
UI Components Recognition System Based On
Image Understanding

Xiaolei Sun∗
Wuhu Institute of Technology

Wuhu, China
75sun@whit.edu.cn

Tongyu Li
Nanjing Mooctest Inc.

Nanjing, China
lity980@163.com

Jianfeng Xu
Nanjing Mooctest Inc.

Nanjing, China
xujianfeng@mooctest.com

Abstract—Before the release of mobile application products,
a lot of repeated testing is often required. In the process of
mobile application testing, the core problem is to locate the
UI components on the mobile application screenshots. There
are many methods to automatically identify UI components,
but in some cases, such as crowdsourcing testing, it is difficult
to use automatic methods to identify UI components. In view
of this, the APP UI components recognition system based on
image understanding provides new solutions and methods for
application scenarios that are difficult to automatically locate
components. We investigate Android UI component information,
use image understanding analysis to extract component images
on screenshot, design and implement a convolutional neural
networks,and then use trained CNN to classify these images.
The classification accuracy is up to 96.97%. In the end, we get
the component information contained in screenshot.

Index Terms—UI Component, Image Processing, CNN

I. INTRODUCTION

With the rapid growth of economy and the rapid develop-

ment of mobile Internet, mobile applications have penetrated

into all aspects of people’s lives, and the number of them

is growing explosively. Therefore, higher requirements are

placed on the quality of mobile application products. Before

the release of mobile application products, a large number

of repeated tests are often needed to ensure the quality of

products. In the process of mobile application testing, the

core problem is to locate the UI components on the mobile

application page. For a button or input box on mobile app,

if we want to click or input it, the premise is to find the

component object first. Therefore, it is particularly important

to identify the component object on the current page.

Graphical user interface (GUI) testing is the focus of

regression testing, and its efficiency will directly affect the

cost of testing. In the GUI testing process [1], automated

testing is widely used. According to the different degree of

automation, the current GUI automation test methods can be

divided into two categories, manually writing test scripts and

record and playback methods [2]. The former requires testers

to write test scripts manually, which results in higher test costs.

The latter records the interaction between the user and the

application under test and converts it into script by recording

and playing back, and then executes the content of script

∗Corresponding author

playing back interaction [3]. Among them, the most important

is the recognition method, that is to automatically identify

the corresponding visual components of interactive operations.

Common component recognition methods include coordinate-

based component recognition, source code-based component

recognition and component tree traversal based component

recognition.

For crowdsourcing testing, the positioning of components

cannot be automated. Crowdsourcing is a distributed problem-

solving model that integrates unknown people on the Internet

to complete tasks that are difficult for computers to complete

[4], and crowdsourcing testing refers to all crowdsourcing ac-

tivities related to software testing [5]. In the crowdsourcing test

report, screenshots and descriptive text are usually included, as

well as evaluations by staff that the software behaves correctly

or incorrectly [6]. During the crowdsourcing test, only screen-

shots can be obtained, so it is difficult to locate UI components

based on the frame. In addition, UI component identification

is the most basic part of the crowdsourcing testing. Only when

the UI components are recognized, can we do such tasks as

bug screenshot processing, scene understanding, and test report

classification and clustering during the testing process.

In view of the important value of UI components recog-

nition, we investigate Android UI component information

for the location of component elements, train deep learning

model, use image understanding analysis technology to extract

UI component images on screenshot, and use trained neural

networks to classify these images. Finally, we get the UI

component information contained in the screenshot.

In terms of image processing, based on the factors of the

screenshot itself, we performed a series of processing such as

image gray gradient, image binarization, denoising, and image

segmentation on the screenshot. After dividing the image into

blocks, we detect the area containing UI components in the

block, and then extract and label the component in the area.

After going through this part, we can get a screenshot of the

UI components marked. In terms of component recognition,

we design a convolutional neural network, and use the trained

network for component recognition after image processing,

with the accuracy of 96.97%.

In summary, this paper mainly makes the following contri-

butions:

65

2020 IEEE 20th International Conference on Software Quality, Reliability and Security Companion (QRS-C)

978-1-7281-8915-4/20/$31.00 ©2020 IEEE
DOI 10.1109/QRS-C51114.2020.00022

• We mainly design and implement an UI components

recognition system based on image understanding.After

taking the screenshot, we perform gray gradient, bina-

rization, image segmentation and other operations on the

screenshot, detect the area containing UI components,

and then extract and annotate the components in the

area.We design and implement a CNN, and use the

trained network to recognize the component after image

processing.with an accuracy rate of 96.97%.

