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Abstract—With the rise of crowdsourced software testing in
recent years, the issuers of crowd test tasks can usually collect
a large number of test reports after the end of the task. These
reports have insufficient validity and completeness, and manual
review often takes a lot of time and effort. The crowdsourced
test task publisher hopes that after the crowdsourced platform
collects the test report, it can analyze the validity and complete-
ness of the report to determine the severity of the report and
improve the efficiency of crowdsourced software testing. In the
past ten years, researchers have used various technologies (such
as natural language processing, information retrieval, machine
learning, deep learning) to assist in analyzing reports to improve
the efficiency of report review. We have summarized the relevant
literature of report analysis in the past ten years, and then
classified from report classification, duplicate report detection,
report prioritization, report refactoring, and summarized the
most important research work in each area. Finally, we propose
research trends in these areas and analyze the challenges and
opportunities facing crowdsourced test report analysis.

Index Terms—Survey, report classification, duplicate report,
report prioritization, report refactoring, crowdsourced testing

I. INTRODUCTION

In recent years, crowdsourced testing has become increas-

ingly popular among software companies. After the software

company develops the product, it will deliver the product to the

crowdsourced platform, and the crowdsourced platform will

release the product, recruit crowdsourced workers, and start the

crowdsourced testing process. Crowdsourced workers fill out

and submit test reports in accordance with the requirements of

the crowdsourced testing platform to get some incentives (such

as virtual currency, coupons). After the crowdsourced platform

finishes the crowd testing process, it delivers a complete

test report to the software company. The software company

optimizes the product based on this final test report, thereby

saving a lot of manpower and time.

Crowdsourced platforms usually have a special Test Report

Management System(TRMS). These TRMSs automatically or

semi-automatically analyze the test reports submitted by work-

ers to reducing the pressure on the crowdsourced platform to

review the test reports. Therefore, whether the TRMS can ef-

fectively analyze the test report submitted by the crowdsourced

workers is very important for the crowdsourced platform to

present a complete test report to the software company.

The purpose of this survey is two-fold: On the one hand,

it is a more comprehensive survey on how to use test report

analysis techniques and methods in crowdsourced testing. On

the other hand, it summarizes the effectiveness of existing

test report analysis techniques in crowdsourced testing. Since

crowdsourced testing is an emerging field in software testing,

and various aspects of technology are still in the process

of being perfected, our investigation seeks to find academic

papers related to test report analysis. The techniques and

methods proposed in these documents can be used directly or

indirectly in the analysis of reports for crowdsourced testing,

or a framework is designed to implement/improve the analysis

of test reports.

The remaining chapters of this paper are as follows: Section

2 describes the literature sources and screening methods for

this survey. Section 3 describes the general process of the test

report analysis process of the crowdsourced testing platform,

and the test report analysis technology and method research

related to this process. Section 4 analyzes the challenges,

trends and opportunities in crowdsourced test report analysis.

Finally, we conclude in Section 5.

II. LITERATURE SOURCES AND SCREENING METHODS

The term “crowdsourcing” was coined by “crowd” and

“outsourcing” by Jeff Howe and published in 2006[1] . The

researchers then introduced the concept of crowdsourcing into

software engineering and proposed crowdsourced software

engineering[2]. And in crowdsourced software engineering,

some researchers specialize in subdividing crowdsourced soft-

ware testing areas[3]. Although the field of crowdsourced

software testing has been relatively short, the concept and

method of crowdsourced software testing has long been active

in open source software communities and application stores.

In order to explore the effectiveness of the test report analysis

technology in the field of crowdsourced software testing in

more detail, we collected the following processes for published

papers:

First, we discussed the objects and scope of the thesis

collection. In crowdsourced software testing descriptions, “test

report” and “bug report” are often cross-used, and “bug report”

or “defect report” is more common in the open source software

community. In order to increase the breadth of the literature

collection, we have also included the literature described as

“bug report” and “defect report”, and we have also limited the

time range from January 2010 to January 2020.

