
Efficiency Metrics and Test Case Design
for Test Automation

Davrondzhon Gafurov and Arne Erik Hurum
Norsk Helsenett SF

Oslo, Norway

davrondzhon.gafurov@nhn.no

Abstract—In this paper, we present our test automation work
applied on national e-health portal for residents in Norway which
has over million monthly visits. The focus of the work is three-
fold: delegating automation tasks and increasing reusability of
test artifacts; metrics for estimating efficiency when creating test
artifacts and designing robust automated test cases. Delegating
(part of) test automation tasks from technical specialist (e.g.
programmer - expensive resource) to non-technical specialist
(e.g. domain expert, functional tester) is carried out by trans-
forming low level test artifacts into high level test artifacts.
Such transformations not only reduce dependency on specialists
with coding skills but also enables involving more stakeholders
with domain knowledge into test automation. Furthermore, we
propose simple metrics which are useful for estimating efficiency
during such transformations. Examples of the new metrics are
implementation creation efficiency and test creation efficiency. We
describe how we design automated test cases in order to reduce
the number of false positives and minimize code duplication in
the presence of test data challenge (i.e. using same test data both
for manual and automated testing). We have been using our test
automation solution for over three years. We successfully applied
test automation on 2 out of 6 Scrum teams in Helsenorge. In total
there are over 120 automated test cases with over 600 iterations
(as of today).

Index Terms—Test automation, automation measurements and
metrics, Helsenorge

I. INTRODUCTION

The increasing complexity, pervasiveness and inter-

connection of software systems on the one hand, and the ever-

shrinking development cycles and time-to-market on the other,

make the automation of software test an urgent requirement

today more than ever. A primary aim of test automation is min-

imizing the manual testing effort and reducing overall product

development cost. However, despite significant achievements

both in theory and practice, test automation remains a chal-

lenging task [11], [14]. If not implemented properly, it can be

expensive and even contribute to the increase of the cost.

This paper presents our experiences of using test automation

for over three years. One of the challenges (which we have

also faced) in test automation was finding talents with the

right technical skills and testing mindset. To address this

challenge, we developed a solution that enables delegating part

of automation tasks to the tester without coding experience.

Delegating (part of) test automation tasks from technical spe-

cialist (e.g. programmer - expensive resource) to non-technical

specialist (e.g. domain expert, functional tester) is carried out

by transforming low level test artifacts into high level test

artifacts. Such transformations not only reduce dependency on

specialist with coding skills but also enable involving more

stakeholders with domain knowledge into test automation.

Furthermore, we propose simple metrics which are useful for

estimating efficiency during such transformations. Examples

of the new metrics are implementation creation efficiency and

test creation efficiency. We describe how we design automated

test cases in order to reduce the number of false positives

and minimize code duplication in the presence of test data

challenge (i.e. using same test data both for manual and

automated testing).

The rest of the paper is structured as follow. Section II gives

a brief overview of Helsenorge which is our system under test

(SUT). Section III describes test automation artifacts, roles and

our test automation architecture. Section IV presents our pro-

posed empirical metrics. Section V discusses designing robust

automated test cases. Section VI summarizes main benefits,

practical recommendation and limitations and opportunities for

future work. Section VII concludes the paper.

II. HELSENORGE - SYSTEM UNDER TEST

Helsenorge is a national portal of e-health services for

residents in Norway which was introduced in 2011 [10]. In

2018 Helsenorge had 25.6 million visits while in 2017 it had

18.7 million visits [4]. Helsenorge is intended to be a single

”point-of-entry” to electronic health services for residents. It

consists of two parts, namely public and private. The public

part is open to everyone and contains general information

about diseases, treatments, patient rights etc. The private part

of the portal requires authentication and contains individual’s

health related information. In 2018 the total number of user

sign-ins to the private part of Helsenorge was 12 million while

in 2017 it was about 7 million (and 3.2 million in 2016) [4].

An authenticated individual can see and verify his or her

health-related information such as the list of medicines, vacci-

nation history, hospital visits, health-related payments, etc. He

or she can also take an active part in one’s health workflow via

Helsenorge by performing various actions. For instance, with

few clicks an individual can become an organ donor; order,

cancel or change doctor appointments; send request to renewal

of medicine; have a dialog with district health services; self-

15

2020 IEEE 20th International Conference on Software Quality, Reliability and Security Companion (QRS-C)

978-1-7281-8915-4/20/$31.00 ©2020 IEEE
DOI 10.1109/QRS-C51114.2020.00015



register own sickness; submit health related travel expenses

for reimbursement and so on.