• For the application scenarios where it is difficult to au-

tomatically locate UI components, such as in the process

of crowdsourcing test or screenshot contain component

drawn by the user, some complex composite component,

etc., we provide new solutions and methods.

II. BACKGROUND

In this part, we introduce the relevant knowledge of Android

UI components, image processing technology, and related

concepts of Convolutional Neural Network.

A. Android UI components

Android provides a large number of UI components, which

can be used properly to easily write a pretty good interface.In

Android, View is the basis of all the content displayed on

the screen. Buttons, toolbars, input boxes, etc. are all Views.

As the most basic component of UI, view is responsible

for drawing UI components and monitoring interface ac-

tions. It can be considered as a button, text field and other

interface elements or other View containers.We consulted

the Android API, made a comprehensive summary of the

Android UI components, and selected 14 commonly used

Android UI components as the classification criteria. They

are: Button, CheckBox CHeckTextView, EditText, ImageBut-

ton, ImageView, ProgressBarHorizontal, ProgressBarVertical,

RadioButton, RatingBar, Switch,SeekBar, Spinner, TextView.

B. Image Processing

Researchers have done some work on image understanding

testing technology. Tuan Anh Nguyen and others proposed

REMAUI, which implements the function of inputting a

screenshot of the mobile terminal and generating correspond-

ing source code and resource files. On a given input picture,

REMAUI identifies user interface elements such as images,

text, containers, and lists through computer vision and Optical

Character Recognition (OCR) technology [7]. Kevin Moran

and others proposed ReDraw, which realizes GUI precise

prototyping through three tasks: detection, classification and

assembly. First, the logical components of GUI are detected

from model artifacts using computer vision technology or

model metadata. Then, GUI components are classified into

specific types accurately by using software knowledge base

mining, automatic dynamic analysis and deep convolution

neural network. Finally, a data-driven K-nearest-neighbors

algorithm generates a suitable hierarchical GUI structure from

which prototype applications can be automatically assembled

[8].Chunyang et al. introduced a neural network machine

translator [9], which combines the latest advances in computer

vision and machine translation to convert UI images into GUI

skeletons.

But none of the above work regards the UI components in

the recognition image as a single work, and we separate it

separately. Our UI component recognition technology refers

to the method in the above reference and proposes our own

method.

C. Convolutional Neural Network (CNN)

In recent years, with the rapid development of deep learning

technology, Convolutional Neural Networks(CNN) are signif-

icantly superior to traditional methods in accuracy, and have

become the latest research hotspot, such as AlexNet, VGGNet,

GoogLeNet, ResNet and other neural network models.AlexNet

[10] deepens the structure of the network on the basis of

LeNet. For the first time, it has successfully applied such

tricks as ReLU, Dropout, and LRN in CNN to learn richer and

higher dimensional image features. The ResNet [11] model

is an efficient neural network proposed by Microsoft, and a

152-layer neural network was successfully trained by using

ResNet Unit. Its core is to solve the side effects (degradation

problem) caused by increasing the depth.In this way, the

network performance can be improved by simply increasing

the depth of the network. To a certain extent, the problem

of gradient disappearance and gradient explosion in the deep

neural network is solved.

Due to the rapid development of CNNs [10] [12] [13],

there has been a huge breakthrough in large-scale image

classification tasks.After UI components are identified, they

need to be classified, such as button, textview, progress bar,

etc. This is actually an image classification task. Relying on

the rapid development of deep Convolution Neural Network,

we use CNN to classify the image of UI components into

specific types.

III. APPROACH AND IMPLEMENTATION

We first use image processing technology to extract of

the suspected UI components from the screenshot and mark

it in the screenshot. In order to classify the detected UI

components into appropriate types, we design and implement

a convolutional neural network. We train CNN by using the

data set in the literature [8] [14] after random sampling. Then,

use the trained CNN to classify the detected UI components

after image processing, and mark the predicted component

categories on the screenshot.The whole process of the system

is shown in Fig. 1.

A. Image Processing and detect UI components

After obtaining the screenshot, we need to process the image

to get the suspected UI component image. The image obtained

by the screen capture tool is a color image, and we need to

convert the color image into gray image. When mean filter

is used to reduce image noise, it will bring side effects of

image blur. Therefore, we take the gradient of the gray image

to make the gray change of the contour edge more obvious.