We then collected publications from this decade in three

steps:
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TABLE I
TERMS FOR FUZZY SEARCH

Category Terms

Step 1
(crowd OR crowdsourcing OR crowdsourced) AND
(test OR bug OR defect) AND report

Step 2

(test OR bug OR defect) AND report AND analysis

(test OR bug OR defect) AND report AND classification

(test OR bug OR defect) AND report AND duplicate

(test OR bug OR defect) AND report AND prioritization

(test OR bug OR defect) AND report AND summarization

(test OR bug OR defect) AND report AND aggregation

• We perform fuzzy searches in five popular online aca-

demic literature search engines: ACM Digital Library,

IEEE Xplore Digital Library, Springer Link Online Li-
brary, Elsevier ScienceDirect and Google Scholar. The

keywords we used for fuzzy search are listed in Table I.

We hope that the first batch of literature collected is

closely related to the analysis of test reports in crowd-

sourced software testing.

• Due to the short time of crowdsourced software testing,

we relaxed the search criteria and did not include words

like crowdsourced software testing. However, the modi-

fiers such as “classification”, “duplicate”, “prioritization”,

and “summarization” are added. We hope that the second

batch of collected documents can be used in the test report

analysis of crowdsourced software testing.

• We performed manual citation screening of the literature

collected in the first two steps, quickly browsing the title

and abstract of the literature, and determining whether it

is relevant to the analysis of the test report. We hope that

the third batch of papers will be complementary.

After collating the collected literature, we finally got 102

articles related to the analysis of test reports(Fig. 1).In the

process of selecting articles, we also found other studies of

test reports, such as the use of tests for defect prediction, and

the use of test reports for bug location. However, the subject of

this survey is test reports, the purpose of which is to improve

the efficiency of test report analysis in crowdsourced testing,

so they will not be included in the survey.

Fig. 1. Number of papers retrieved in each library.

TABLE II
AN EXAMPLE OF A REAL CROWDSOURCING TEST REPORT

Testing Case
Case-Id: 25567
Worker-Id: 15067
Tilte: XXX Mobile Application Test Report Example

Environment Phone type: R9 OPPO
Operation system: Android 5.5

Category
Type: Incomplete function
level: Emergency
frequency: Always

Test Case
Description

1. Enter the integral mall according to the steps of
function use 2. Check out the mall products 3. Select
goods with less than 110 points and goods with more
than 110 points for exchange 4. Check the rules for
points 5. Check your exchange records 6. Check out
more items

Result
Description

The exchange record of the points mall cannot show
the information of the goods that have been exchanged.
It shows that the goods are in possession. There is no
corresponding exchange record in the exchange record.

Screenshot (a) (b)

III. TEST REPORT ANALYSIS PROCESS AND METHOD

Zhang et al.[3] have statistics on the existing common

crowdsourced test platforms, and we summarize the processing

steps after these crowdsourced platforms(such as Baidu crowd-

sourced test platform, Mooctest platform, QQ crowdsourced

test platform, etc.) collect test reports, and propose a general

analysis process for crowdsourced test reports(Fig. 2).

The crowdsourced testing worker submits a test report on

the crowdsourced platform, and the crowdsourced platform

collects the test report of the crowdsourced testing task and

stores it in the platform database, and we show a report

example in Table II. After the task is completed, the test report

submitted by the task is analyzed as follows:

a) Report Classification: Different test reports may re-

veal the same or different types of defects, so the test reports

need to be classified. The use of automated classification

technology can shorten the test report classification time,

thereby improving the analysis efficiency of test reports.

b) Duplicate Report Detection: In the same type of test

report, different test reports will report the same bugs, making

the reports very similar. The crowdsourced platform hopes

to be able to automatically identify these extremely similar

reports and reduce the number of platform review reports,

thereby improving the efficiency of test report analysis.

