2020 IEEE 20th International Conference on Software Quality, Reliability and Security (QRS)

A Survey of the Use of Test Report in
Crowdsourced Testing

Song Huang, Hao Chen”, Zhanwei Hui", Yuchan Liu
Command and Control Engineering College
Army Engineering University of PLA, Nanjing, China
*Corresponding author: h_chen27@163.com, hzw_1983821 @163.com

Abstract—With the rise of crowdsourced software testing in
recent years, the issuers of crowd test tasks can usually collect
a large number of test reports after the end of the task. These
reports have insufficient validity and completeness, and manual
review often takes a lot of time and effort. The crowdsourced
test task publisher hopes that after the crowdsourced platform
collects the test report, it can analyze the validity and complete-
ness of the report to determine the severity of the report and
improve the efficiency of crowdsourced software testing. In the
past ten years, researchers have used various technologies (such
as natural language processing, information retrieval, machine
learning, deep learning) to assist in analyzing reports to improve
the efficiency of report review. We have summarized the relevant
literature of report analysis in the past ten years, and then
classified from report classification, duplicate report detection,
report prioritization, report refactoring, and summarized the
most important research work in each area. Finally, we propose
research trends in these areas and analyze the challenges and
opportunities facing crowdsourced test report analysis.

Index Terms—Survey, report classification, duplicate report,
report prioritization, report refactoring, crowdsourced testing

1. INTRODUCTION

In recent years, crowdsourced testing has become increas-
ingly popular among software companies. After the software
company develops the product, it will deliver the product to the
crowdsourced platform, and the crowdsourced platform will
release the product, recruit crowdsourced workers, and start the
crowdsourced testing process. Crowdsourced workers fill out
and submit test reports in accordance with the requirements of
the crowdsourced testing platform to get some incentives (such
as virtual currency, coupons). After the crowdsourced platform
finishes the crowd testing process, it delivers a complete
test report to the software company. The software company
optimizes the product based on this final test report, thereby
saving a lot of manpower and time.

Crowdsourced platforms usually have a special Test Report
Management System(TRMS). These TRMSs automatically or
semi-automatically analyze the test reports submitted by work-
ers to reducing the pressure on the crowdsourced platform to
review the test reports. Therefore, whether the TRMS can ef-
fectively analyze the test report submitted by the crowdsourced
workers is very important for the crowdsourced platform to
present a complete test report to the software company.

The purpose of this survey is two-fold: On the one hand,
it is a more comprehensive survey on how to use test report
analysis techniques and methods in crowdsourced testing. On
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the other hand, it summarizes the effectiveness of existing
test report analysis techniques in crowdsourced testing. Since
crowdsourced testing is an emerging field in software testing,
and various aspects of technology are still in the process
of being perfected, our investigation seeks to find academic
papers related to test report analysis. The techniques and
methods proposed in these documents can be used directly or
indirectly in the analysis of reports for crowdsourced testing,
or a framework is designed to implement/improve the analysis
of test reports.

The remaining chapters of this paper are as follows: Section
2 describes the literature sources and screening methods for
this survey. Section 3 describes the general process of the test
report analysis process of the crowdsourced testing platform,
and the test report analysis technology and method research
related to this process. Section 4 analyzes the challenges,
trends and opportunities in crowdsourced test report analysis.
Finally, we conclude in Section 5.

II. LITERATURE SOURCES AND SCREENING METHODS

The term ‘“‘crowdsourcing” was coined by ‘“crowd” and
“outsourcing” by Jeff Howe and published in 2006[1] . The
researchers then introduced the concept of crowdsourcing into
software engineering and proposed crowdsourced software
engineering[2]. And in crowdsourced software engineering,
some researchers specialize in subdividing crowdsourced soft-
ware testing areas[3]. Although the field of crowdsourced
software testing has been relatively short, the concept and
method of crowdsourced software testing has long been active
in open source software communities and application stores.
In order to explore the effectiveness of the test report analysis
technology in the field of crowdsourced software testing in
more detail, we collected the following processes for published
papers:

First, we discussed the objects and scope of the thesis
collection. In crowdsourced software testing descriptions, “test
report” and “bug report” are often cross-used, and “bug report”
or “defect report” is more common in the open source software
community. In order to increase the breadth of the literature
collection, we have also included the literature described as
“bug report” and “defect report”, and we have also limited the
time range from January 2010 to January 2020.

