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Abstract—As the software industry transitions to software-as-a-
service (SAAS) model, there has been tremendous competitive 
pressure on companies to improve software quality at a much faster 
rate than before. The software defect prediction (SDP) plays an 
important role in this effort by enabling predictive quality 
management during the entire software development lifecycle 
(SDLC). The SDP has traditionally used defect density and other 
parametric models. However, recent advances in machine learning 
and artificial intelligence (ML/AI) have created a renewed interest 
in ML-based defect prediction among academic researchers and 
industry practitioners. Published studies on this subject have focused 
on two areas, i.e. model attributes and ML algorithms, to develop 
SDP models for small to medium sized software (mostly 
opensource). However, as we present in this paper, ML-based SDP 
for large scale software with hundreds of millions of lines of code 
(LOC) needs to address challenges in additional areas called “Data 
Definition” and “SDP Lifecycle.” We have proposed solutions for 
these challenges and used the example of a large-scale software 
(IOS-XE) developed by Cisco Systems to show the validity of our 
solutions. 
 
Keywords—Software defect prediction, software quality, software 
quality analytics, machine learning, large scale software 

 

I. INTRODUCTION 

With the advent of cloud technologies and the rapid 
transition from traditional license-based software to the 
software-as-a-service (SaaS) model, customer needs are 
changing at a much faster rate than before [1]. Companies 
don’t have the luxury of validating software in customer labs 
for months before deployment in live environments. Today’s 
cloud environment requires services to be deployed directly 
to the cloud, and customers expect only hours of turnaround 
time for critical software fixes. Customers also demand 
shorter deployment cycles for traditional on-premise (aka on-
prem) deployments. As a result, development teams are 
challenged to achieve much higher quality before releasing 
software to customers. At the heart of this challenge is the 
Software Defect Prediction (SDP) that enables software 
development teams to take data-driven, proactive actions to 
improve quality before delivering the software to end users. 
This reduces software bugs in the customer environment, 
takes fewer cycles of deployment testing, and improves 
deployment time.  

The software defect prediction has received considerable 
attention over the years. Different SDP models have been 
developed using quality attributes including code metrics 
(e.g., lines of code, complexity), process metrics (e.g., 
number of changes, recent activity), or defect metrics (e.g., 
bug backlog, defect arrival rate, disposal rate) [2]. A detailed 

overview of different parametric techniques developed over 
the years have been described in [2,3,4]. With the advances 
in machine learning (ML) and artificial intelligence (AI), 
these technologies have been used extensively to predict 
defects for opensource software [5-8]. The objectives of these 
studies were to find the best set of quality attributes and the 
ML algorithm that provides the lowest prediction error for a 
given dataset.  

The datasets used in ML-based SDP studies used 
observations that include metrics derived for source code files 
or software components [5-8]. Defining observations in the 
dataset is a relatively straight forward task for small and 
medium sized software (less than few millions of LOC). 
However, it is quite challenging for large commercial 
software with hundreds of millions of LOC. An example of 
such large-scale system is Cisco’s IOS-XE software that 
consists of 2200+ software components and tens of thousands 
of source files. This software supports many product families 
and hundreds of products for routing, switching, wireless, and 
network management portfolios. New IOS-XE functionality 
is released to customers on a regular basis every four months. 
To get the dataset for developing an SDP model for such 
large-scale software, we could have used the source files, 
components, products, product families, or releases as 
observations. Given so many options, the right selection for 
the observation is one of the most important aspects of the 
ML-based SDP. We call this the “Data Definition” challenge. 

Furthermore, the SDP models in open literature use 
information available before the software is released to users 
and predict the number of defects that could be found at the 
customer site within a 6- or 12-month period [2]. The results 
of defect prediction just before the release can be used for 
evaluating release readiness. But it is not enough to manage 
quality during the entire software development life cycle 
(SDLC), which typically takes 4-8 months for large-scale 
commercial software. It is essential to have continuous 
quality management to reduce the software defect 
management cost [15] and deliver best-in-class software [16]. 
Therefore, the SDP needs to provide prediction models that 
enable continuous quality management. We call this the 
“SDP Lifecycle” challenge.  