III. ARTIFACTS, ROLES AND ARCHITECTURE

A. Test artifacts

Test suites, test cases, test steps, test implementation code

and test data are all examples of test artifacts. A test suite is a

collection of test cases organized based on some characteris-

tics, e.g. running environment, test type, target area of SUT etc.

A test case is an ordered sequence of test steps that verifies a

(single) functionality of SUT. A test step is an instruction that

is executed to affect (write action) or to verify (read action)

state of SUT. An automated test step is the one that is executed

automatically. In order to make a manual test step to run

automatically an implementation code has to be written. An

automated test case is the one where all of its test steps are

automated. We use the terms ”test case” and ”automated test

case” interchangeably, both referring to automated test case.

Similarly, we use terms ”test step” and ”automated test step”

interchangeably, both referring to automated test step. When

referring to the manual test step or manual test case, we state

it explicitly. A test step can be executed with one or more

test data (test inputs). When a test case is executed with n
different test data then we say that the number of iterations

for the test case is n. A test case has at least one iteration.

B. Test roles and delegation

The tasks related to test automation, we divide into two

groups the one that requires programming skills and the other

one where domain knowledge is sufficient (and coding skills

is not mandatory). For example, to create an implementation

code that makes a manual test step to execute automatically

requires programming skills. However, composing a test case

using existing test steps or updating the test case with a new

test data does not require coding expertise as long as one is

familiar with SUT functionality. Within our test automation

solution, we have two main roles Test Developer (TD) and

Functional Tester (FT). TD’s main responsibility is to convert

manual test steps (test cases) into automated counterparts

by writing implementation code. FT’s main responsibility

is to create test cases using automated test steps, update

them (when necessary) and run test cases. The role of TD

requires programming expertise while the role of FT does

not require technical experience. In short, TD is responsible

for all automation tasks that require programming expertise

while FT for the tasks that do not require coding skills. As of

today Helsenorge consists of six Scrum teams. Each team has

ScrumMaster, Product Owner, several developers and at least

one dedicated FT. However, Scrum teams do not have 100%

dedicated TD role.

By delegating part of automation tasks to FT we aim to

reduce dependency on TD and avoiding bottleneck situations

since the role TD is more expensive and sparser compared to

the role of FT (based on our own experience too). In general,

delegation allows not only FT but also other team members

(e.g. Test Manager, Product Owner) who has domain knowl-

edge but not necessarily programming skills to contribute in

to automated testing.

C. Test architecture

Delegation requires appropriate test architecture and tech-

niques. Figure 1a depicts a generic Helsenorge test automation

architecture which is based on the architecture proposed by In-

ternational Software Testing Qualification Board (ISTQB) [3].

The key difference is that we move Test Library compo-

nent from Test Definition layer to new Test Implementation

layer [9]. We believe that managing Test Data component does

not require programming skills if one has a domain knowledge,

whereas for managing Test Library component one must have

programming knowledge. Having Test Data and Test Library

on their own layers facilitates separation of duties between TD

and FT roles.

We use Microsoft’s Azure DevOps (ADO) both as the

test and requirement management tool for Helsenorge. Both

manual and automated test cases are created, updated and

stored in ADO. We also developed a custom automation frame-

work using Microsoft’s Visual Studio (VS) .NET C#. The

framework serves as a bridge between Test Library component

and test management system. This provide us opportunity to

fully utilize test reporting features of ADO, for example not

only showing current (or last) execution but also historical

results. Tool unification enables automatic traceability between

the test case and its requirement which is important criteria.

In other words, one can always determine which requirement

is tested by which test case and vice-versa.

D. Test adaptation and implementation

Test automation is applied at the REST (REpresentational

State Transfer) API level [12], since elements on GUI tends

to be modified frequently. Test implementation code is writ-

ten using C# programming language in Visual Studio (VS).

Our test automation belongs to keyword- or process- driven

techniques [3], [13]. Each test step serves as a keyword and

executed automatically. Test step’s definition text in ADO and

its implementation in VS is bounded via regular expression.