We then collected publications from this decade in three
steps:



TABLE 1
TERMS FOR FUzZZY SEARCH

Category | Terms |
Step 1 (crowd OR crowdsourcing OR crowdsourced) AND
P (test OR bug OR defect) AND report
(test OR bug OR defect) AND report AND analysis
Step 2

(test OR bug OR defect) AND report AND duplicate ‘
(test OR bug OR defect) AND report AND prioritization ‘

(test OR bug OR defect) AND report AND summarization
(test OR bug OR defect) AND report AND aggregation

\
\
\ (test OR bug OR defect) AND report AND classification
\
\
\
\

We perform fuzzy searches in five popular online aca-
demic literature search engines: ACM Digital Library,
IEEE Xplore Digital Library, Springer Link Online Li-
brary, Elsevier ScienceDirect and Google Scholar. The
keywords we used for fuzzy search are listed in Table I.
We hope that the first batch of literature collected is
closely related to the analysis of test reports in crowd-
sourced software testing.

Due to the short time of crowdsourced software testing,
we relaxed the search criteria and did not include words
like crowdsourced software testing. However, the modi-
fiers such as “classification”, “duplicate”, “prioritization”,
and “summarization” are added. We hope that the second
batch of collected documents can be used in the test report
analysis of crowdsourced software testing.

We performed manual citation screening of the literature
collected in the first two steps, quickly browsing the title
and abstract of the literature, and determining whether it
is relevant to the analysis of the test report. We hope that
the third batch of papers will be complementary.

After collating the collected literature, we finally got 102
articles related to the analysis of test reports(Fig. 1).In the
process of selecting articles, we also found other studies of
test reports, such as the use of tests for defect prediction, and
the use of test reports for bug location. However, the subject of
this survey is test reports, the purpose of which is to improve
the efficiency of test report analysis in crowdsourced testing,
so they will not be included in the survey.
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Fig. 1. Number of papers retrieved in each library.
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TABLE I
AN EXAMPLE OF A REAL CROWDSOURCING TEST REPORT

Case-Id: 25567
Testing Case Worker-Id: 15067
Tilte: XXX Mobile Application Test Report Example
Environment Phone type: R9 OPPO
Operation system: Android 5.5
Type: Incomplete function
Category level: Emergency
frequency: Always
Test Case 1. Enter the integral mall according to the steps of
Description function use 2. Check out the mall products 3. Select
goods with less than 110 points and goods with more
than 110 points for exchange 4. Check the rules for
points 5. Check your exchange records 6. Check out
more items
Result The exchange record of the points mall cannot show
Description the information of the goods that have been exchanged.
It shows that the goods are in possession. There is no
corresponding exchange record in the exchange record.
Screenshot . (a()_‘ S (b)
&
o ( \

III. TEST REPORT ANALYSIS PROCESS AND METHOD

Zhang et al.[3] have statistics on the existing common
crowdsourced test platforms, and we summarize the processing
steps after these crowdsourced platforms(such as Baidu crowd-
sourced test platform, Mooctest platform, QQ crowdsourced
test platform, etc.) collect test reports, and propose a general
analysis process for crowdsourced test reports(Fig. 2).