The software defect prediction for large-scale software 
should include four major components: 

(a) Data definition 
(b) Quality attributes selection 
(c) ML algorithm  
(d) SDP lifecycle 
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Based on our knowledge, all the studies published in 
open literature focus on the selection of quality attributes and 
ML algorithms (b and c). None of them address the 
challenges associated with the data definition and SDP 
lifecycle (a and d). As shown in this paper, to develop an 
accurate and useful defect prediction model for large scale 
software, one must consider all four aspects.  

This paper is organized into several sections. Related 
work on defect prediction using machine learning is 
presented in Section II. This is followed by detailed 
descriptions of the SDP challenges and proposed solutions for 
large-scale systems in Section III. The SDP using the 
classical defect-density method and ML algorithms is 
presented in Sections IV and V, respectively. Section VI 
summarizes the results for the unique challenges posed by 
large-scale software. Threats to the validity of our work are 
presented in Section VII. Finally, summary and future work 
are described in Section VIII. 

 

II. RELATED WORK 

One of the focus areas in ML-based SDP is to find the 
best machine learning algorithm that gives the lowest 
prediction error. As shown in different studies, the ML 
algorithm that gives the best SDP model depends on the 
dataset [5-8]. The work by Hammouri, et al. studied the 
performance accuracy and capability of three supervised ML 
algorithms – Naïve Bayes, Artificial Neural Networks, and 
Decision Tree [5]. The effectiveness of the different 
algorithms was compared using accuracy, precision (positive 
predictive value), recall (true positive rate or sensitivity), F-
measure, and RMSE (root mean square error). In the datasets 
used in [5], the decision tree classifier gave better accuracy as 
compared to other methods. The study in [6] used software 
quality metrics to predict defects using Bayesian Network, 
Random Forest, Support Vector Machine, and Decision Tree. 
For four datasets used by the authors, it was concluded that 
Support Vector Machine is a better model when compared to 
other methods. Similarly, the work in [7] compared four 
different models – Naïve Bayes, Neural Networks, Associated 
Rules and Decision Tree – and found Naïve Bayes to be a 
better algorithm. More examples on the use of ML in SDP are 
presented in [8].  

Selection of the best ML algorithm is very important for 
developing a defect prediction model. However, the choice of 
the correct attributes or independent variables in the dataset is 
equally important for developing SDP model using parametric 
as well as ML-based statistical methods. The study by Chou 
provides a detailed description of different static code and 
object-oriented metrics used for defect prediction [9]. The 
static code metrics include LOC, Halstead metrics, and 
McCabe cyclomatic complexity. The object-oriented metrics 
include Chidamber & Kemerer (CK) metrics suite and Metrics 
for Object-Oriented Design (MOOD) [34]. The study by 
D’Ambros et al. reviewed an extensive body of work on 
metrics for defect prediction and grouped them in terms of 
process metrics, previous defects, source code metrics, and 
metrics measuring entropy of changes [2].  

The study by Singh and Chug used several common 
metrics such as LOC, object-oriented metrics (cohesion, 
coupling, and inheritance), and hybrid metrics, which are a 
combination of object oriented and procedural metrics [10]. 

Another study on ML-based SDP determined that the most 
effective metrics for defect prediction are Response for Class 
(ROC), Line of code (LOC) and Lack of Coding Quality 
(LOCQ) [11]. A detailed analysis of different metrics for 
effective defect prediction is presented in [5]. As shown in 
various studies, the ML algorithm and quality attributes for 
developing the best SDP model depend on the dataset.  

 