Figure 2 shows part of the implementation code for the test

step 2 in Test case 1. An automated step is specified as a

structured expression which is plain text and formulated such

that it is understandable by non-technical person with domain

knowledge. A tester with domain knowledge can compose a

test case by using existing test steps.

E. Test execution

FT is responsible for arranging test cases into test suites,

executing them and observing generated test report. Test

suites are executed periodically at specified interval or can be

triggered on demand by FT. When test case execution fails,

source of failure can be different: defect in SUT (primary we

are interested in), error in test environment (e.g. a service is

down), outdated test script or test data and so on. The task of

16



(a) Helsenorge’s Test Automation Architecture. (b) Generic test automation architecture by ISTQB [3].

Fig. 1: Helsenorge and ISTQB Test Automation Architecture.

Fig. 2: Implementation code snippet.

failure analysis is a shared responsibility between FT and TD.

At first FT attempts to analyze and investigate failure based

on generated test report and provided error messages. If FT

cannot determine the cause of the failure, only then TD starts

failure analysis and investigation. By letting first FT to analyze

and possibly partially or fully resolve failures, we avoid TD to

be a “bottle-neck” in the process. For FT to be able to analyze

failure independently it is very important to report meaningful

error messages.

Test generation layer in terms of model-based testing of

our work can be found in [7], [8]. The test definition layer is

described in Section V.

IV. MEASUREMENTS AND METRICS

A. Abstraction levels

Figure 3 presents layered view of our test automation where

test artifacts are transformed from low level abstraction to high

level abstraction. Abstraction level of test artifacts determine

the required level of technical competence. Artifacts at the low

level abstraction require coding expertise, while for artifacts

at the high level abstraction domain knowledge is sufficient.

Test artifacts at the levels 1, 2, 3 and 4 are C# classes

(implementation units), test steps, test cases and test suite(s),

respectively. Test data also belongs to the level 3. As can

17



Fig. 3: Layered view on test artifacts. Varying heights of test

cases illustrate different number of iterations.

be seen from Figure 3, each test step has a corresponding

implementation unit which makes it run automatically. Several

test steps can share the same implementation unit (one to many

mapping). A test step can be re-used in many test cases or even

multiple times in the same test case (one to many mapping).

Example of test case.

Transitions of artifacts from level 1 to 2 is responsibility of

TD because creating implementation units requires program-

ming skills. However, TD should consult with FT in order to

define appropriate text for the test step. It is very important

that test steps are understandable by FT, since they are the

primary end-users of the test steps. Transitions of test artifacts

from level 2 to 3 and from 3 to 4 are responsibility of FT and

do not require coding skills. The only prerequisite for these

transitions is the knowledge of SUT and availability of test

data. Consequently, transitions from 1 to 2 is more expensive

compared to transitions 2 to 3 or from 3 to 4. Table I presents

abstraction level, test artifacts, who is main responsible and

the tool used to work with artifacts.

TABLE I: Test artifacts at abstraction levels

Level What Who Tool Level

Level 4 Test suites FT ADO Product
Level 3 Test data FT ADO System
Level 3 Test cases FT ADO System
Level 2 Test steps TD/FT ADO Domain
Level 1 C# classes TD VS Implementation

TABLE II: Test code statistics

Parameter Value

Lines of code 25400
Maintainability Index 78
Cyclomatic complexity 4092
Depth of Inheritance 6
Class coupling 726

B. Efficiency metrics

Although measurement like the number of test cases, test

steps, implementation units are necessary to show progress and

coverage, the metrics showing their relations can give more

insights. We define Implementation Creation Efficiency (ICE)
metric as follow:

ICE =
m

n
(1)

where n is a total number of C# classes (i.e. implementation

units), and m is a total number of test steps (i.e. implementa-

tion representations). The ICE is estimated when test artifacts

are transformed from the abstraction level 1 to the level 2. The

ICE indicates how ”good” high level artifacts (i.e. test steps

in this case) can be represented by low level artifacts (i.e.

implementation units - C# classes). In general, the higher the

ICE the better it is i.e. ”many” test steps (which is used by FT)

are generated from ”fewer” C# classes (which are produced

by TD). However, too large ICE can also indicate problems.

In theory, one can have one or few large implementation

units for all representations. This means complex code base

which is difficult to maintain. Therefore, one has to set a

certain criteria for individual implementation units in order to

limit code complexity. Examples of such criteria can be lines

of code (LOC), cyclomatic complexity, etc. The total LOC

of automation solution for Helsenorge is 25.400 excluding

the packages which are responsible for interaction with test

management system, see Table II.