The crowdsourced testing worker submits a test report on
the crowdsourced platform, and the crowdsourced platform
collects the test report of the crowdsourced testing task and
stores it in the platform database, and we show a report
example in Table II. After the task is completed, the test report
submitted by the task is analyzed as follows:

a) Report Classification: Different test reports may re-
veal the same or different types of defects, so the test reports
need to be classified. The use of automated classification
technology can shorten the test report classification time,
thereby improving the analysis efficiency of test reports.

b) Duplicate Report Detection: In the same type of test
report, different test reports will report the same bugs, making
the reports very similar. The crowdsourced platform hopes
to be able to automatically identify these extremely similar
reports and reduce the number of platform review reports,
thereby improving the efficiency of test report analysis.

c) Report Prioritization: The test reports submitted by
different crowdsourced workers, if they describe the same
bug, the crowdsourced platform hopes to give priority to
review the complete and clear test report; if they describe
different bugs, the crowdsourced platform wants to be able to
expose the software test reports of serious bugs are reviewed
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Fig. 2. Crowdsourced platform test report analysis general process.

first. Automating the prioritization of test reports can enable
crowdsourcing platforms to increase the efficiency of test
report review in a limited time.

d) Report Refactoring: After screening out some high-
quality test reports, the crowdsourced platform hopes to sup-
plement the high-quality test reports with redundant test re-
ports, so that these natural language descriptions or test reports
with pictures can highlight problems in the software use
process, making platform workers can quickly view important
information of test reports, improving the efficiency of test
report analysis on crowdsourced platforms.

We divided the collected documents into domains(Fig. 3),
and separated technical articles and review articles in their
respective fields.
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Fig. 3. Number of papers in each area.

A. Report Classification

Crowdsourced test report classification has two functions:
one is to classify valid test reports, and the other is to cluster
test reports that describe real bugs. In order to improve the
effectiveness of the crowdsourced test report classification, in
the report classification research, we focused on the datasets
used by the researchers’ experiments, the methods used in the
experiments, and the evaluation metrics of the experimental
results.

Datasets: We summarized the data set used in the report
classification (Table. III) and the number of reports used in the
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experiment (Fig.4).Most of the reports come from the open
source software community, and these reports are managed
by Bug-Tracking System, such as Eclipse, Mozilla. Some of
the reports come from the crowdsourced test platform, which
collects real crowdsourced test report data through publishing
tasks. Some of the experimental data comes from comments
from users in the App Store, like the Google Play Store and
apple’s App Store. About 83 percent of the researchers used
less than or equal to 100,000 data, and more than half used
less than or less than 10,000 data for the experiment, a number
we believe is consistent with the crowdsourced test platform’s
collection of cross-project test reports and single-project test
reports.

= 0-1000 = 1000-10000

= 10000-100000

>100000 = unknown

Fig. 4. Number of reports used in the experiment.

Methods: We collated the methods used by researchers
in the classification of the report(Table IV). We are broadly
divided into six broad categories: N-gram Model, Machine
Learning, Information, Topic Model, Graph Model, and Data
Reduction. N-gram Model is used to generate text features
and text matching, Machine Learning methods are used to
train classifiers, Information Retrieval and Topic Models are
used to extract theme features of documents or document
classes, Graph Models are used to process bug reports with
stack information, and Data Reduction technology is used
to select high-quality reports and features. We found that
the researchers focused their report classification study on
two types of issues, one classifying reports as Bug or Un-



TABLE III
NUMBER OF PAPERS USING EACH DATASET

Dataset Papers \ Dataset Papers
Eclipse 12 | Netbeans 2
Mozilla 7 | OpenFOAM 2
Crowdsourced testing platform 6 ‘ ArgoUML 1
Google Play store 4 ‘ Bugzilla 1
Firefox 3 ‘ F-Droid 1
Jboss 3 ‘ GNOME 1
Lucene 3 | Mahout 1
Apples App Store 2 | Mylyn 1
GCC 2 | OpenNLP 1
HTTPClient 2 | OpenOffice 1
Jackrabbit 2 | Twitter 1
Microsoft Project 2 ‘

Bug, and the other classifying reports and recommending
them to appropriate developers. Pandey et al.[4] compared
the impact of six different classification algorithms on the
performance of bug report classification(Bug or Un-Bug). Tian
et al.[5] combines the text information of the bug report and
developer activity characteristics to train a classifier in order
to recommend the new report to the developer with the highest
probability of solving. Guzman et al.[6] and Panichella et al.[7]
studies showed that integrating multiple machine learning
classifiers outperformed a single machine learning classifier.