c) Report Prioritization: The test reports submitted by

different crowdsourced workers, if they describe the same

bug, the crowdsourced platform hopes to give priority to

review the complete and clear test report; if they describe

different bugs, the crowdsourced platform wants to be able to

expose the software test reports of serious bugs are reviewed
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Fig. 2. Crowdsourced platform test report analysis general process.

first. Automating the prioritization of test reports can enable

crowdsourcing platforms to increase the efficiency of test

report review in a limited time.

d) Report Refactoring: After screening out some high-

quality test reports, the crowdsourced platform hopes to sup-

plement the high-quality test reports with redundant test re-

ports, so that these natural language descriptions or test reports

with pictures can highlight problems in the software use

process, making platform workers can quickly view important

information of test reports, improving the efficiency of test

report analysis on crowdsourced platforms.

We divided the collected documents into domains(Fig. 3),

and separated technical articles and review articles in their

respective fields.

Fig. 3. Number of papers in each area.

A. Report Classification

Crowdsourced test report classification has two functions:

one is to classify valid test reports, and the other is to cluster

test reports that describe real bugs. In order to improve the

effectiveness of the crowdsourced test report classification, in

the report classification research, we focused on the datasets

used by the researchers’ experiments, the methods used in the

experiments, and the evaluation metrics of the experimental

results.

Datasets: We summarized the data set used in the report

classification (Table. III) and the number of reports used in the

experiment (Fig.4).Most of the reports come from the open

source software community, and these reports are managed

by Bug-Tracking System, such as Eclipse, Mozilla. Some of

the reports come from the crowdsourced test platform, which

collects real crowdsourced test report data through publishing

tasks. Some of the experimental data comes from comments

from users in the App Store, like the Google Play Store and

apple’s App Store. About 83 percent of the researchers used

less than or equal to 100,000 data, and more than half used

less than or less than 10,000 data for the experiment, a number

we believe is consistent with the crowdsourced test platform’s

collection of cross-project test reports and single-project test

reports.

Fig. 4. Number of reports used in the experiment.

Methods: We collated the methods used by researchers

in the classification of the report(Table IV). We are broadly

divided into six broad categories: N-gram Model, Machine

Learning, Information, Topic Model, Graph Model, and Data

Reduction. N-gram Model is used to generate text features

and text matching, Machine Learning methods are used to

train classifiers, Information Retrieval and Topic Models are

used to extract theme features of documents or document

classes, Graph Models are used to process bug reports with

stack information, and Data Reduction technology is used

to select high-quality reports and features. We found that

the researchers focused their report classification study on

two types of issues, one classifying reports as Bug or Un-
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TABLE III
NUMBER OF PAPERS USING EACH DATASET

Dataset Papers Dataset Papers

Eclipse 12 Netbeans 2

Mozilla 7 OpenFOAM 2

Crowdsourced testing platform 6 ArgoUML 1

Google Play store 4 Bugzilla 1

Firefox 3 F-Droid 1

Jboss 3 GNOME 1

Lucene 3 Mahout 1

Apples App Store 2 Mylyn 1

GCC 2 OpenNLP 1

HTTPClient 2 OpenOffice 1

Jackrabbit 2 Twitter 1

Microsoft Project 2

Bug, and the other classifying reports and recommending

them to appropriate developers. Pandey et al.[4] compared

the impact of six different classification algorithms on the

performance of bug report classification(Bug or Un-Bug). Tian

et al.[5] combines the text information of the bug report and

developer activity characteristics to train a classifier in order

to recommend the new report to the developer with the highest

probability of solving. Guzman et al.[6] and Panichella et al.[7]

studies showed that integrating multiple machine learning

classifiers outperformed a single machine learning classifier.

