variation 

(PV) is becoming a critical problem as a result of uncertainty in 
electrical attributes. Process-variation has been identified as 
fabrication induced electrical parameter changes among 
different transistors [7]. The changes in electrical parameters 
make the reliability of transistors with the same design varies 
from each other [8].  

The process-variation in oxide thicknesses and cell 
dimensions influences the capacitive conditions and results in 
reliability differences among NAND flash blocks. Endurance is 
one of the most important reliability parameters in NAND flash 
memory, which represents the number of P/E cycles that the 
flash block can sustain before a failure [9].  

Previous work [2] has found that the actual endurance of 
flash chip is different from the standard value. In NAND flash 
memory, different blocks and pages have different reliabilities. 
The number of flash block errors grows at different speeds 
during program/erase (P/E) cycling. And the number of page 
errors in the same block is significantly varied at the same P/E 
cycle [3]. Due to the uncertainty of the manufacturing process, 
PV effects on reliability cannot be avoided. Therefore, it’s 
essential to build a strong understanding of PV effects and 
develop management techniques to alleviate the influence. 

B. Related Works 
In order to enable a strong understanding of PV effects on 

NAND flash, many researchers have studied the variations of 
reliability characteristics among flash blocks. Pan et al. [2] 
explored the actual endurance P/E cycles of planar flash blocks. 
They pointed out that the endurance P/E cycles of tested blocks 
are in the range of [1500, 24600], which are higher than the 
standard value [2]. Woo et al. [4] analyzed PV effects on 
different flash metrics: bit error rate (BER), endurance P/E 
cycles, and operation latency. They summarized that the average 
P/E cycle of flash blocks in the same chip is 8524, with the 
standard deviation of 1318 [4]. Jimenez et al. [5] found that the 
flash page BER has different growing speeds under PV 
influence. Meza et al. [6] performed a large-scale study on 
various types of failures. The results showed that flash blocks 
have varied reliability characteristics.  

Many strategies have been proposed to tolerate PV in NAND 
flash memory. Pan et al. [2] proposed a wear-leveling method 
that identifies the reliability of flash blocks by error rate. In [4], 
the authors introduced two techniques to extend the lifetime of 
SSDs: a new wear index which takes into account the PV effects, 
and a dynamic wear-leveling algorithm. And a write speed 
detection approach by exploiting PV was proposed in [10]. Di et 

al. [11] presented a refresh minimization scheme with the 
consideration of PV among flash blocks. In 2018, they designed 
a refresh frequency matching scheme [12] that allocates data to 
blocks with higher retention ability. 

Recently, several studies have been done on PV tolerating 
techniques for 3D MLC NAND flash. In [13], a PV tolerant 
reliability management strategy was proposed for 3D charge-
trapping flash memory. This strategy predicts the status of 
physical pages and assigns the data to reliable pages. [14] 
observed the early retention loss and layer-to-layer PV in 3D 
MLC NAND flash. They also proposed two schemes to mitigate 
layer-to-layer PV. 

C. Motivation 
Current studies of PV induced flash reliability issues are 

focus on planar flash memory and 3D MLC flash memory. With 
the development of process technology, more and more 3D TLC 
flash memories are applied in SSDs. Therefore, it’s necessary to 
characterize PV effects on 3D TLC flash. In this work, we have 
tested 3D TLC flash blocks from different chips and collected 
flash metrics such as raw page bit errors, P/E cycle number, and 
endurance value. And we analyzed the endurance distribution 
and error features of selected samples for characterizing the PV 
effects on 3D TLC flash reliability. 

In order to enhance the reliability of the storage system, 
many PV tolerant schemes have been presented in the past 
decade. They allocate data to blocks according to parameters 
like BER, erase count, and program latency. Since flash blocks 
have different reliability, the changes of these parameters as P/E 
cycles increase might vary among flash blocks. The frequency 
of parameter measurement will be a critical issue for flash 
management techniques. Thus, to reduce the frequency, we 
propose an error prediction scheme that adaptively estimates the 
number of flash errors. The error prediction is realized by the 
machine-learning method. 