III. CHALLENGES FOR LARGE SCALE SYSTEMS 

There are many large-scale software solutions in today’s 
industry that contain hundreds of millions of lines of code 
(LOC). Cisco IOS, Microsoft Windows, Microsoft Office, 
Oracle, and Apple iOS are examples of widely used large-
scale software. The software used in this study is the IOS-XE 
software developed by Cisco Systems, Inc. It consists of 200+ 
millions LOC and 2200+ software components supporting 
180+ products and 50+ product families. New functionalities 
(aka features) are developed by a global team of 3000+ 
engineers and released to customers every 4 months. There are 
300+ change sets (new features or bug fixes) added to this 
software every day.  Images of the software are built, and 
automated testing is performed every day to maintain the 
health of the source code repository. Depending on the size 
and complexity, it takes between 4 and 8 months to design, 
code, test, and release the software to customers. Many 
different tests (e.g. unit, functional, regression, system 
integration, solution, security, performance, scale, and user 
experience, etc.) are performed before software is delivered to 
customers. The organization responsible for IOS-XE is 
divided into several subgroups for different product portfolios 
(e.g. routing, switching, wireless, industrial IoT, and network 
management). Each subgroup consists of several hundred 
smaller teams consisting of 5-15 engineers.  Close to 20% of 
the teams use the agile scrum for development. The remaining 
teams use a continuous integration approach. Sometimes 
teams use a waterfall approach for developing large 
technology infrastructure. This section presents our approach 
to address the challenges associated with the data definition 
and SDP lifecycle challenges for large, complex software. 

 

A. Data Definition 

In general, a data point consists of three components:  

 Data Element is the entity on which data is collected. A 
software component is an example of a data element. 

 Variable is a characteristic of interest for the data 
element. For example, “number of open defects” is a 
variable that represents a characteristic of a software 
component. 

 Observation is a measurement collected for a particular 
data element. Measuring the number of open defects for 
a component on a particular date is an observation.   

For many ML applications, the choice of the data element 
comes from the very definition of the problem. For example, 
a customer is a data element for an ML model that predicts if 
a customer will default on credit card payments. Similarly, a 
defect is a data element for an ML model to predict if a defect 
found in a test duplicates another previously known defect. 
However, it is not a straightforward task to define the data 
element for defect prediction. Most of the published work on 
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SDP uses software modules as the data element. Software 
modules are typically an independent and interchangeable 
part of the code that contains everything necessary to execute 
only one aspect of a desired functionality [17]. In our 
experience, companies typically follow this definition as a 
guideline and define software modules (aka components) that 
makes it easier to organize and manage source code.  

Depending on the way source code is organized, there are 
many possible approaches to define the data element for the 
SDP. Source Files (SF) are the basic level of organization in 
the source code management (SCM) system. Source 
Directory (SD) is the next level in SCM. Several directories 
are then used to form a logical group called a software 
component. Several software components are grouped 
together as a product to support a specific use case or 
hardware platform. For example, ISR-4221 (Integrated 
Services Routers-4221) is an example of a product developed 
by Cisco to be used as a branch office router. Software for 
multiple related products are grouped together to form a 
product family (PF). For example, the ISR4000 family of 
routers includes products like ISR-4221, ISR-4321, ISR-
4331, ISR-4431, and ISR-4451.  Software for multiple 
product families are grouped together to support specific 
solutions deployed in customer networks. For example, 
software defined access (SDA) is a solution used by 
enterprises for managing employee access to the Internet. The 
SDA solution uses different products such as wireless access 
points, wireless LAN controllers, access switches, routers, 
and network management systems.  

Note that the above example of a source code organization 
is very specific to one of the large business entities within 
Cisco. The complexity and structure of the source code 
organization could vary widely between companies and even 
between groups within the same company. The software 
elements from the most granular level of a source file to the 
most general level of solutions are: 

a) Source file (SF) 
b) Source directory (SD) 
c) Components 
d) Products 
e) Product family (PF) 
f) Solutions 

A simplified view of different software elements in a 
large-scale software is shown in Fig.1. The actual source code 
structure is extremely complex with many more 
interconnections between different blocks as compared to the 
details shown in the figure. 

Based on the way the source code is organized and defects 
are tracked in IOS-XE, code level metrics are easier to 
estimate for all six data elements defined above. However, the 
defect-based and test metrics are easier to measure for 
components, products, product families, and solutions. 
Because of the difficulty in measuring defect and test metrics, 
we did not use source file or directory as the data element.  
Furthermore, while selecting data elements, we need to ensure 
that there is a sufficient number of data points for ML-based 
model development. If we use product family as the data 
element, we will have nearly 300 data points in the dataset. If 
we use solutions as the data element, we will have less than 25 
data points. Because of the small number of data points, we do 
not use product family or solution as data elements. That 

leaves only components and products as two possible choices 
for the data element. As shown in Section VI, we have used 
both data elements for model development and selected the 
one that gave a lower prediction error. 