Our C# classes have requirement as maximum cyclomatic

complexity of 5. The lowest number for ICE is 1 which

essentially means one representation for one implementation.

The optimal value for ICE varies depending on SUT but it is

certainly neither too large nor 1. The ICE can also indicate

the level of understanding of SUT by TD. The good number

of ICE is the indication of that TD has holistic perspective of

SUT and not merely focuses on writing code. To achieve good

number on ICE we recommend that TD (especially junior TD)

should have FT role for some period when he or she joins the

team before starting to write the test code. In this way TD

18



will get better understanding of SUT which is a good starting

point to write efficient code (and hopefully optimal ICE).

We also define Test Creation Efficiency (TCE) metric as

follow:

TCE1 =
k

m
TCE2 =

k

n
(2)

where k is a total number of test cases and n and m as in

formula 1. TCE1 is based on number of test steps while

TCE2 is based on number of implementation units. When

referring to both TCE1 and TCE2, we will use TCE. The

TCE is estimated when test artifacts are transformed from the

abstraction level 2 to the level 3. The TCE indicates possibility

of creating test cases based on the given number of lower level

test artifacts. An interesting point about TCE is that it can be

used to estimate or predict (or at least give an indication of)

the workload of FT based on the work of TD. For example,

how many implementation units is necessary to create one test

case for the given SUT. The larger TCE the better it is.

At the level 4 (in Figure 3) total number of test cases in

a test suite and ratio of automated test cases to the manual

ones are often used as a measurement. However, sometimes

these measurements are not enough to provide full picture

of coverage. For instance, when a different part of SUT has

varying degree of risks and require unequal degree of test

coverage. The total number of iteration is more complete

measure of coverage criteria. In this respect, we define Average
Depth Coverage (ADC) metric as follow:

ADC =
d

k
(3)

where d is a total number of iterations and k as in formula 2.

ADC indicates the average number of iterations a test case is

executed or how good is the test coverage in depth. In addition

to ADC, one may also estimate Variance of Depth Coverage
(VDC). The large variance may indicate the variable degree of

criticality of SUT because that some part of SUT is required to

be tested more deeper than other parts. The minimum number

for ADC is 1 which means every test case is run once (one

iteration). Although ADC can also be estimated for the manual

testing, usually manual test cases are restricted to limited

number of iteration due to being time-consuming and requiring

tedious manual effort. However, once a test case is automated

it relatively cheaper to execute it with more test data (input)

to increase depth coverage and obtain better quality assurance.

Therefore, it is more cheaper to increase ADC with automated

testing compared to with manual testing. Consequently, ADC

can also indicate how ”good” test automation is applied. ADC

shall be used as a complimentary metric to total number of

test cases.

C. Automation measurements and metrics

Helsenorge consists of six SCRUM teams and we have

applied our automation solution on two of them. Those two

Scrum teams are so-called POT and HOI. The team POT

is responsible for privacy and access control while the team

HOI for information and services related to the individual’s

TABLE III: Automation measurements and metrics

Measurement POT HOI Total

Number of C# classes, n - - 133
Number of unique test steps, m - - 215
Number of test steps in test suite, r 4284 433 -
Number of test cases in test suite, k 80 46 126
Number of test iterations in test suite, d 568 67 635
Execution time, approx. minutes 51 8 59

Metric POT HOI Total

ICE, m/n - - 1.62
TCE, k/m 0.37 0.21 0.59
ADC, d/k 7.10 1.46 5.04
Test step reusability, r/m 19.9 2.0 21.9
Average test steps per iteration, r/d 7.5 6.5 7.4

health. Table III presents ICE, TCE and ADC metrics and

other automation measurements for Helsenorge 1. Since im-

plementation units and unique test steps are re-usable across

teams (test suites), we do not assign them to the specific teams

(i.e. first two rows in Table III for POT and HOI are empty).

There are various factors which influence these numbers such

as SUT complexity, integration, skills of TD and FT, etc. It

should be also noted that there are several helper C# classes

which are not taken into account while calculating ICE and

TCE in formulas 1 and 2 because they relate more to the

general framework rather than individual artifacts. As can be

seen from the numbers in Table III, POT team has better

coverage compared to the team HOI. This is due to the fact

that we began test automation with POT team, and it is the

team which provides services to all other teams in Helsenorge.