Evaluation Metrics: We reviewed the evaluation metrics

used by researchers to evaluate the performance of classifi-

cation methods. The results show that most researchers use

Precision, Recall, and F-measure to evaluate classification

methods. Precision indicates the number of positive class

predictions that actually belong to the positive class, Recall

indicates the number of positive class predictions made out of

all positive examples in the dataset, F-measure is the weighted

harmonic average of Precision and Recall. They are defined

as follows:

Precision =
TP

TP + FP
(1)

Recall =
TP

TP + FN
(2)

F −measure = (β2 + 1) ∗ Precision ∗Recall

β2 ∗ Precision+Recall
(3)

where TP denote the number of reports correctly labeled to a

class, FP denote the number of reports incorrectly labeled to a

class, FN denote the number of reports that belong to a class

are divided into another class, β is a hyperparameter used

to adjust the weights of Precision and Recall. We record

F−measure as F1 when β is 1. Accuracy is sometimes used

to evaluate classifier performance, and it is defined below:

Accuracy =
TP + TN

TP + TN + FP + FN
(4)

TABLE IV
METHODS USED BY RESEARCHERS

Technology Method References

N-gram Model
Character-level [8]
Word-level [9],[10]

Machine Learning

Support Vector Machine [11]
Naive Bayes [9],[12],[10]
Expectation-Maximization [13],[12]
K-Means [14],[15]
X-Means [13]
Active Learning [14],[16]
Self Training [14]
Multinomial Naive Bayes [17],[18]
Gradient Boosted Regression Trees [19]
K-Modes [20]
Stacked Denoising Autoencoder [21]
Fuzzy Clustering [22]
Choquet Fuzzy Integral [23]
Convolutional Neural Networks [24]
Spatial Pyramid Matching [25]

Information Retrieval - [19]

Topic Model
Latent Dirichlet Allocation [13],[26]
Hierarchical Dirichlet process [13]
Biterm Topic Model [18]

Graph Model

Crash Graph Matching [27]
Call Stack Matching [28]
Social Network [29]
Developer-Component-Bug Network [30]
Beyesian Network [17]

Data Reduction
Feature Selection [31],[9],[32]
Instance Selection [31],[32]

where TN denote the number of reports that do not belong

to a class and are not classified in this class. Accuracy is the

most intuitive performance measure, but classifiers cannot be

well evaluated using Accuracy alone. Especially when some

datasets are unevenly distributed, we need to consider multiple

indicators to evaluate the classifier.

B. Duplicate Report Detection

Crowdsourced duplicate test report detection is to avoid

double review of test reports that describe the same bug.

Swapna et al.[33] did an investigation on duplicate bug de-

tection. The duplicate bug detection determines whether it is

the same bug by analyzing the information contained in the

bug report. We follow its ideas, summarize the contributions

made by researchers in the process of detecting duplicate

reports(Table V), and collate the report content, analysis

methods, similarity measurements, and evaluation metrics used

in the experiments.

Report Content: We counted the content of reports used by

researchers in the experiment(Table VI). Report formats for

different data sets are usually quite different. We found that for

test reports containing summary and description fields, almost

all researchers have used these field information. Contextual

information will also be used to assist detection. Sun et

al.[37] earlier used product, component, priority and other

information to construct a retrieval function REP for duplicate

report detection. Ebrahimi et al.[50][60] focus on using stack

trace to detect reports describing the same bug.
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TABLE V
LIST OF CONTRIBUTIONS BY RESEARCHERS

Type References

Tools [34],[35]

Methods
[36],[37],[38],[39],[40],[41],[42],[43],[44],[45],[46],
[47],[48],[49],[50],[51],[52],[53],[54],[55],[56],[57],
[58],[59],[60],[61],[62],[63]

Comparisons [64],[65],[66]

Frames [67]

Features [68],[69],[70]

Datasets [71]