 
Fig. 1. A simplified hierarchical structure in a source code 

management (SCM) system.  

 
B. SDP Lifecylce 

Software development is a continuous process involving 
designing, coding, testing, and bug fixing. Depending on the 
size of the software, the testing and bug fixing process could 
take many months and involve different types of test activities 
(e.g. unit, functional, system integration, and solution, etc.)  
For most of the software development processes, these 
activities can be organized into three logical groups (Fig.2). 
The first logical group ends with the milestone called Code 
Complete (CC), when the source code for a new software 
feature is complete and ready for formal integration into the 
code base. Activities like design, coding, unit testing, static 
analysis, and code review are completed before CC. The next 
logical phase includes the integration of code with other 
features in the software and regression testing. These activities 
end at a logical milestone called Feature Complete (FC). The 
next set of activities include system integration, solution, 
performance, scale, security, and other testing required to 
validate the software before delivering it to end users.  This 
milestone is called the First Customer Availability (FCA). 

All the studies in open literature developed the SDP model 
at FCA and predicted the number of defects expected to be 
found at the customer environment. This is not sufficient for 
continuous quality management during the entire SDLC. 
Therefore, we have developed different SDP models at the 
three logical milestones described above. These models are: 

a) CC Model – Uses the code metrics available at CC as 
model attributes and predicts the number of defects to 
be found between CC and FC.  

b) FC Model – Uses the code, defect, and process metrics 
available at FC to predict the number of defects to be 
found between FC and FCA. 

c) FCA Model – Uses the code, defect, and process 
metrics available at FCA to predict the number of 
defects to be found by the customers or end users within 
6 months from FCA. 

The attributes and target variables for each of these models 
are summarized in Fig.2. More details on the model attributes 
are discussed in Section V. 

376



 

 
Fig. 2. Logical points for model development during SDLC. 

 
 

IV. DEFECT PREDICTION USING DEFECT DENSITY 

Defect density is one of the simplest methods for software 
defect prediction. It is measured as [18]: 

 

The number of known defects is the count of total defects 
reported against a software entity (product or component) by 
internal teams and customers over a period of time. Software 
size is typically measured by Lines of Code (LOC) or 
Function Points (FP). LOC is a widely used method for 
software sizing because of its simplicity in measurement. FP 
is considered a better representation of software size, but its 
adoption has been very limited because of the difficulties in 
FP measurement, particularly for large-scale systems [19,20]. 
Therefore, we have used LOC to measure software size.  

Software products are continuously modified by adding, 
updating, and deleting code for bug fixes as well as new 
features. The software size is represented by the code change, 
which is a function of the lines of code added, updated and, 
deleted [2]. We used two different approaches to estimate the 
software size: 

KLOC-A = Added + Updated + Deleted 

KLOC-B = Added + Updated – Deleted  

where KLOC is kilo LOC. “Added”, “Updated”, and 
“Deleted” are KLOC added, updated, and deleted, 
respectively.  

For a given amount of code change in a software release, 
the simplest defect prediction model can be described as: 

Model-1  (Defect)Rel = (DD)Rel × (KLOC)Rel 

where, (Defect)Rel, (DD)Rel, and (KLOC)Rel are the number of 
predicted defects, defect density, and KLOC, respectively, for 
the release. We have observed that 70-80% of bugs found 
during a release are related to new features introduced in the 
release. The remaining defects are related to the functionalities 
introduced in previous releases. Therefore, the above defect 
prediction model that uses DD and KLOC for the current 

release may not be effective. Therefore, we added the 
contribution of previous release in the prediction model:  

Model-2  (Defect)Rel = (DD)Rel × (KLOC)Rel  

+ (DD)Prev × (KLOC)Prev 

where, (DD)Prev, and (KLOC)Prev are defect density and 
KLOC, respectively, for the previous release. The objective of 
the model development is to use the learning dataset to 
estimate (DD)Rel and (DD)Prev, which are the defect densities 
for the current and previous releases, respectively.  