V. DESIGNING AUTOMATED TEST CASES

A typical structure of the manual test case is that every

(manual) test step has corresponding expected result. While

running the test case manually, FT manually (or visually)

verifies that the expected outcome matches the actual outcome

after each test step execution. Sometimes during execution FT

may skip running some steps due to the fact that the required

state of SUT has already been made by other tester(s). In other

words, FT can fix the precondition for the test case ”on fly”

and re-run test steps in the manual test case.

Traditionally the expected result of the manual test step is

converted to assert in automated version within implementa-

tion unit of the corresponding test step. That is fine as long

as test data for automated and manual testing are separate.

And for optimal results in automation, test data for manual

and automated testing shall be separate. However, this is not

the case in our SUT.

One of our main challenges is using the same test data for

manual and automated testing. This is due to the fact that

our test data have many attributes which come from various

external systems. Helsenorge (our SUT) obtains health related

data from many external sources. Therefore, it is costly and

difficult (if not impossible) to have separate sets of test data for

manual and automated testing. When a test case is executed

1The numbers are ”as of today”.

19



with a test data, we don’t know its state in advance, and

asserting in such situations often fails. For example, all our

test cases require that a user has a certain consent level, and

when a test case is executed the consent level of the user is

unknown beforehand. Therefore, automated test cases are run

with zero or minimal assumption about the state of test data.

TEST CASE 1: Creating authorization - all possible

combinations of authorization areas

1 Given that I logged in as ”30029011111”
2 Choose a representation ”Myself”
3 Visit a page that shows authorizations

4 Delete all given authorizations

5 Visit a page that shows settings

6 Set consent level to ”3”
7 Visit a page that shows authorizations

8 Create authorization with these parameters:

”91028822222”, ”Lee”, ”@Area”,”2030-11-11”
9 Verify that I gave authorization with these parameters:

”91028822222”, ”Lee”, ”@Area”,”2030-11-11”
10 Given that I logged in as ”91028822222”
11 Choose a representation ”Myself”
12 Visit a page that shows authorizations

13 Verify that I received authorization from

”30029011111” to ”@Area” which is valid until

”2030-11-11”
14 Given that I logged in as ”30029011111”
15 Choose a representation ”Myself”
16 Visit a page that shows authorizations

17 Delete authorization given to ”91028822222”

// Test parameters

Area

8
9
10
8,9
8,10
9,10
8,9,10

In a test case, test steps are classified into four groups:

• pre-condition

• action

• verification

• post-condition

Test steps belonging to pre-condition group run instructions

necessary to set SUT to the required state before executing the

main (action) step in the test case. The action step runs main

instructions which are focus of the test case. Post condition

steps are clean-up instructions for the test case (if necessary).

Verification steps are assertions that match expected result to

the actual result. For example, in Test case 1 steps 1-7 are

preconditions for the action step 8, and step 9 and step 13

TEST CASE 2: Attempting to create authorization

without necessary consent level - verification of error

message

1 Given that I logged in as ”30029011111”
2 Choose a representation ”Myself”
3 Visit a page that shows authorizations

4 Delete all given authorizations

5 Visit a page that shows settings

6 Set consent level to ”@Level”
7 Visit a page that shows authorizations

8 Create authorization with these parameters:

”91028822222”, ”Lee”, ”@Area”,”2030-11-11”
9 Verify message ”Technical error is occured.” reported

// Test parameters

Level Area

2 10
1 10
1 9

are verification steps. The test steps 14-17 are post-condition

steps. It can be also noted that a test step can be pre-condition

in one test case, post-condition in the second test case and

action step in the third test case. Such flexibility facilitates

re-usability of test steps in test cases.

The distinct feature of our test case design is that we

separate assertions to its own test step as much as possible. In

other words, we do not make assertions as a part of test step’s

implementation code but rather as a a separate test step. In fact,

not only action step but pre-condition and post-condition steps

have a related verification step as well. Ideally a test case shall

have only one verification step i.e. a test case should focus

testing on one specific feature of SUT. In fact, the action step

can have several verification steps. We let FT to decide when

or which assertions (i.e. verification test step) to use in a test

case. For instance, action step 8 in Test case 1 and action step

8 in Test case 2 are the same. However, verification step 9 in

these two test cases are completely different. Verification step

9 in Test case 1 verifies creation of authorization. Whereas

verification step 9 in Test case 2 verifies the error message

and authorization is not created.