TABLE VI
NUMBER OF CONTENT USED BY RESEARCHERS

Information Type Content Number of papers

Textual Information

Summary 20
Description 32
Title 10
Comment 2

Contextual Information

Product 3
Component 6
Version 4
E-mail 1
Tag 3
Type 3
Priority 3
Status 2
Date 2

Log Information Stack Trace 4

Image Information Screenshot 2

Analysis Methods: During the experiment, scholars tried

different methods to deal with different types of field infor-

mation. In order to transform natural language information

into data capable of calculating similarity, TF-IDF is the most

used method. Given a term t and a document d in a dataset

D, it is defined as follows:

TF (t, d) =
Number of terms t appears in d

Number of terms in d
(5)

IDF (t) = log
Number of documents in D

Number of documents containing t
(6)

TF − IDF (t, d) = TF (t, d)× IDF (t) (7)

The main idea of TF-IDF is that if a term appears frequently

in one document, but rarely in all the documents, then the

term has a high TF-IDF value and is suitable for classification.

Some researches also use word embedding to transform text

information[54][55][58][59][63][66]. This is the most com-

monly used method in natural language processing at present,

it preserves some of the connections between words when

converting text to vectors. In order to convert the screenshot

into a vector representation, Wang et al.[58][63] used Gist

descriptor and MPEG-7 descriptor to extract the structure

feature and color feature of the image respectively for the

screenshot information.

Similarity Measurements: In document vector space, most

researchers use cosine similarity to measure document sim-

ilarity. Cosine similarity is used to calculate the cosine of

the angle between two high-dimensional vectors in the vector

space. Given two document vectors �a and �b, the calculation

formula is as follows:

Cosine similarity =
�a ·�b

||�a|| × ||�b||
(8)

Some scholars have tried to use Manhattan distance in exper-

iments to measure the similarity of topic features extracted

from documents[62]. It is defined as:

Manhattan distance(X,Y ) =

n∑

i=1

|xi − yi| (9)

where X and Y are two topic feature vector. Feng et al.[44]

also uses Jensen-Shannon and symmetric KL divergences to

calculate the similarity of document topics. The BM25 and

BM25F algorithms based on probabilistic retrieval models are

also commonly used for document similarity retrieval. The

BM25 search score between a query string q and a document

d is calculated as follows:

s(q, d) =
∑

t∈q

idf(t) · occursdt
k1((1− b) + b ld

avld
) + occursdt

(10)

where occursdt is the term frequency of t in d; ld is the

document d length; avld is the average length of the document

in the dataset; k1 is a free parameter and b ∈ [0, 1]. The idf(t)
denotes the inverse document frequency of the query term t,
it is computed by the following equation:

idf(t) = log
N − df(t) + 0.5

df(t) + 0.5
(11)

Where N is the total number of documents in dataset; df(t)
is the number of documents containing the term t. BM25F

has made some improvements in BM25, which is not only

considering words as individuals, but also dividing documents

into individuals according to fields. Sun et al.[37] extend

BM25F into the following form by considering the term

frequencies WQ in queries:

BM25Fext(q, d) =
∑

t∈(d∩q)

IDF (t)× TFD(d, t)

k1 + TFD(d, t)
×WQ

where TFD(d, t) =

K∑

f=1

wf × occurs
d[f ]
t

1− bf +
bf×lf
avlf

,

WQ =
(k2 + 1)× TFQ(q, t)

k2 + TFQ(q, t)
,

TFQ(q, t) =

K∑

f=1

wf × occurs
q[f ]
t

(12)

In (12), given a dateset of N documents, each document d
consists of K fields, and d[f ] denote the terms bag in the f -

th field. For each field f , wf is its field weight; occurs
d[f ]
t
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is the number of occurrences of term t in field f ; lf is the

size of the bag d[f ]; avlf is the average size of the bag d[f ]
across all documents in dataset; bf and k2 are free parameter

and bf , k2 ∈ [0, 1]. For the query, q[f ] denote the terms bag

in the f -th field and occurs
q[f ]
t is the number of occurrences

of term t in field f . In recent years, researchers have built

complex machine learning models, such as HMM[50][60],

CNN[59][66], RNN[66] and LSTM[66], hoping that the model

can accept document vectors and mine potential features to

calculate and output similarity.