66

Fig. 1: System Process

After the gray gradientation of the screenshot, the obtained

gray image needs to be binarized. We use the cv2.threshold

() function provided in OpenCV to get the binary image from

the gray image. For binarization, the purpose is to classify the

target user background and prepare for the identification of

subsequent UI components. In order to remove the noise that

may exist in the binary image, we use cv2.morphologyex()

function provided in OpenCV to close the image,first perform

the dilation operation, and then perform the erosion operation

to get a smoother binary image.
We segment the binary image, cut the image into blocks,

detect whether the block contains UI components, and mark

the components. We use the Flood Fill algorithm to mark the

location of layout blocks in the image.The FloodFill algorithm

is widely used, among which the ”reverse color” of drawing

is prominent. The principle is to start with a point and fill the

nearby pixels with a new color until all pixels in the closed

area are filled with the new color. In the image, it is likely that

the layout blocks are nested or overlapped. Therefore, after

detecting the layout block, we also need to calculate the level

of the block to label it. For the calculation of the block level,

we calculate the level relationship by comparing the relative

sizes of two blocks. For the hierarchical relationship between

blocks, we divide into the following four cases:

• Case 1: Block A is in Block B.

• Case 2: Block A and Block B are not intersected.

• Case 3: Block B is in Block A.

• Case 4: Block A and Block B are identical or intersected.

We detect whether the divided blocks contain components.

First, we check whether the block itself is a UI component

based on its relative size. If it meets our standards, it is con-

sidered a UI component. Then, the binary image is processed

and cut according to the relative size of the block to obtain the

area containing the UI component in the block. Note that in

this step of processing, due to the nesting relationship between

the blocks, it is necessary to delete the blocks containing sub

blocks before cutting. Finally, the components in region are

extracted. The binary image is used as input to calculate the

connection areas, obtain their boundaries, and check whether

these areas are rectangular. After segmenting the image into

blocks, there are still some non block components in the

image, and we still need to process them. The detection

method is the same as above.

We optimize the identified components and mark the com-

ponents in the original image at the same time, which will lay a

foundation for the subsequent classification of UI components

using neural networks.

Fig. 2: Network Architecture

67

Fig. 3: Image after labeling UI components Fig. 4: Image after labeling UI component type

B. Identify and classify UI components

After clipping out the suspected UI component images from

the screenshot, the next step is to classify these images into

specific types, such as button, textview, progress bar, etc.In

order to achieve this goal, we have implemented a CNN,

which can classify the target images of UI components into

one of the 14 commonly used Android UI components.The

network structure is shown in Fig. 2. Because what we need

is to classify 14 common UI components, this simple network

structure can meet our needs.

In order to verify the performance of our neural network,

a deep learning framework based on Tensorflow was built on

the GTX 1080 Ti GPU server. The operating environment is

Ubuntu 16.04, the programming language is Python 3.6.8, and

the main function libraries used include Open CV , Keras, etc.

The experimental data of our CNN training comes from the

ReDraw data set and the data set in [14]. ReDraw is a data

set of CNN and KNN machine learning techniques used to

train and evaluate reproducible papers in [8]. In order to train

our CNN, we randomly sampled 2.5K images from each class

of the ReDraw data set and the data set in [14] to construct

a small data set.Some examples in the data set are shown in

Fig. 5. We divide the data into training set (70%), validation

set (20%) and test set (10%). We record the accuracy on the

validation set, and record the final accuracy on the test set. We

adjusted the relevant parameters and structure of the neural

network until the test accuracy reached the peak value.

In order to evaluate the accuracy of CNN, we tested the

Recall rate and Precision rate of all classes on the test set:

Recall =
TP

TP + FN

Fig. 5: Component Image in Data Set

Precision =
TP

TP + FP

where TP means that the true category of the sample is

positive, and the result of model prediction is also positive;

FN means that the true category of the sample is positive, but

the model predicts it as a negative example; FP means that the

true category of the sample is negative, but the model predicts

it as a positive example.In order to illustrate the classification

ability of CNN, we give a confusion matrix with precision in

Table 1.

After training CNN, we use the trained neural network to

classify the UI component images processed in 3.1.The result

of classification is then annotated into the original image.