Evaluation Metrics: We reviewed the evaluation metrics
used by researchers to evaluate the performance of classifi-
cation methods. The results show that most researchers use
Precision, Recall, and F-measure to evaluate classification
methods. Precision indicates the number of positive class
predictions that actually belong to the positive class, Recall
indicates the number of positive class predictions made out of
all positive examples in the dataset, F-measure is the weighted
harmonic average of Precision and Recall. They are defined
as follows:

. TP
Precision = TP+7FP )
TP
= TPLEN 2
Recall TPLFN ?)
Precisi 1
F — measure = (52 +1) % recision *x Reca 3)

B2 x Precision + Recall

where T'P denote the number of reports correctly labeled to a
class, F'P denote the number of reports incorrectly labeled to a
class, F'N denote the number of reports that belong to a class
are divided into another class, 3 is a hyperparameter used
to adjust the weights of Precision and Recall. We record
F —measure as F'1 when 3 is 1. Accuracy is sometimes used
to evaluate classifier performance, and it is defined below:

TP+TN

A =
CUrAY = TP TN + FP+ FN

“
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TABLE IV
METHODS USED BY RESEARCHERS

Technology Method References
Character-level [8]
N-gram Model Word-level [91,[10]
Support Vector Machine [11]
Naive Bayes [91,[12],[10]
Expectation-Maximization [13],[12]
K-Means [14],[15]
X-Means [13]
Active Learning [14],[16]
Self Training [14]
Machine Learning Multinomial Naive Bayes [17],[18]
Gradient Boosted Regression Trees [19]
K-Modes [20]
Stacked Denoising Autoencoder [21]
Fuzzy Clustering [22]
Choquet Fuzzy Integral [23]
Convolutional Neural Networks [24]
Spatial Pyramid Matching [25]
Information Retrieval - [19]
Latent Dirichlet Allocation [13],[26]
Topic Model Hierarchical Dirichlet process [13]
Biterm Topic Model [18]
Crash Graph Matching [27]
Call Stack Matching [28]
Graph Model Social Network [29]
Developer-Component-Bug Network [30]
Beyesian Network [17]
. Feature Selection [311,[91,[32]
Data Reduction Instance Selection [311.132]

where T'N denote the number of reports that do not belong
to a class and are not classified in this class. Accuracy is the
most intuitive performance measure, but classifiers cannot be
well evaluated using Accuracy alone. Especially when some
datasets are unevenly distributed, we need to consider multiple
indicators to evaluate the classifier.

B. Duplicate Report Detection

Crowdsourced duplicate test report detection is to avoid
double review of test reports that describe the same bug.
Swapna et al.[33] did an investigation on duplicate bug de-
tection. The duplicate bug detection determines whether it is
the same bug by analyzing the information contained in the
bug report. We follow its ideas, summarize the contributions
made by researchers in the process of detecting duplicate
reports(Table V), and collate the report content, analysis
methods, similarity measurements, and evaluation metrics used
in the experiments.

Report Content: We counted the content of reports used by
researchers in the experiment(Table VI). Report formats for
different data sets are usually quite different. We found that for
test reports containing summary and description fields, almost
all researchers have used these field information. Contextual
information will also be used to assist detection. Sun et
al.[37] earlier used product, component, priority and other
information to construct a retrieval function REP for duplicate
report detection. Ebrahimi et al.[50][60] focus on using stack
trace to detect reports describing the same bug.