Evaluation Metrics: Duplicate report detection returns the

K scores with the highest score by calculating the similarity

between the input report and the historical report. Most re-

searchers use Recall@K and Mean Average Precision (MAP)

to evaluate the performance of the duplicate report detection

algorithm. The Recall@k calculates the recall rate of the

recommended list of copies of length k, it is defined as follows:

Recall@K =
hit@k

hit@k +missed@k
(13)

where hit@k represents the number of duplicate reports in the

recommendation list of length k, and missed@k is the number

of duplicate reports that did not appear on the candidate list.

The MAP is to average the AP corresponding to multiple

queries, for each query, the AP is calculated as follows:

AveP =

∑k
idx=1 P (idx)× rel(idx)

Number of duplicate reports
(14)

where idx is the sorting position in the retrieval result queue,

and P (idx) is the accuracy of the first idx results; rel(idx)
is 1 if idx-th is the duplicate report else 0. And for multiple

N queries, the MAP is calculated as follows:

MAP =

∑N
q=1 AveP (q)

N
(15)

Some researchers also use Mean Reciprocal Rank (MRR)

to assess the quality of the list of duplicate reports

returned[42][54][58][61][63][66]. The core idea of MRR is

to return a result set with the first correct answer near the top

and the better the result set. For the N queries, it is defined

as:

MRR =
1

N

N∑

q=1

1

rankq
(16)

where rankq is the index of first correct answer in the q-th

query. Banerjee et al.[69] used the pROC package to draw the

Receiver Operating Characteristic (ROC) curve and used Area

Under Curve (AUC) to evaluate their proposed method using

24 features to calculate similarity.

C. Report Prioritization

Crowdsourced test report prioritization from a bug fix per-

spective, the hope of early detection of high-risk bugs, timely

repair to reduce losses, from the report review perspective, the

hope to be able to review the content of the complete and well-

described test reports, so as to accurately identify the defects

TABLE VII
FEATURE EXTRACTION METHODS USED BY RESEARCHERS

Methods References

TF-IDF & Information Gain [77],[78],[79]

Basic Features & Basic and Predicted Features [80]

BM25Fext & REP [81]

TF & contextual features [82]

22 new features [83],[84]

Keyword Vector & Risk Vector [85]

Keyword Vector & Image Feature Histogram [86]

Time Features & Basic Features [74]

Importance Degree Reduction & Keyword Vector [87]

Word Embedding [88]

Instance Selection & Feature Selection [89],[90]

Entropy & Summary Weight [91]

TF & Emotion-Value [92]

Control-flow Automaton & Access Path
[93]

& Critical Functions

TF-IDF [94]

TF & Information Gain & Chi-square [95]

Word Embedding & Emotion-Value [75],[76]

TF & Information Gain & Topic Proportions Vector [96]

described in the report. Gomes et al.[72] and Uddin et al.[73]

started study on the security analysis and prioritization of

bug reports. We followed their research methods and combed

the feature extraction methods, experimental methods and

evaluation methods used by researchers in recent years.

Feature Extraction: We list the feature extraction methods

used by scholars(Table VII). Almost all researchers have

extracted the information features of this article from the report

description or summary, and some studies have made feature

selection in the extracted features to reduce the feature space.

Xu et al.[74] extra extracted the time characteristics of the test

report for report prioritization experiments. Ramay et al.[75]

and Umer et al.[76] analysis reports describe the sentiment

scores to aid priority determination.

Fig. 5. List of methods used in the experiment.