Another feature of our test case design is that our test

steps (in test case) are sequential and non-conditional. By

non-conditional steps we mean executing an instruction on

SUT without checking its state beforehand. Non-conditional

test steps are simpler to comprehend. On the other hand,

conditional test steps not only increase complexity of the test

case but may also contribute to code duplication.

Our automated test cases can also be run manually when

necessary. Test case are designed to be both machine interpret-

able (for automation) and human readable. Thus, we pay

special attention to the readability, reusability and flexibility of

test steps and test data. As can be seen from test case examples,

20



test input is an integral part of the test step which makes

automated test cases more readable (in terms of business

process) and self-descriptive. All test inputs are specified

within quotes (””) and we also try to apply styling (bold, italic)

for easy comprehension. Furthermore, inputs can be specified

both as a value and as a variable. For example, in step 8

in Test case 1 inputs ”91028822222”, ”Lee” and ”2030-11-

11” are specified as the value while the input ”@Area” as a

variable. The values of the variable ”@Area” are read from

the parameter list. Depending on repeatability of the input, a

tester can choose to set it as value or variable.

VI. LESSONS LEARNED AND LIMITATIONS

A. Benefits, lessons learned and recommendations
We have been using our test automation approach on

Helsenorge since early 2017 almost without any change on

architecture or significant re-implementation of already gener-

ated test artifacts unless it was required due to the changes

in SUT. The main benefits we have achieved by applying

automation are following:

1) Saved manual effort, improved test coverage.

By executing test cases automatically greatest benefits

we achieved were, not surprisingly, saved manual testing

effort and improved test coverage. Manual testing of one

iteration takes about 5 minutes. Automated execution

of all test iterations (more than 600) takes about 1

hour (over 50 times speedup). Automated test cases

are part of Helsenorge’s regression test suite which are

run regularly, so automation benefits are not one time.

Automated testing helped to increase not only breadth

coverage but also depth coverage. The average depth

coverage (ADC) was 5 which means a test case is

executed with 5 different test inputs on average.

2) Reduced maintenance cost. We shifted (part of) intellec-

tual work of creating automated test cases out of techni-

cal level (i.e. C# code) to the business level (test cases

in Azure DevOps). In addition, not only maintenance of

the test data (test inputs) but also verification of state

(assertion) are made at the business level. All of these

contributed to the lower maintenance costs. In addition,

study reveals that merely automatically generating a set

of test cases, even high coverage test cases, does not

necessarily improve our ability to test software [6].

3) Negative test steps. An advantage of applying test au-

tomation at the API level is being able to create negative

test cases by avoiding frontend validation. The negative

test case verifies ”fail-safe” (security) scenario of the

application where a user intentionally or unintentionally

attempts to perform prohibited action. The focus of

the negative test cases is on verifying expected (error)

messages such as ”access denied”, ”technical error” etc.

Test case 2 is an example of negative automated test

case. As of today over 40% of our automated test cases

are negative ones, see Table IV.

ICE and TCE metrics indicate how efficient test artifact

from low level abstraction is transformed to higher level

TABLE IV: Negative test cases

Team Negative Positive All Negative, %

POT 46 34 80 58
HOI 11 35 46 24
Total 55 79 126 44

abstraction. ICE and TCE can also point out to cooperation

between TD and FT. These metrics can be useful input

on planning resources on similar automated projects, e.g.

what is good proportion of FT to TD. We also believe that

ICE, TCE and ADC metrics can be used as benchmarking

criteria for comparing various automation solutions which are

based on keyword- or process-driven technique. TCE has been

previously defined by Gafurov et al. [9]. However, definition

in formula 2 is more accurate compared to formula 1 in [9]

because denominators in formulas 2 are from lower level of

abstraction compared to numerators. In formula 1 in Gafurov

et al. [9] denominator and numerator are at the same level of

abstraction (i.e. both are at the test case level).

Below is the list of the main recommendations based on our

experience so far:

1) Delegating. Make test automation architecture, process

and methods such that it is possible to delegate (at least)

part of automation tasks to non-technical roles. This

will contribute not only on cost reduction but also on

involving more stakeholders in test automation. On the

other hand, our own experience indicates that sometimes

it can be challenging to hire skilled specialist to the role

of TD and therefore delegating can help to address this

challenge.