TABLE V
LIST OF CONTRIBUTIONS BY RESEARCHERS

Type References

Tools [341,[35]
[361,[371,[381,[391,[401,[411,[42],[43],[441,[45].[46],

Methods [471,[481.[491.[501,[511,[521.[531.[541,[551,[561.[571,

[58],[59],[601,[61],[62],[63]

Comparisons  [64],[65],[66]
Frames [67]
Features [68],[691,[70]
Datasets [71]
TABLE VI

NUMBER OF CONTENT USED BY RESEARCHERS

Information Type Content Number of papers

20
32
10
2

Summary
Description
Title
Comment

Textual Information

Product
Component
Version
E-mail

Tag

Type
Priority
Status

Date

Contextual Information

Log Information Stack Trace

(8] =~ PR W W W= kW

Image Information Screenshot

Analysis Methods: During the experiment, scholars tried
different methods to deal with different types of field infor-
mation. In order to transform natural language information
into data capable of calculating similarity, TF-IDF is the most
used method. Given a term ¢ and a document d in a dataset
D, it is defined as follows:

Number of terms t appears in d

TF(t,d) = 5

(¢, d) Number of terms in d )

IDF(t) = log Number of documents lnD ©)
Number of documents containing t

TF — IDF(t,d) =TF(t,d) x IDF(t) @)

The main idea of TF-IDF is that if a term appears frequently
in one document, but rarely in all the documents, then the
term has a high TF-IDF value and is suitable for classification.
Some researches also use word embedding to transform text
information[54][55][58][59][63][66]. This is the most com-
monly used method in natural language processing at present,
it preserves some of the connections between words when
converting text to vectors. In order to convert the screenshot
into a vector representation, Wang et al.[58][63] used Gist
descriptor and MPEG-7 descriptor to extract the structure
feature and color feature of the image respectively for the
screenshot information.
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Similarity Measurements: In document vector space, most
researchers use cosine similarity to measure document sim-
ilarity. Cosine similarity is used to calculate the cosine of
the angle between two high-dimensional vectors in the vector
space. Given two document vectors @ and 5, the calculation
formula is as follows:

—

@b
[lal[ > [[o]]
Some scholars have tried to use Manhattan distance in exper-

iments to measure the similarity of topic features extracted
from documents[62]. It is defined as:

Cosine similarity =

®

Manhattan distance(X,Y) = Z |z — yil

i=1

(€]

where X and Y are two topic feature vector. Feng et al.[44]
also uses Jensen-Shannon and symmetric KL divergences to
calculate the similarity of document topics. The BM25 and
BM25F algorithms based on probabilistic retrieval models are
also commonly used for document similarity retrieval. The
BM25 search score between a query string ¢ and a document
d is calculated as follows:

d
occurs
s(q,d) .

2 idf()- e ((1—0)+b

teq

= 10
i y 4 occurs? (10)

avlg

where occurs? is the term frequency of ¢ in d; Ig is the

document d length; avly is the average length of the document
in the dataset; k; is a free parameter and b € [0, 1]. The idf (¢)
denotes the inverse document frequency of the query term ¢,
it is computed by the following equation:

N —df(t)+0.5
df(t)+0.5

Where N is the total number of documents in dataset; df (¢)
is the number of documents containing the term t. BM25F
has made some improvements in BM25, which is not only
considering words as individuals, but also dividing documents
into individuals according to fields. Sun et al.[37] extend
BM25F into the following form by considering the term
frequencies Wy, in queries:

idf (t) = log (11)

TFp(d,t
BM25Fi(q,d) = ) IDF(t) MTifg(;t) e
te(dnq) ' o
where TFp(d,f) i wy X occumf[f]
DAY= T x>
= 1—bs+ ;;lff
(ks +1) x TFg(q,1)
Wqo =
K
TFo(q,t) = wa X occursg[f]
f=1
(12)

In (12), given a dateset of N documents, each document d
consists of K fields, and d[f] denote the terms bag in the f-
th field. For each field f, wy is its field weight; occurs’’’



is the number of occurrences of term ¢ in field f; [y is the
size of the bag d[f]; avly is the average size of the bag d[f]
across all documents in dataset; by and ko are free parameter
and by, ks € [0,1]. For the query, ¢[f] denote the terms bag
in the f-th field and occursg[f !is the number of occurrences
of term ¢ in field f. In recent years, researchers have built
complex machine learning models, such as HMM][50][60],
CNN[59][66], RNN[66] and LSTM[66], hoping that the model
can accept document vectors and mine potential features to
calculate and output similarity.