Experimental Methods: We counted the use of experimental

methods by researchers(Fig. 5). Most scholars regard report
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prioritization as a special classification problem and classify

test reports into prioritized priority categories. But the distance

between classes is not equal, and the gap between two adjacent

priority classes is always smaller than the distance between

non-adjacent classes. Feng et al.[85] proposes a priority

ranking method called DivRisk, it uses a diversity strategy

and a risk strategy to evaluate the test report, calculates a

priority value for the test report, and sorts according to the

priority value. Feng et al.[86] also uses a diversity strategy

in prioritizing test reports with screenshots. Ramay et al.[75]

and Umer et al.[76] apply deep learning techniques combined

with sentiment scores to report prioritization.

Evaluation Metrics: When researchers consider priority

ranking as a classification problem, Precision, Recall, and F-

measure are used to evaluate the effectiveness of the method.

Feng et al.[85][86] evaluation proposes a priority ordering

algorithm using the Average Percentage of Fault Detected

(APFD), which is defined as follows:

APFD = 1 +
Tf1 + Tf2 + ...+ TfM

n×M
+

1

2× n
(17)

in which, n is the number of test reports and M is the

total number of faults reported in all test reports. Tfi is

the index of the first test report that revealed failure i.
Some researchers draw the Receiver Operating Characteristic

(ROC) curve and calculate the Area Under Roc Curve (AUC)

evaluation model[87][79][94][90]. The ROC space defines the

False Positive Rate (FPR) as the X axis and the True Positive

Rate (TPR) as the Y axis. FPR and TPR are calculated as

follows:

FPR =
FP

FP + TN
(18)

TPF =
TP

TP + FN
(19)

Then calculate the area from the curve.

D. Report Refactoring

The crowdsourced test report refactoring is to help devel-

opers quickly understand the defects described in the report.

Tarar et al.[97] made a brief review of the bug report summary,

and we made a more detailed division based on it. We

divided the report reconstruction tasks into summarization,

generation, and enhancement, and summarized their respective

experimental methods, and finally explained their evaluation

metrics.

Summarization: The report summarization expresses the

content of the report by selecting a summary sentence. Rastkar

et al.[98] uses the existing dialog-based auto-summarizer to

train on the bug report corpus, by scoring the input report

sentences, and then selecting sentences to form a summary

according to the score from high to low, until the number

of words reaches the compression ratio. Jha et al.[99] pro-

posed the Bag-of-Frames data representation method, which

is different from the common Bag-of-Words representation

method, and cross-contrasts using the five summarization

algorithms (Random, Hybrid TF, Hybrid TF-IDF, SumBasic,

and LexRank). The experimental results show that using BOF

representation for classification and BOW representation for

the summary can get the most accurate results, and SumBasic

can generate a summary that is largely consistent with human

judgment. Li et al.[100] built a deep learning model DeepSum

to summarize the report. The model received a new bug report

and retrieved a set of reports similar to the new report in

the historical data, then use this set of defect reports to train

a stepped autoencoder network to score the newly reported

sentences, and finally use dynamic programming to extract

summary sentences.

Generation: For bug reports containing picture information,

researchers hope to be able to assist in understanding reports

for converting pictures into descriptive text information. Liu

et al.[101] uses SPM to measure image similarity, then selects

high-quality reports containing similar pictures, and uses nat-

ural language processing technology to build language models

to analyze text descriptions of high-quality reports, generate

descriptive keywords for pictures, and help developers under-

stand the test report. Yu et al.[102] builds a deep learning

model CroReG to generate a text report from the picture. The

model uses OCR technology to identify the text information

in the picture. At the same time, it uses a CNN network as an

encoder to extract features from the picture, and then uses an

LSTM network as a decoder to convert the picture features The

vector is translated into a natural language defect description,

and finally a test report is generated by combining the OCR-

recognized text information and decoded information.

Enhancement: Test report enhancements supplement the

main test report by extracting useful information from the

duplicate report, thereby reducing the number of report reviews

and improving the quality of report reviews. Chen et al.[103]

proposed a new test report extension framework, which uses

merge operation, TF-IDF-based algorithm and graph model to

enhance the environment field, input field and description field

of test report respectively, and highlights the supplementary

information through visualization technology. Hao et al.[104]

and Li et al.[105] designed and implemented the report en-

hancement tool CTRAS. CTRAS used PageRank algorithm

to obtain the master report, weighted the text description and

picture information of similar reports, and then extracted the

information fragments contained in the high score report but

not in the master report for supplement.