2) Let TD have a FT role. Starting to write test automation

code without having holistic perspective on functionality

results in inefficient test artifacts. This increases the risk

of re-work and automation costs. This is especially true

for junior TD or developers without testing mindset.

Thus letting TD to have FT role when joining the team

minimizes such risks and contributes on production of

more robust test artifacts.

3) V & V automated test case. It is very important to thor-

oughly verify and validate (V & V) newly create au-

tomated test case and ensure that they work correctly.

Failure or neglecting to quality assurance of automated

test case may result on not trusting them by the FT and

development team. While testing a test case, test not

only success (happy path) but also make the test steps

to fail and observe the error messages.

4) Always have maintenance perspective. Almost every

test task can be automated, and test managers may have

high expectations with respect to automation. However,

test automation is not a one-time job, it is a continuous

process and therefore maintainability of the test artifacts

is essential. In fact, maintenance can be challenging and

failure source of many test automation projects [11],

[14]. Consequently, every test automation task shall be

21



evaluated not only from the implementation perspective

(short-term goal) but also in terms of maintainability

(long-term goal). If maintenance effort of the task ap-

pears to outperform its automation benefits, then it shall

not be automated. Another important point in this respect

is that do not always focus on generating new artifacts

without allocating time and resources for removing

outdated ones. Not removing old artifacts on time will

increase automation costs (e.g. new tester comes and

spends time on them without knowing they are not actual

anymore).

5) Tool unification. It is desirable to have the same man-

agement tool for both manual and automated test cases

as well as for requirements. This simplifies automatic

generation of various test execution and test coverage

reports. Otherwise, one needs to estimate additional

work to (manually) synchronize/combine test reports for

manual and automated test execution from two separate

sources and maintain traceability between test cases and

requirements (possibly) manually. In fact, prior to the

developing our custom framework, we have been using

SpecFlow [1] for automation. The drawback with the

approach was that not only implementation code but

automated test cases and test data were maintained in

Visual Studio, and it was not fully integrated with our

main test management system (i.e. Azure DevOps). In

addition, it was challenging to organize test cases when

their number increased. SUT with a large number of test

cases require a proper test management system.

Although above mentioned aspects are important in test

automation, they are not necessarily sufficient for success.

Cultural aspect of test automation is probably even more influ-

ential factor. Characteristics such as engagement, commitment

and interest in test automation are crucial success factors.

Several practical recommendations are listed in Appendix A.

B. Limitations - opportunities for improvement

Several new features we wished we could have implemented

within our automation framework. However, they were not

implemented either because of the lack of resources or uncer-

tainty around their ROI (return of investment).

The proposed metrics focus only on automation tasks related

to ”creating” new artifacts. Another type of automation task

is ”updating” efforts related to the existing artifacts which

is not reflected in the proposed metrics. The challenge is

automatic tracking of changes in two separate sources, namely

test code in Visual Studio and test cases in Azure DevOps, and

qualitatively unifying them. In general, this challenge belongs

to the one identified in [2].

Our organization has also other products than Helsenorge

where similar test automation technique is applied (e.g.

VKP [5]). In addition, the same custom built automation

framework is used. It can be interesting to estimate proposed

test automation efficiency metrics on those products and

compare with Helsenorge’s one.

VII. CONCLUSION

In this work we summarize our test automation experience

on large national e-health portal where automation has been

applied for over 3 years (and still using). As of today, there

are over 120 automated test cases which run as a part of our

regression test suite. Each test case is executed on average

with 5 different test inputs resulting in over 600 iterations. Out

of 120 automated test cases over 40% of them are so called

negative test cases which verify prohibited actions on system

under the test. Such type of test cases is usually not easy to

execute manually and can be easily overlooked. Our approach

focuses on delegating automation tasks to non-technical tester

to reduce costs and involve more stakeholders (with domain

knowledge) into test automation. In addition, we shift assertion

part of test automation from the technical level to the domain

level. We proposed simple and complimentary automation

metrics, such as implementation creation efficiency (ICE),

test creation efficiency (TCE) and average depth coverage

(ADC). The ICE and TCE metrics are useful not only to show

automation status, but also can indicate cooperation between

technical and non-technical testers. In addition, these metrics

can be used as bench-marking criteria to compare various

automation solutions. Last but not least, another contribution

of the paper is to provide evidence of positive and real case

experience of using test automation from long period of time

to academic community.