III. 3D TLC RELIABILITY VARIATION CHARACTERIZATION 

A. Methodology 
In this work, we designed a NAND flash test platform with 

Xilinx Zynq-7020. Through our test platform, we tested 3D TLC 
flash blocks from different chips. Considering the PV influences 
on different regions, we randomly select the blocks from the 
front, middle, and back positions of each flash chips as samples. 
The total number of tested flash blocks is 128. The size of the 
block is 2304.  

The testing procedure is shown in Fig. 2. We test 3D TLC 
flash blocks by stressing repeated P/E cycles. During P/E 
cycling, test platform samples flash metrics every 50 P/E cycles 
at room temperature. The flash metrics are transmitted to the 
host computer and stored in the database on the host computer. 
Flash test procedure stops when the page BER larger than 
previously set ECC capability. The ECC capability is that the 
correction code can correct 73bit errors on 1kB data. 
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B. Test Results Analysis 
In NAND flash memory, the metrics used to estimate 

reliability generally are endurance and raw bit error. Thus, to 
study the PV influence on 3D TLC flash reliability, the 
following subsections analyze the endurance distribution and 
error features of selected sample blocks. 

1) Endurance distribution 
The endurance distribution of 3D TLC flash blocks is shown 

in Fig. 3. According to this figure, the value of the block 
endurance is in the range of 6500 to 13500 P/E cycle. The range 
of [10500, 11500] has a higher density compared to others. In 
[12500, 13500], the number of blocks is the minimum. Table. 1 
reports the variance of endurance across different blocks. 
Through the results in Table. 1, we can observe that blocks from 
the same chip have smaller endurance variance compared to the 
blocks from the different chips. Therefore, it can be concluded 
that the blocks belong to the same type of 3D TLC flash memory 
have different endurance values, and the endurance of blocks 
from different chips has a greater difference than the blocks in 
the same chip. 

TABLE I.  ENDURANCE METRICS 

Type 
Different 

chip 
variance 

Same 
chip 

variance 
Min Max Average 

Value 2364237 353381 6650 13150 10259 

2) Error features 
In order to gain further understanding of PV effects on flash 

reliability, we also observe the error features of different 3D 
TLC flash blocks and characterize the error variation of blocks 
and pages. We analyze the error features by visual graphics of 
raw bit errors. 

The average error number of each block at different P/E 
cycles is shown in Fig. 4.  To give a more explicit visual 
inspection, we plot the errors of sample blocks at 50 P/E, 100 
P/E, 500 P/E, 1000, P/E, 3000 P/E, 5000 P/E, and 7000 P/E. In 
Fig.4, at 50 P/E cycle, the average error number of 119 sample 
blocks is between 10 and 15. And at 100 P/E, the range of error 
values is slightly greater than 50 P/E. When the P/E cycle is 500, 
the range of block error is [10, 22], which is wider than the range 
at 50 P/E and 100P/E. As the P/E cycle increases, the range of 
error distribution becomes wider and wider. And at 7000 P/E, 
the range of error number reaches [29, 70]. We infer that the 
error difference between blocks at higher P/E cycles is larger 
than the lower P/E cycles. 

To further analyze the relationship between error difference 
and P/E cycle, we plot the variance of block errors in Fig. 5. Also, 
we show the variance of page errors in Fig. 6. Through these 
figures, we can observe that the error number variance of blocks 
from different chip increase with P/E cycles. Before 1000 P/E, 
the variance value is small and grows slowly. When the P/E 
cycle reaches 7000, the variance increases to 70.877, which is 
far more than the value 4.616 at 1000 P/E. According to Fig. 5, 
the variance of block errors in the same chip is much lower than 
that of block errors among different chips. And from 1 P/E to 
1000 P/E, the variance of block errors in the same chip has small 
change (0.392 to 1.130) with the increase of P/E cycles. The 

 
Fig. 2. The flash testing procedure. 

 
Fig. 3.   3D TLC flash endurance distribution. 