IV. EVALUATION

Our system first needs to detect the UI components in the

screenshot. The main goal of this process is to use image

processing techniques to extract the suspected UI components

68

TABLE I: Confusion Matrix

Bt CB CTV ET IB IV PBH PBV RB RtB St SB Sp TV
Bt 82.30% 0.56% 0.75% 1.88% 1.51% 6.03% 0.00% 0.00% 0.75% 0.00% 0.19% 0.00% 0.00% 6.03%

CB 0.19% 96.35% 0.00% 0.77% 0.19% 1.15% 0.00% 0.00% 0.19% 0.00% 0.00% 0.00% 0.00% 1.15%

CTV 1.15% 0.00% 93.27% 1.15% 0.00% 0.38% 0.00% 0.00% 0.38% 0.00% 0.00% 0.00% 0.00% 3.65%

ET 6.91% 0.58% 1.92% 74.66% 1.15% 3.07% 0.58% 0.00% 0.58% 0.19% 0.38% 0.00% 0.00% 9.98%

IB 5.19% 0.19% 0.00% 0.38% 76.73% 14.62% 0.19% 0.00% 0.58% 0.00% 0.00% 0.19% 0.00% 1.92%

IV 3.09% 1.82% 0.36% 1.09% 8.00% 74.36% 0.73% 0.00% 2.55% 0.00% 1.27% 0.00% 0.00% 6.73%

PBH 0.19% 0.00% 0.00% 0.00% 0.58% 0.19% 98.65% 0.00% 0.00% 0.00% 0.19% 0.00% 0.00% 0.19%

PBV 0.18% 0.00% 0.00% 0.00% 0.18% 0.91% 4.19% 94.35% 0.00% 0.00% 0.00% 0.00% 0.00% 0.18%

RB 1.75% 0.39% 0.19% 0.78% 0.19% 0.00% 0.39% 0.00% 94.17% 0.00% 0.00% 0.00% 0.00% 2.14%

RtB 0.00% 0.00% 0.00% 0.19% 0.00% 0.57% 0.00% 0.00% 0.00% 99.05% 0.00% 0.00% 0.00% 0.19%

St 0.19% 0.00% 0.19% 0.19% 0.19% 0.00% 0.00% 0.00% 0.00% 0.00% 98.85% 0.19% 0.00% 0.19%

SB 0.00% 0.19% 0.19% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 99.23% 0.00% 0.38%

Sp 0.19% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 99.81% 0.00%

TV 6.39% 1.32% 3.57% 3.76% 0.75% 3.38% 0.19% 0.19% 1.32% 0.00% 0.19% 0.00% 0.00% 78.95%

a The abbreviation for the line title of the UI component type: Button(Bt), CheckBox(CB), CheckedTextView(CT), EditText(ET), ImageButton(IB), Im-
ageView(IV), ProgressBar(PB), ProgressBarHorizontal(PBH), ProgressBarVertical(PBV), RadioButton(RB), RatingBar(RtB), SeekBar(SB), Switch(Sw), Spin-
ner(Sp), TextView(TV).

image from the screenshot. We process the screenshot with

gray gradientation, binarization, denoising, image segmenta-

tion and other processing. We get the bounding box of the

suspected component and label it on the original image. The

detected UI component image is shown in Fig. 3.As we can

see, our method detects almost all UI components in the

screenshot.

After detecting the UI component bounding box contained

in the screenshot, we input these images into the trained CNN.

The network will predict the category to which it belongs and

select the category with the highest probability as its category.

We label the predicted component categories on the original

image, as shown in Fig. 4. Table 1 shows the confusion

matrix with precision. Each row of the confusion matrix

represents the actual category, and each column represents the

predicted result, and the diagonal corresponds to the correct

classification. The accuracy of our CNN on the training set

reached 96.97%. And the precision rate of CNN is 86.4%,

and the recall rate is 86.4%.

Combined with Fig. 4 and Table 1, we can see that our CNN

has some deviations in the predictions of certain categories.

This is because of the multiple styles of component types, and

the component images of different apps are different.Although

CNN may occasionally misclassify components, the confusion

matrix indicates that these misclassifications tend to be similar

classes. For example, imagebutton is mainly misclassified as

ImageView. In the process of practical application, experi-

enced developers can manually correct the components that

predict errors.

V. RELATED WORK

Mobile applications are widely used in different tasks in

people’s daily lives, so higher requirements are put forward

on the testing of mobile applications. At present, there are

various tools to automatically identify mobile application page

elements, such as UI Automator Viewer and Appium, etc.

However, for test scenarios that are difficult to use automatic

identification tools, such as the processing of screenshots in

crowdsourcing testing, these tools cannot be useful. Our work

is aimed at this. In this section, we introduce some research

related to our work.

A. UI component data set

To train our convolutional neural network, we need a data

set containing a large number of UI component images.

Recently, more and more related datasets have been open

sourced.