 We collected KLOC and the total number of defects found 
in IOS-XE software described in Section III for the last 8 
releases. The data for first 6 releases was used to develop 
(train) the model, and the data from last two releases was used 
to test the model. The training dataset consisted of 1122 
observations and the testing dataset consisted of 374 
observations. The target variable in the dataset is the total 
number of defects found from the beginning of the release 
activity until six months after FCA. We used the linear 
regression algorithm to estimate the defect density for four 
different scenarios: 

 Model-1 with KLOC-A 
 Model-1 with KLOC-B 
 Model-2 with KLOC-A 
 Model-2 with KLOC-B 

The estimated defect density and corresponding R-square 
and  P-values are presented in Table I. The P-value for all four 
models is very small (below 0.05). The R-Square value for 
both choices for Model-2 are 0.66, which is slightly higher 
than the R-square value for Model-1.  

TABLE I.  COMPARISON OF DEFECT DENSITY MODELS  

Model Description (DD)Rel (DD)Prev R2 P-Value 
Model-1 + KLOC-A 4.4 NA* 0.63 < 0.0001 
Model-1 + KLOC-B 3.9 NA* 0.64 < 0.0001 
Model-2 + KLOC-A 3.1 0.7 0.66 < 0.0001 
Model-2 + KLOC-B 2.7 0.6 0.66 < 0.0001 
* NA = Not Applicable 

We applied the models developed in Table I to the test 
dataset and estimated the prediction error for each model. As 
shown in Table II, all the models have high prediction errors 
that are close to 28%. Given very similar model errors (Table 
I) and prediction errors (Table II) for all four scenarios, it is 
difficult to decide on the best model. As described earlier, 20-
30% of defects found in a release are from features that are 
developed in the previous release. Therefore, we selected 
Model-2 with KLOC-A as the defect density model for 
comparison with other ML-based models developed in this 
paper.  

TABLE II.  ERROR COMPARISON FOR DIFFERENT DEFECT DENSITY 
MODELS  

Model Description Estimation Error 
Model-1 + KLOC-A 28.2% 
Model-1 + KLOC-B 28.6% 
Model-2 + KLOC-A 28.0% 
Model-2 + KLOC-B 28.7% 
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V. DEFECT PREDICTION USING MACHINE LEARNING 

As discussed in Section III-B, we are proposing three 
defect prediction models at CC, FC and FCA to help model-
based quality management during the entire software 
development life cycle. The details of the attribute selection, 
exploratory data analysis (EDA), model development, and 
model validation are presented below. The dataset used in this 
section is the same dataset used for the defect density model 
in Section IV and uses products as the data element (Fig. 1). 

 

A. Attibute Selection and EDA 

Selecting the right set of attributes is one of the most 
important steps in SDP [2].  We used code, process, and defect 
metrics for model development at three different points during 
the SDLC (Fig. 2). 

Code Complete (CC) Model 

 Our defect prediction model at CC uses software size 
information (KLOC and number of features) from current and 
previous releases. The attributes for the CC model are: 

 New feature KLOC for the current release 
 New feature KLOC for the previous release 
 Bug fix KLOC for the previous release 
 Number of features added in the current release 
 Number of features added in the previous release 

We used three different scenarios for using KLOC 
information in the model:  

 Scenerio-1: Added, Modified, and Deleted KLOCs for 
current as well as previous releases are considered as 
separate attributes 

 Scenerio-2: KLOC = Added + Modified – Deleted  
 Scenerio-3: KLOC = Added + Modified + Deleted  

There are six attributes in Scenario 1. There are two KLOC 
attributes, one for the current release and another for the 
previous release, in each of scenarios 2 and 3. The target 
variable for this model is the total number of defects found 
during the period between CC and FC (Fig. 1).  

FC Model 

In addition to the code metrics used for the CC model, 
defect and process metrics for testing and bug fixing activities 
are available at FC. The attributes for the FC model consist of:  

 New feature KLOC for the current release 
 New feature KLOC for the previous release 
 Bug Fix KLOC for the previous release 
 Number of features added in the current release 
 Number of features added in the previous release 
 Outstanding defects for different severities at FC 
 Number of defects found during different test activities 

for different severities before FC 
 Defect MTTR (mean-time-to-resolution) for different 

severities at FC 

The target variable for the FC model is the total number of 
defects found during all testing activities between FC and 
FCA (Fig.2). We performed data cleansing activities to 
remove attributes with null values, duplicates, and outliers. 
This resulted in 123 attributes that were used for exploratory 
data analysis (EDA). We used multi-collinearity analysis 

using Stepwise VIF (Variance Inflation Factor) to remove 
attributes that were highly corelated [21]. In this analysis, the 
higher the value of VIF, the greater the correlation between 
the variables. Values greater than 5 are considered moderate 
to high correlation, and values of 10 or higher are considered 
very high correlation. To keep enough attributes for model 
development, we selected two different datasets that have VIF 
≤ 5 and VIF ≤ 10.  