 
Fig. 4.   The average error number of each block at P/E 100, 500, 1000, 
3000, 5000, and 7000. 
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variance of page errors has a similar tendency to that of block 
errors.  The variance for page errors increases smoothly in the 
early phase and becomes faster at the later period of the lifetime. 
However, at the same P/E cycle, the value of page error variance 
is larger than the variance of block errors. Therefore, it can be 
concluded that the block errors grow at different speeds during 
P/E cycling. The variance of block errors in the same chip is 
smaller than the difference among different chips. And the 
variance of block errors and page errors increases slowly in the 
early phase and accelerates in the later phase. 

The variance of errors for different page type is shown in Fig. 
7. Through this figure, we find that the variance of upper page 

errors is higher than the lower page and middle page at the same 
P/E cycle. The variance of middle-page errors is slightly smaller 
than the upper page. Besides, the variance of upper-page errors 
and middle-page errors increases much faster than the lower 
page across the entire P/E cycling process.  We conclude that 
different types of pages in 3D TLC flash have different error 
variation, and the variance of upper-page errors is larger than 
other types of pages. 

IV. ADAPTIVE ERROR PREDICTION SCHEME 

A. Overview Units 
In this work, we propose an error prediction scheme that 

adaptively estimates the level of flash errors for tolerating PV 
effects on flash reliability. The flow diagram of the proposed 
scheme is illustrated in Fig. 8. In the light of former analysis, the 
error prediction operation begins at 1000 P/E cycle that has low 
PV effects on blocks.  When the P/E cycle reaches 1000, the 
system calculates the raw bit errors of blocks, and the machine-
learning model predicts the error level. Then, the blocks are 
assigned to different groups according to the error level. Each 
group corresponds to an update interval. Based on the 
observation of error features, we tentatively set the interval 
values to 50 P/E, 100 P/E, 500 P/E, 1000, P/E, and 1500 P/E. 
However, the proper value of interval, which could improve 
system efficiency, demands further study.  After the 
corresponding interval, the raw bit errors of blocks in the group 
are calculated again by the system. If the errors exceed ECC 
capability, the block will be removed from the group. The 
machine-learning model predicts the error level and remaps the 
blocks to groups. The error prediction operation repeats until 
there is no available block or receives a stop command. 

 
Fig. 5.   The variance of block errors. 

 
Fig. 6.   The average variance of page errors. 

 
Fig. 7.   The average variance of page errors.  

Fig. 8. The flow diagram of the error prediction scheme. 
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B. Machine-learning Model 
In the machine-learning field, classification is a supervised 

learning method to predict discrete random variables [15]. In 
this work, we use the following six classification methods to 
build an error prediction model: Decision Trees, K-Nearest 
Neighbors, linear discriminant analysis (LDA), Support Vector 
Machines (SVM), Naive Bayes, and Bagged Classification 
Trees. We make use of MATLAB Statistics and Machine 
Learning Toolbox for modeling. Data samples for modeling and 
verification are randomly selected from the test data. The size of 
the training data set and test data set are 3750 and 1250. The 
large scale training and testing of machine-learning models will 
be implemented in the future study. The 5-fold Cross Validation 
is adopted to each model to avoid over-fitting. 

TABLE II.  EVALUATION RESULTS 

Method 
Accuracy 

Error 
level1 

Error 
level2 

Error 
level3 

Error 
level4 

Error 
level5 Average 

Decision 
Trees  100% 93% 79% 85% 99% 91.4% 

KNN 100% 97% 83% 81% 99% 92.1% 

LDA 100% 99% 75% 76% 97% 89.2% 

SVM 100% 98% 79% 85% 99% 92.3% 

Naive 
Bayes 100% 95% 87% 73% 99% 90.9% 

Bagged 
Classifica
-tion 
Trees 

100% 93% 80% 86% 99% 91.6% 

Model inputs and outputs. The model inputs include P/E 
cycle number, raw bit error number of block, and the former 
error level. The output of the model is 1, 2, 3, 4, or 5 if the 
maximum page error number at next 50 P/E is in the range of [0, 
300), [300, 500), [500, 700), [700, 900), or [900, 1100). Five 
types of output represent: error-level1, error-level2, error-level3, 
error-level4, and error-level5. The number of data samples 
corresponding to each output value is equal.  