Evaluation Metrics: Precision, Recall, F-measure and Pyra-

mid scores are widely used to evaluate sentence and keyword

choices in report reconstruction. Given a set of summary

sentences sselect, the Pyramid score is calculated as follows:

Pyramid =
NumTotalLinks

NumMaxLinks
(20)

where NumTotalLinks denote the number of times that sen-

tences linked by the annotators in sselect and NumMaxLinks

is the maximum possible links for the same number of

sentences. And some researchers realistically evaluate model

performance by comparing the test reports generated by the

model with the artificially aggregated test reports[99][103].
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IV. CHALLENGES AND TRENDS AND OPPORTUNITIES

At present, the crowdsourced platform mainly faces three

problems: First, a large number of test reports submitted

by workers. The simplicity of crowdsourced software testing

makes people actively participate in and submit reports to get

paid. Large crowdsourced platforms can collect hundreds of

thousands of reports on an average day. These reports originate

from different projects, so the content of the collected reports

is very different. For example, some of them contain pictures

or log information, extracting effective information from a

large set of reports is a challenge.. Secondly, users are likely

to encounter the same problems in the testing process, but the

reports describing the same problems will also differ from

each other. How to use the similarities and differences in

reports to improve the test coverage in defect detection is

also a challenge. Finally, the uneven knowledge and testing

techniques of the workers’ fields led them to produce different

quality test reports when writing the reports, which affected

the completeness and readability of the reports and severely

hindered the review of the reports.

Many scholars now conduct research in the field of defect

report analysis, remove invalid reports through classification

technology, calculate similarity to determine similar reports,

prioritize test reports, and aggregate test reports. We found

that the methods used by researchers have evolved from earlier

text matching to attempts to use machine learning to deep

learning.The focus has also changed from the initial character

features to keyword features to semantic features. Types of

information are also tried to be processed using a variety of

methods, such as image analysis, abstract syntax trees, graph

models, etc. Data reduction techniques are also used to select

high-quality features. From the experimental results, almost all

studies show that weighted combination of multiple algorithms

can achieve better results than a single algorithm. In the

experiments using semantic features, they can often produce

results that are more consistent with people’s cognition.

Pre-trained language models have achieved amazing re-

sults in tasks related to natural language processing, such

as: semantic similarity, machine translation, and reasoning

questions and answers. For researchers, how to apply language

models in each step of test report analysis to improve the

efficiency of crowdsourcing test report analysis is of great

value. For the crowdsourcing platform, it is meaningful to

build a test report analysis process framework and combine

different report analysis methods, and encapsulate the test

report processing steps into a perfect tool to improve the

efficiency of crowdsourcing software testing.

V. CONCLUSION

Crowdsourced software testing greatly reduces the effort

and expense that software companies spend on software

testing. But the pressure didn’t go away, but moved to the

crowdsourced test platform. The platform needs to process a

large number of test reports every day. Processing these reports

manually is too time-consuming and may affect the repair

of important defects. To address this issue, it is necessary to

apply some automated or semi-automated analytical methods

to assist in report review.

This paper summarizes a series of work in the field of

test report analysis. In this survey, we first introduced some

preparations. Secondly, we divided the bug report analysis and

discussed the concerns in all directions. Third, we analyzed the

challenges and feasible solutions faced by the crowdsourced

test platform. Finally, we summarize the whole paper and put

forward the future work direction.

This research mainly focuses on the effective methods

proposed in the field of report analysis, and we plan to use pre-

trained language models to improve test report classification

and reconstruction in the future, hoping to help crowdsourced

platform to improve test report analysis efficiency.
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