The distribution of VIF for all the attributes is shown in 
Fig. 3. As expected, most of the 123 attributes are strongly 
corelated with other attributes and are removed from the 
dataset. The final dataset with VIF ≤ 10 has 37 attributes and 
the dataset with VIF ≤ 5 had 27 attributes. 

 
Fig. 3. Distribution of VIF for all the attributes in the dataset for 

defect prediction at FC. 

 

FCA Model: 

The attributes for the FCA model include all attributes for 
the FC model measured at the FCA, all release quality criteria, 
security metrics, and other metrics used to measure 
development and test effectiveness between FC and FCA. 
These are: 

 Software size metrics (KLOC and number of features) 
 Defect arrival metrics consisting of the number of 

defects found in different testing activities for 
different severities 

 Defect disposal metrics representing number of bugs 
disposed for different severities  

 Defect mean time to resolution (MTTR) metrics for 
different severities 

 Metrics in release quality criteria [14] that must be 
met before software is given to customers  

 Defect backlog metrics for different severities that are 
open at FCA  

 Test effectiveness metrics including % of defects 
found and % of escapes for each test activity 

 Security metrics, including the number of defects 
found and number of outstanding security defects   

The target variable for the FCA model is the number of 
defects that will be found in the customer environment within 
six months from the FCA date.  

As in the case of the FC model, we performed data 
cleansing to remove attributes with null values, duplicates, 
and outliers. This resulted in 119 attributes, which were then 
used in EDA using stepwise VIF. The result of this analysis is 
shown in Fig.4. As in the case of FC model, we selected two 
different datasets for model development. The dataset with 
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VIF ≤ 10 has 35 attributes and the dataset with VIF ≤ 5 had 
only 15 attributes. 

 
Fig. 4. Distribution of VIF for all attributes in the dataset for defect 

prediction at FCA 

 

B. ML Algorithm and Model Development 

We used three supervised ML algorithms to develop the 
defect prediction models [22-24]: 

 Linear Regression 
 Random Forest Regression 
 XGBoost Regression 

These algorithms were implemented using standard model 
building functions available in the Python library: 

 sklearn.linear_model.LinearRegression() 
 sklearn.ensemble. RandomForestRegressor() 
 xgboost. XGBRegressor() 

Then, we estimated three commonly used measures for model 
evaluation: root mean squared error (RMSE), mean absolute 
error (MAE), and mean absolute percentage error (MAPE) 
[25]. 

The SDP models at CC were developed using different 
ML algorithms for three scenarios described in Section V-A. 
The model error for these algorithms are presented in Table 
III. The XG Boost algorithm in Scenario-2 gives the best 
results. The KLOC in Scenario-2 is calculated as “added + 
updated – deleted.” This choice gave the best performance in 
terms of RMSE and MAE. Note that the MAPE for this case 
is somewhat higher than a few other cases. The actual value 
of the predicted variable is used in the denominator for MAPE 
[25]. Therefore, for very small actual values, the MAPE would 
be high and biased toward it. As a result, we put more 
emphasis on RMSE and MAE in selecting the best model.  

TABLE III.  ERROR COMPARISON FOR DIFFERENT ALGORITHMS USED FOR 
MODEL DEVELOPMENT AT CODE COMPLETE 

Model & Scenario RMSE MAE MAPE 
Scenario - 1    

Linear Regression 223 87 661 
Random Forest  97 41 141 
XG Boost   108 45 127 

Scenario - 2    
Linear Regression  161 76 720 
Random Forest 107 45 98 
XG Boost  96 42 132 

Scenario - 3    
Linear Regression   162 77 713 
Random Forest  108 46 103 
XG Boost  97 42 117 

Tables IV and V present the modelling error for defect 
prediction at FC and FCA, respectively. As shown in Table 
IV, the Linear Regression model with VIF≤ 10 gave the best 
model for FC with lowest MAE and RMSE. For the FCA 
model, Random Forest with VIF≤ 5 is the best model (Table 
V). 