The evaluation results of six classification learning models 
are shown in Table.1. The results demonstrate that the SVM 
model has the best performance, and LDA is the worst. The 
accuracy of SVM is 92.3%, and LDA is 89.2%. The evaluation 
results differ from disks that SVM model performs worse in 
predicting faulty disks [16]. The results of model evaluation on 
one storage device are not suitable for other devices. 

Although LDA model has the worst accuracy, but it 
performs best on error-level2 dataset. Most of the models have 
a weak predictive capability on the error-level3 and error-level4 
dataset. We hypothesize that the weak capability results from the 
current input cannot provide enough information to distinguish 
error levels. And on different dataset, the model with the best 
performance is different. The best model of error-level2, error-
level3 and error-level4 dataset are: LDA, Naïve Bayes and 
Bagged Classification Trees. For different error levels, the flash 
memory demands different prediction methods. In future study, 
we will explore the prediction performance of Hybrid Model on 
NAND flash memory devices. 

C. Implementation 
In flash-memory-based storage systems, there are many 

management techniques such as refresh and wear-leveling. To 
improve 3D TLC flash reliability and reduce PV influence, we 
present several implications of error prediction scheme on the 
designs of the management techniques: 

Refresh. Refresh is a fundamental scheme for reducing 
retention errors [9]. Since retention errors are related to wearing 
degree and retention time, the refresh frequency can be 
determined by the output of the error prediction model. During 
the storage system is running, the blocks are assigned to groups 
and refreshed at a different rate. The refresh rate of each group 
is related to the error level: the refresh interval decreases when 
the error level increases. By implying the scheme on refresh 
techniques, we can refresh flash blocks with the consideration 
of PV effects and reduce the number of refresh operations. 

Wear-leveling. In flash storage devices, it is crucial to keep 
the aging of each block at a similar rate [9]. Therefore, a 
technique named wear-leveling was proposed [9]. Generally, 
wear-leveling algorithms adopt P/E cycle number as the 
standard of block aging level. However, previous research [2] 
found that the P/E cycle can’t be a good standard for identifying 
reliability because of the existence of PV. Besides, the actual 
endurance P/E cycle is larger than the standard endurance. Thus, 
we utilize the output of the error prediction model as the wear-
leveling information to mitigate the PV effects and extend the 
number of executable operations. 

V. CONCLUSION 
As process technology has transmitted from 2D to 3D, new 

reliability issues arose in flash memories. Process-variation is a 
critical problem in NAND flash memory, which induced by 
fabrication. To gain a strong understanding of process-variation 
in the 3D flash, we analyzed and characterized the process-
variation effects on 3D TLC flash reliability. The analysis is 
mainly made from two aspects: endurance distribution and error 
features. Through the endurance distribution, we found that the 
endurance difference of blocks in different chips is greater than 
the blocks in the same chip.  In the aspect of error features, we 
discovered that the variance of block errors and page errors at 
the later stage increases faster than the early stage. The variance 
of blocks in the same chip is lower than that of blocks in different 
chips. Besides, in 3D TLC flash, the different types of pages 
have different error increasing speeds that the variance of upper-
page errors grows faster than other types of pages. 

We also proposed an error prediction scheme to mitigate the 
process-variation effects, which adaptively estimates the 
number of flash errors. We evaluated the performance of six 
types of machine-learning models. The results show that the 
SVM model has the best performance of 92.3%. 

To reduce PV influence on 3D flash reliability, we discussed 
the implications of the error prediction scheme on the designs of 
the management techniques like refresh and wear-leveling. 
Since our observation of PV effects is mainly on limited flash 
chips, the influence among different types of chips still demands 
further exploration. We hope that this work will inspire studies 
of the PV effects and new flash management techniques to 
enhance 3D flash reliability in the future. 
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