Rico is a mobile application design repository that was

created to support five types of data-driven applications: design

search, UI layout generation, UI code generation, UI code

generation, user interaction modeling, and user perception

prediction [15]. It contains more than 66k unique UI screens

and 3M UI elements with visual, text, structure and interactive

design attributes.In reference [14], they uses app explorer to

automatically browse different screens in the application by

clicking, editing and other actions, taking screenshots of the

application GUI, dumping the run-time front-end code. After

deleting all duplicates by checking the screenshots, there are

278234 screenshots containing ImageView and ImageButton

from 10408 applications in the collected data.

In addition, reference [8] proposes a method for automati-

cally creating labeled training data, which consists of images

from specific GUI components of full screenshots and labels

corresponding to their category using fully automated dynamic

program analysis. After filtering the data set, they obtained a

data set containing 14,382 unique screens with 431,747 unique

components from 6,538 applications.

The data sets in our work refer to the data sets in [8] and

[14], and are filtered and added to form the data sets we use.

69

B. Identify user interface elements

In recent years, it is a research hotspot to identify the

elements in user interface, and some researchers have made

relevant work in this field.

REMAUI identifies user interface elements such as images,

text, containers, and lists through computer vision and OCR

technology on a given input bitmap[7]. In terms of identifying

page elements, REMAUI first applies off the shelf OCR detec-

tion on a given input image. Because there will be recognition

errors in optical character recognition, it will post process

OCR results. Later in computer vision, it uses the Canny algo-

rithm to detect the edges of each image element, merge similar

elements with each other, and merge with the surrounding

noise, and close the almost closed contour, REMAUI expands

its detected edges. Finally, REMAUI merges the results of

OCR and computer vision to heuristically combine the best

results.

Kevin Moran et al. Proposed Redraw, a system which

implements accurate prototype of GUI through three tasks,

detection, classification and assembly. It converts the raphical

user interface (GUI) model into code. In the first step of

detecting the logic components of GUI, Redraw uses computer

vision technology to automatically infer the boundary box

of components from the static image. It reproduces the CV

method described in [7], and makes innovation on this basis.

Then, it uses software repository mining, automatic dynamic

analysis and deep convolution neural network to classify GUI

components accurately.

In view of the difficulty for visually impaired users to

obtain information on the screen intuitively, Jieshan Chen et

al. developed a model called LabelDroid, which based on

deep learning. It automatically predicts the label of image-

based buttons [14]. CNN is used to extract image features,

and transform model is used as encoder and decoder, then

the extracted informative features are encoded into tensor

by encoder module. Based on the encoding information, the

decoder module generates a word sequence output based on

the tensor and the previous output.

Xusheng Xiao et al. proposed an application analysis

framework, ICONINTENT. Through statically analyzing the

UI layout files and code of the application, automatically

associating UI widgets and icons, and then using computer

vision technology to classify the relevant icons into eight

sensitive data categories [16].

The above work is not completely similar to our work. We

process the screenshot, extract the component images, and then

use the trained neural network to classify these images and

mark the results on the original images.

C. Image Classification

After identifying the components in the screenshot, we need

to classify them into their corresponding category, which is

actually an image classification task. The traditional method

of image classification is feature description and detection.

This kind of traditional method may be effective for some

simple image classification, but because the actual situation

is very complicated, the traditional classification method is

overwhelmed. Relying on the rapid development of neural net-

works, the use of machine learning methods to deal with image

classification problems has gradually become the mainstream

method.

Alex Krizhevsky proposed a CNN model called AlexNet,

which was won the ILSVRC2012 championship, and its effect

greatly exceeds the traditional method. This model is called

AlexNet [10]. This is also the first time that deep learning is

used in large-scale image classification. After AlexNet, a series

of CNN models emerged, such as VGG [17], GoogleNet [18],

and ResNet[11], which constantly updated their performance

on Imagenet. As the model becomes more and more deep and

sophisticated in structural design, the error rate of Top-5 is

getting lower and lower.

VI. CONCLUSION AND FUTURE WORK

Aiming at the positioning of UI components, we investi-

gates Android UI component information, trains deep learning

models, uses image understanding analysis to extract key

component images on screenshot. After getting the component

image, we use the trained CNN to classify these images,

Finally we get the component information contained in the

screenshot and mark it on the origial image. This system helps

testers locate UI components without using automated tools to

identify components and improves test efficiency.