VIII. DISCLAIMER

This paper represents the opinions of the authors to research

community. It is not meant to represent the position or

opinions of the authors’ employer nor the official position of

any staff members. Any errors are the fault of the authors.

REFERENCES

[1] SpecFlow. https://specflow.org/.
[2] Nadia Alshahwan, Andrea Ciancone, Mark Harman, Yue Jia, Ke Mao,

Alexandru Marginean, Alexander Mols, Hila Peleg, Federica Sarro, and
Ilya Zorin. Some challenges for software testing research (invited talk
paper). In International Symposium on Software Testing and Analysis,
2019.

[3] International Software Testing Qualifications Board. Test automation
engineer – advanced level syllabus, version 2016.

[4] Direktoratet for e helse. Utviklingstrekk 2019 - beskrivelser av drivere
og trender relevant for e-helse, 2019. Report on trend relevant for e-
health. Report is in Norwegian.

[5] Direktoratet for e helse. Erfaringer og videre arbeid med velferdstek-
nologisk knutepunkt, 28.09.2018. Report is in Norwegian.

[6] Gordon Fraser, Matt Staats, Phil McMinn, Andrea Arcuri, and Frank
Padberg. Does automated white-box test generation really help software
testers? In International Symposium on Software Testing and Analysis,
2013.

[7] Davrondzhon Gafurov. Applying model-based testing for new privacy
and authorization concepts in Helsenorge. Technical report, Norsk
Helsenett SF, 2019.

[8] Davrondzhon Gafurov, Margrete Sunde Grovan, and Arne Erik Hurum.
Lightweight MBT testing for national e-health portal in Norway. In
ACM/IEEE International Conference on Automated Software Engineer-
ing, 2020.

[9] Davrondzhon Gafurov, Arne Erik Hurum, and Martin Markman. Achiev-
ing test automation with testers without coding skills: an industrial
report. In ACM/IEEE International Conference on Automated Software
Engineering, 2018.

[10] Helsenorge.no.

22



[11] Jussi Kasurinen, Ossi Taipale, and Kari Smolander. Software test
automation in practice : Empirical observations. Advances in Software
Engineering - Special issue on software test automation, 2010.

[12] Li Li and Wu Chou. Design and describe REST API without violating
REST: A petri net based approach. In IEEE International Conference
on Web Services, 2011.

[13] Mark Micallef and Christian Colombo. Lessons learnt from using DSLs
for automated software testing. In IEEE Eighth International Conference
on Software Testing, Verification and Validation Workshops (ICSTW),
2015.

[14] Dudekula Mohammad Rafi, Katam Reddy Kiran Moses, Kai Petersen,
and Mika V. Mäntylä. Benefits and limitations of automated software
testing: Systematic literature review and practitioner survey. In Interna-
tional Workshop on Automation of Software Test (AST), 2012.

APPENDIX A

TEST IMPLEMENTATION AND DESIGN GUIDELINES

1) Test input. Differentiate input data from body text of test

step both for human readability and machine interpreta-

tion. Apply styling for easy readability if possible.

2) Test input. Enable flexible test input reading both as a

value and as a variable. This helps to reduce updating

efforts for tests with many iterations.

3) Test step. Make automated test steps as similar as pos-

sible to the manual test steps (e.g. use domain terms in

test step definitions, avoid technical terms).

4) Test step. Make all important instructions implemented

in the test code explicitly reflected in the test step

definition text.

5) Test step. Make a test step independent from previous

steps as much as possible. This will increase re-usability.

6) Test step. Avoid using conditional test steps.

7) Assertion. Make assertions a separate test step and not

part of the action step i.e. make assertion part of the

design not implementation.

8) Test report. Ensure test reports are generated automati-

cally and presented in team’s dashboard.

9) Test report. Show also historical results, not only current

(last) one.

10) Test report. Ensure that the warning and error messages

are understandable by non-technical tester. Prefer using

domain terms than technical terms unless it is necessary.

11) Cost. Have a guideline on how automated test cases

shall be coded, created, updated and eventually removed;

Define criteria for selecting tests for automation.

12) Cost. Complex manual test cases not necessarily easy

(or cheap) to automate.

13) Cost. Remember sometimes it can be cheaper to execute

a test manually then to implement automated version.

14) Cost. Do not automate for automation sake.

23