Evaluation Metrics: Duplicate report detection returns the
K scores with the highest score by calculating the similarity
between the input report and the historical report. Most re-
searchers use Recall@K and Mean Average Precision (MAP)
to evaluate the performance of the duplicate report detection
algorithm. The Recall@k calculates the recall rate of the
recommended list of copies of length k, it is defined as follows:

hitQk
hitQk + missedQk
where hit@QFk represents the number of duplicate reports in the
recommendation list of length k, and missed@Fk is the number
of duplicate reports that did not appear on the candidate list.

The MAP is to average the AP corresponding to multiple
queries, for each query, the AP is calculated as follows:

Efdm:l P(idx) x rel(idx)
Number of duplicate reports

RecallOK =

(13)

AveP =

(14)

where idx is the sorting position in the retrieval result queue,
and P(idzx) is the accuracy of the first idz results; rel(idz)
is 1 if idz-th is the duplicate report else 0. And for multiple
N queries, the MAP is calculated as follows:

25:1 AveP(q)
N

Some researchers also use Mean Reciprocal Rank (MRR)
to assess the quality of the list of duplicate reports
returned[42][54][58][61][63][66]. The core idea of MRR is
to return a result set with the first correct answer near the top
and the better the result set. For the N queries, it is defined
as:

MAP = (15)

N

>

1
M =—
RR N

1
rank,

(16)

where rank, is the index of first correct answer in the g-th
query. Banerjee et al.[69] used the pROC package to draw the
Receiver Operating Characteristic (ROC) curve and used Area
Under Curve (AUC) to evaluate their proposed method using
24 features to calculate similarity.

C. Report Prioritization

Crowdsourced test report prioritization from a bug fix per-
spective, the hope of early detection of high-risk bugs, timely
repair to reduce losses, from the report review perspective, the
hope to be able to review the content of the complete and well-
described test reports, so as to accurately identify the defects
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TABLE VII
FEATURE EXTRACTION METHODS USED BY RESEARCHERS

Methods References
TF-IDF & Information Gain [771,[781.[79]
Basic Features & Basic and Predicted Features [80]
BM25Fext & REP [81]

TF & contextual features [82]

22 new features [831,[84]
Keyword Vector & Risk Vector [85]
Keyword Vector & Image Feature Histogram [86]

Time Features & Basic Features [74]
Importance Degree Reduction & Keyword Vector [87]

Word Embedding [88]
Instance Selection & Feature Selection [891,[90]
Entropy & Summary Weight [91]

TF & Emotion-Value [92]
Contlio}-ﬂow Au?oma[on & Access Path (93]

& Critical Functions

TF-IDF [94]

TF & Information Gain & Chi-square [95]

Word Embedding & Emotion-Value [751,[76]
TF & Information Gain & Topic Proportions Vector — [96]

described in the report. Gomes et al.[72] and Uddin et al.[73]
started study on the security analysis and prioritization of
bug reports. We followed their research methods and combed
the feature extraction methods, experimental methods and
evaluation methods used by researchers in recent years.

Feature Extraction: We list the feature extraction methods
used by scholars(Table VII). Almost all researchers have
extracted the information features of this article from the report
description or summary, and some studies have made feature
selection in the extracted features to reduce the feature space.
Xu et al.[74] extra extracted the time characteristics of the test
report for report prioritization experiments. Ramay et al.[75]
and Umer et al.[76] analysis reports describe the sentiment
scores to aid priority determination.

Genetic Algorithm

Extreme Learning Machine
Multi-layer Perceptron
Spatial Pyramid Model
Nerual Network

Hierarchical Dirichlet Process
K-Means

Logistic Regression

Deep Learning
Convolutional Neural Network
Random Forests

Multinomial Naive Bayes
Decision Trees

Support Vector Machine

K Nearest Neighbor

Naive Bayes

o
N}
~
o
@

10

Fig. 5. List of methods used in the experiment.