TABLE IV.  ERROR COMPARISON FOR DIFFERENT ALGORITHMS USED FOR 
MODEL DEVELOPMENT AT FC  

Model  MAE RMSE MAPE 
Linear Reg, VIF ≤ 10 12 32 98 
Random Forest, VIF ≤ 10 12 41 30 
XGBoost, VIF ≤ 10 14 46 46 
Linear Reg, VIF ≤ 5 45 172 237 
Random Forest, VIF ≤ 5 21 57 77 
XGBoost, VIF ≤ 5 19 51 98 

 

TABLE V.  ERROR COMPARISON FOR DIFFERENT ALGORITHMS USED FOR 
MODEL DEVELOPMENT AT FCA  

Model  MAE RMSE MAPE 
Linear Reg, VIF ≤ 10 20 59 231 
Random Forest, VIF ≤ 10 12 39 100 
XGBoost, VIF ≤ 10 12 36 120 
Linear Reg, VIF ≤ 5 20 64 226 
Random Forest, VIF ≤ 5 12 32 125 
XGBoost, VIF ≤ 5 13 35 138 

 

C. Defect Prediction Error 

The best CC, FC, and FCA models found in the last 
section were used in the testing dataset to predict the number 
of defects. The total defect prediction error for all three models 
are shown in Table VI. 

TABLE VI.  DEFECT PREDICTION ERRORS FOR DIFFERENT MODELS  

Model Defect Prediction Error 
CC Model 14.3% 
FC Model 2.8% 
FCA Model 11.7% 

Among all three models, the CC model has the highest 
prediction error of 14.3%. The FC model gave the least error 
of 2.8%. Different prediction errors could be the results of 
different model attributes available for model development. 
Software size information (KLOC and number of features) are 
used as attributes for the CC model. The absence of other code 
metrics (e.g. complexity, linearity, modularity, static analysis, 
etc.) might be the reason for the higher prediction error for the 
CC model. Given the size and complexity of our code base, it 
is difficult and too expensive to measure these code metrics. 
Furthermore, because the CC model is mostly used for 
resource planning between CC and FC, this level of accuracy 
for the CC model is acceptable for our application. A lower 
prediction error of 2.8% for the FC model shows the 
effectiveness of defect and process metrics for SDP.  

 

VI. SDP FOR LARGE SCALE SYSTEMS 

As discussed in Section I, there are four important areas 
to be considered in ML-based SDP for large scale software. 
Two of the areas, the choice of attributes and ML algorithms, 
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were discussed in last section. The results for other two areas, 
“Data definition” and “SPD lifecycle” challenges, are 
discussed in this section.  

 

A. Data Definition Challenge 

As described in Section III-A, selecting the right data 
element for training and testing the dataset is an important step 
in the SDP, particularly for large scale systems. We developed 
defect prediction models using products and components as 
data elements. The details of the product-based defect 
prediction models were presented in Section V. The 
component-based defect prediction models were developed 
using the same procedure as used for the product-based 
models. The defect prediction errors for both product-based 
and components-based models at CC, FC, and FCA are 
compared in the following table.    

TABLE VII.  DEFECT PREDICITION ERRORS FOR PRODUCT-BASED AND 
COMPONENT-BASED MODELS  

Model 
Defect Prediction Error 

Product-
Based Model 

Component-
Based Model 

CC Model 14.3% 13.1% 
FC Model 2.8% 0.6% 
FCA Model 11.7% 1.4% 

As shown in Table VII, the component-based models 
yield a much lower prediction error for both FC and FCA 
models. Even at CC, the component-based model has a 
slightly lower prediction error than the product-based model. 
As discussed in Section V-C, using size metrics (e.g. KLOC 
and number of features) only in the CC model is not enough 
to achieve a lower prediction error. For applications that 
require better prediction accuracy at CC, we recommend using 
additional code metrics (e.g. complexity, linearity, cohesion, 
and static analysis, etc.) as model attributes.  