We hope to cover as many UI components as possible

and some user-defined components in the follow-up research

process. In the complex screenshot, the accuracy of compo-

nent recognition in our system is not very ideal. To further

strengthen the image processing part, and the segmentation of

screenshot needs to be more accurate, so as to improve the

accuracy of control recognition.

ACKNOWLEDGEMENTS

This work is partially supported by the National key R&D

program of China (2018YFB1403400) and the Key Project

of Natural Science Research in Anhui Higher Education

Institutions (KJ2019ZD67).

REFERENCES

[1] Silva D B , Endo A T, Eler M M and V. Durelli, “An analysis
of automated tests for mobile Android applications,”2016 XLII Latin
American Computing Conference (CLEI), pp.1-9, 2016.

[2] Jin Hou, Naijie Gu, Shiju Ding, Yunkai Du, “UI automating test
method for cross-device based on widget path,” Computer Systems and
Applications, pp.240–247, 2018.

[3] Shiju Ding, Naijie Gu, Zhangjin Huang and Jin Hou, “APP control
recognition algorithm based on text recognition and page layout,”
Computer Engineering, pp.89-95, 2019.

[4] Jianhong Feng, Guoliang Li and Jianhua Feng, “ A survey on crowd-
sourcing,” Chinese Journal of Computers, pp.1713-1726, 2015.

[5] Xiaofang Zhang, Yang Feng, Di Liu, Zhenyu Chen and Baowen Xu,
“Research progress of crowdsourced software testing. Journal of Soft-
ware, pp.69-88, 2018.

[6] Yang Feng, James J, Zhenyu Chen and Chunrong Fang, “Multi-
objective test report prioritization using image understanding ,” 2016
31st IEEE/ACM International Conference on Automated Software En-
gineering (ASE), pp.202-213, 2016.

70

[7] Nguyen T A and Csallner C, ”Reverse engineering mobile application
user interfaces with REMAUI,” 2015 30th IEEE/ACM International
Conference on Automated Software Engineering (ASE), pp. 248-259,
2015.

[8] Moran K, Bernal-Cardenas C, Curcio M, Bonett R, and Poshyvanyk
D, “Machine learning-based prototyping of graphical user interfaces for
mobile apps,” IEEE Transactions on Software Engineering, pp.196-221,
2018.

[9] Chunyang Chen, Ting Su, Guozhu Meng, Zhencang Xing and Yang Liu,
“From UI design image to GUI skeleton: a neural machine translator
to bootstrap mobile GUI implementation,” 2018 IEEE/ACM 40th In-
ternational Conference on Software Engineering (ICSE), pp.665–676,
2018.

[10] Krizhevsky A, Sutskever I, Hinton G, “ImageNet classification with
Deep Convolutional Neural Networks,” Advances in neural information
processing systems, 2012.

[11] Kaiming He, Xiangyu Zhang, Shaoqing Ren and Jian Sun, ”Deep
residual learning for image recognition,” 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pp.770-778, 2016.

[12] Lecun Y, Bottou L, Bengio Y, and Haffner P, “Gradient-based learn-
ing applied to document recognition,” Proceedings of the IEEE,
pp.2278–2324, 1998.

[13] Simonyan K and Zisserman A, “Very deep convolutional networks for
large-scale image recognition,” Computer ence, 2014., 2014.

[14] Jieshan Chen, Chunyang Chen, Zhenchang Xing, et al,“Unblind Your
Apps: predicting natural-language labels for mobile GUI components by
deep learning,” arXiv:2003.00380.

[15] Deka B, Huang Z, Franzen C, et al. “Rico: A mobile app dataset for
building data-driven design applications,”2017 30th Annual Symposium
on User Interface Software and Technology, 2017.

[16] Xusheng Xiao, Xiaoyin Wang, Zhihao Cao, Hanlin Wang and Peng
Gao, “IconIntent: automatic identifification of sensitive UI widgets
based on icon classifification for Android Apps,” 2019 41st IEEE/ACM
International Conference on Software Engineering (ICSE), 2019.

[17] Simonyan K and Zisserman A, “Very Deep Convolutional Networks for
large-scale image recognition,” arXiv 1409.1556.

[18] Szegedy C, Liu W, Jia Y, et al. “Going deeper with convolutions,” 2015
IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pp.1-9, 2015.

[19] Shengcheng Yu, Chunrong Fang, Yang Feng, Wenyuan Zhao, Zhenyu
Chen, ”LIRAT:layout and image recognition driving automated moblie
testing of cross-platform,” 2019 34th IEEE/ACM International Confer-
ence on Automated Software Engineering (ASE), 2019.

71