Experimental Methods: We counted the use of experimental
methods by researchers(Fig. 5). Most scholars regard report



prioritization as a special classification problem and classify
test reports into prioritized priority categories. But the distance
between classes is not equal, and the gap between two adjacent
priority classes is always smaller than the distance between
non-adjacent classes. Feng et al.[85] proposes a priority
ranking method called DivRisk, it uses a diversity strategy
and a risk strategy to evaluate the test report, calculates a
priority value for the test report, and sorts according to the
priority value. Feng et al.[86] also uses a diversity strategy
in prioritizing test reports with screenshots. Ramay et al.[75]
and Umer et al.[76] apply deep learning techniques combined
with sentiment scores to report prioritization.

Evaluation Metrics: When researchers consider priority
ranking as a classification problem, Precision, Recall, and F-
measure are used to evaluate the effectiveness of the method.
Feng et al.[85][86] evaluation proposes a priority ordering
algorithm using the Average Percentage of Fault Detected
(APFD), which is defined as follows:

T+ T2+ .. +Trnr
nx M 2xn

in which, n is the number of test reports and M is the
total number of faults reported in all test reports. T'; is
the index of the first test report that revealed failure .
Some researchers draw the Receiver Operating Characteristic
(ROC) curve and calculate the Area Under Roc Curve (AUC)
evaluation model[87][79][94][90]. The ROC space defines the
False Positive Rate (FPR) as the X axis and the True Positive
Rate (TPR) as the Y axis. FPR and TPR are calculated as
follows:

APFD =1+

A7)

FP
FPR= ———— 1
& FP+TN (18)
TP
TPF = —— 1
TP+ FN (19)

Then calculate the area from the curve.

D. Report Refactoring

The crowdsourced test report refactoring is to help devel-
opers quickly understand the defects described in the report.
Tarar et al.[97] made a brief review of the bug report summary,
and we made a more detailed division based on it. We
divided the report reconstruction tasks into summarization,
generation, and enhancement, and summarized their respective
experimental methods, and finally explained their evaluation
metrics.

Summarization: The report summarization expresses the
content of the report by selecting a summary sentence. Rastkar
et al.[98] uses the existing dialog-based auto-summarizer to
train on the bug report corpus, by scoring the input report
sentences, and then selecting sentences to form a summary
according to the score from high to low, until the number
of words reaches the compression ratio. Jha et al.[99] pro-
posed the Bag-of-Frames data representation method, which
is different from the common Bag-of-Words representation
method, and cross-contrasts using the five summarization
algorithms (Random, Hybrid TF, Hybrid TF-IDF, SumBasic,
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and LexRank). The experimental results show that using BOF
representation for classification and BOW representation for
the summary can get the most accurate results, and SumBasic
can generate a summary that is largely consistent with human
judgment. Li et al.[100] built a deep learning model DeepSum
to summarize the report. The model received a new bug report
and retrieved a set of reports similar to the new report in
the historical data, then use this set of defect reports to train
a stepped autoencoder network to score the newly reported
sentences, and finally use dynamic programming to extract
summary sentences.

Generation: For bug reports containing picture information,
researchers hope to be able to assist in understanding reports
for converting pictures into descriptive text information. Liu
et al.[101] uses SPM to measure image similarity, then selects
high-quality reports containing similar pictures, and uses nat-
ural language processing technology to build language models
to analyze text descriptions of high-quality reports, generate
descriptive keywords for pictures, and help developers under-
stand the test report. Yu et al.[102] builds a deep learning
model CroReG to generate a text report from the picture. The
model uses OCR technology to identify the text information
in the picture. At the same time, it uses a CNN network as an
encoder to extract features from the picture, and then uses an
LSTM network as a decoder to convert the picture features The
vector is translated into a natural language defect description,
and finally a test report is generated by combining the OCR-
recognized text information and decoded information.