Given the consistent lower prediction error for all three 
models, we conclude that the component-based model is 
better than the product-based model for the dataset used in this 
study. This conclusion could be different for other datasets.  
However, based on the results in table VII, it can be concluded 
that the choice of data element is one of the important factors 
in the SDP for large scale software. Researchers and 
practitioners developing ML-based SDP models should 
evaluate model performance for different data elements before 
selecting the best model for implementation.  

 

B. SDP Lifecycle Challenge 

As proposed in Section III-B, the accuracy of defect 
prediction could depend on the number of models used during 
the entire SDLC. We considered three different scenarios to 
provide an empirical validation of our hypothesis. These are: 

(i) Single Defect Density Model – This method 
developed a single model for the entire SDLC and 
used software size metrics to predict the number of 
internal as well as customer found defects. 

(ii) Defect Density Based Multiple ML Models – This 
approach used size metrics and developed three 
different models at CC, FC, and FCA. 

(iii) Size and Process Metrics Based Multiple ML Models 
– In this approach, we developed three different 
models at CC, FC, and FCA using size and other 
process metrics as discussed in Section IV and V. 

TABLE VIII.  COMPAISON OF DEFECT PREDICTION ERROR IN DIFFERENT 
SCENARIOS FOR SDLC CHALLENGE  

Scenario Description 
Defect 

Prediction 
Error 

(i) Defect Density Model 14.1% 

(ii) Defect density Based 
Multiple ML Model  13.0% 

(iii) Size and Process Metrics 
Based Multiple ML Model  8.7% 

Table VIII compares the error in overall defect prediction 
over the entire SDLC for the three scenarios described above 
using component-based dataset. The scenarios (i) and (ii) 
show high prediction errors when size is used as the only 
attribute. When size and process metrics are used for FC and 
FCA models, the overall prediction error is much lower 
(8.7%). Furthermore, comparison of (i) and (iii) shows 
significant reduction in prediction error when multiple 
models, along with process metrics, are used as attributes.  

 

VII. THREATS TO VALIDITY 

Although the results presented in Section IV, V and VI are 
promising, there are some factors that threaten the validity of 
our conclusions. This section summarizes both internal and 
external threats to the validity. 

Internal validity is the ability of a study to establish a 
causal link between independent and dependent variables 
regardless of what the variables are believed to represent [26]. 
We used software size (KLOC and number of features) as 
attributes for the CC model. Because of the difficulty and high 
cost of measurement, we could not include other code metrics 
(e.g. cyclomatic complexity, linearity, and modularity, etc.) as 
the model attributes. Because the absence of some code 
metrics could affect the accuracy of the CC model, our 
conclusions related to data element and SDP lifecycle 
challenges are not impacted by this threat. 

External validity refers to how the results of a study 
generalize [26]. The results in our study are for IOS-XE 
software developed by the Enterprise Networking (EN) group, 
which is one of the largest and most diverse groups in Cisco. 
While the results from the EN give evidence of the ability to 
generalize, results from the implementation in other large 
software will increase confidence on the general applicability 
of our approach. 

 
VIII. SUMMARY AND FUTURE WORK 

Published studies on ML-based software defect prediction 
(SDP) focus on the choice of model attributes and algorithms 
to achieve the best prediction model. We identified two 
additional focus areas that are essential for the SDP in large 
scale software systems. We call these the “Data Definition” 
and “SDP Lifecycle” challenges. We developed several SDP 
models for different scenarios for large-scale software (IOS-
XE) developed by Cisco Systems. As the results show, our 
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proposed solutions to the Data Definition and the SDP 
Lifecycle challenges give a significantly lower prediction 
error. It should be noted that our solution is specific to the 
dataset used in the study and may not directly apply to other 
large software systems. However, our general conclusion on 
the importance of these challenges should be applicable to all 
large software. Researchers and industry practitioners 
developing ML-based SDP models for large software should 
address all four challenges before finalizing a model for their 
application. 

The next step in our work is to develop a detailed 
operational procedure to use these models in managing quality 
activities during upcoming software releases. We will also 
continue to use our methodology to develop and implement 
ML-based SDP models in other large software developed by 
Cisco. In addition, we will be working on incorporating 
additional code metrics to improve prediction accuracy. 
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