Enhancement: Test report enhancements supplement the
main test report by extracting useful information from the
duplicate report, thereby reducing the number of report reviews
and improving the quality of report reviews. Chen et al.[103]
proposed a new test report extension framework, which uses
merge operation, TF-IDF-based algorithm and graph model to
enhance the environment field, input field and description field
of test report respectively, and highlights the supplementary
information through visualization technology. Hao et al.[104]
and Li et al.[105] designed and implemented the report en-
hancement tool CTRAS. CTRAS used PageRank algorithm
to obtain the master report, weighted the text description and
picture information of similar reports, and then extracted the
information fragments contained in the high score report but
not in the master report for supplement.

Evaluation Metrics: Precision, Recall, F-measure and Pyra-
mid scores are widely used to evaluate sentence and keyword
choices in report reconstruction. Given a set of summary
sentences Sgeject, the Pyramid score is calculated as follows:

Numrotai Links

Pyramid = (20)

NumprazLinks

where Numrotaininks denote the number of times that sen-
tences linked by the annotators in Sgseject and NumasazLinks
is the maximum possible links for the same number of
sentences. And some researchers realistically evaluate model
performance by comparing the test reports generated by the
model with the artificially aggregated test reports[99][103].



IV. CHALLENGES AND TRENDS AND OPPORTUNITIES

At present, the crowdsourced platform mainly faces three
problems: First, a large number of test reports submitted
by workers. The simplicity of crowdsourced software testing
makes people actively participate in and submit reports to get
paid. Large crowdsourced platforms can collect hundreds of
thousands of reports on an average day. These reports originate
from different projects, so the content of the collected reports
is very different. For example, some of them contain pictures
or log information, extracting effective information from a
large set of reports is a challenge.. Secondly, users are likely
to encounter the same problems in the testing process, but the
reports describing the same problems will also differ from
each other. How to use the similarities and differences in
reports to improve the test coverage in defect detection is
also a challenge. Finally, the uneven knowledge and testing
techniques of the workers’ fields led them to produce different
quality test reports when writing the reports, which affected
the completeness and readability of the reports and severely
hindered the review of the reports.

Many scholars now conduct research in the field of defect
report analysis, remove invalid reports through classification
technology, calculate similarity to determine similar reports,
prioritize test reports, and aggregate test reports. We found
that the methods used by researchers have evolved from earlier
text matching to attempts to use machine learning to deep
learning.The focus has also changed from the initial character
features to keyword features to semantic features. Types of
information are also tried to be processed using a variety of
methods, such as image analysis, abstract syntax trees, graph
models, etc. Data reduction techniques are also used to select
high-quality features. From the experimental results, almost all
studies show that weighted combination of multiple algorithms
can achieve better results than a single algorithm. In the
experiments using semantic features, they can often produce
results that are more consistent with people’s cognition.

Pre-trained language models have achieved amazing re-
sults in tasks related to natural language processing, such
as: semantic similarity, machine translation, and reasoning
questions and answers. For researchers, how to apply language
models in each step of test report analysis to improve the
efficiency of crowdsourcing test report analysis is of great
value. For the crowdsourcing platform, it is meaningful to
build a test report analysis process framework and combine
different report analysis methods, and encapsulate the test
report processing steps into a perfect tool to improve the
efficiency of crowdsourcing software testing.

V. CONCLUSION

Crowdsourced software testing greatly reduces the effort
and expense that software companies spend on software
testing. But the pressure didn’t go away, but moved to the
crowdsourced test platform. The platform needs to process a
large number of test reports every day. Processing these reports
manually is too time-consuming and may affect the repair
of important defects. To address this issue, it is necessary to
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apply some automated or semi-automated analytical methods
to assist in report review.

This paper summarizes a series of work in the field of
test report analysis. In this survey, we first introduced some
preparations. Secondly, we divided the bug report analysis and
discussed the concerns in all directions. Third, we analyzed the
challenges and feasible solutions faced by the crowdsourced
test platform. Finally, we summarize the whole paper and put
forward the future work direction.

This research mainly focuses on the effective methods
proposed in the field of report analysis, and we plan to use pre-
trained language models to improve test report classification
and reconstruction in the future, hoping to help crowdsourced
platform to improve test report analysis efficiency.
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