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Abstract—Spectral fault localization is an automatic fault-
localization technique to expedite debugging, which uses risk 
evaluation formula to rank the risk of fault existence in each 
program entity after collecting testing information. To assess the 
potential usefulness of a test suite and improves the accuracy for 
spectral fault localization, methods of assessing and optimizing 
test suite are proposed in this paper, which. Firstly, Average 
Ranking Cost of the test suite quality and two kinds of constrains 
are defined; and test suite quality assessment method based on 
these definitions is given. Secondly, a new test suite optimization 
method based on greedy algorithm is proposed. Finally, two 
widely used program databases (SIR and Defects4j) and 8 SFL 
techniques are applied to verify the effectiveness of our method; 
and the fault localization cost before and after optimizing test 
suites of test objects are analyzed using effect size. The largest 
effect size reaches 0.5398 and Each SFL technology has different 
degrees of improvement in the rankings of faulty statements in 
different programs by optimizing test suite. 

Keywords—Spectral fault localization, Average Ranking Cost, 
Test suite quality assessment 

I. INTRODUCTION

The spectral fault localization (SFL), as an automatic 
localization technique, has been extensively studied in recent 
years. This approach uses risk evaluation formula to calculate 
suspicious factor of fault existence in each program entity 
after dynamically collecting testing information. The testing 
information includes: the execution coverage for each entity 
(e.g., statement, function, and basic block), and the execution 
result (i.e., pass or fail) for each test case. Then, all entities 
will be sorted in ascending order according to their suspicious 
factors. Debugging is then conducted on entities according to 
the top-to-bottom ranking list until a fault is found. For 
different program entities, the statement and the basic block 
have especially received attention. Without loss of generality, 
this study considers an entity as a statement. In order to make 
SFL techniques effective and useful, there are two things that 
should be considered. One is proposing new and effective 
SFL techniques. So far, more than 50 SFL techniques and 
related technologies have been proposed over the years, such 
as O and Op [2], DE(J) and DE(C) [1], Wong [3], Jaccard [4], 
Kulczynski1[5], D*[6], EMF [20] and so on. The other, which 
[7,15-16,18-19, 28] has adopted empirical approaches 
according to the established experimental setups and 
benchmarks, such as Siemens Suite, is improving the 
performance of existing SFL techniques through 
understanding the quality of test suites.  

The goal of this work is to perform such an investigation 
of test suite quality assessment to improve spectral fault 
localization technique. We propose an Average Ranking Cost 
with two kinds of constraints to measure test suites quality 
and then a test suite optimization method using greedy 

algorithm for SFL techniques. The major contributions of this 
research are summarized as follows: 

� We propose an evaluation method that provides a
repeatable and objective way investigating and
assessing test suites through an Average Ranking Cost
with two constraints.

� With the proposed evaluation method of test suites, we 
explore an aspect about how to improve the
performance of SFL by optimizing test suite based on
the greedy algorithm.

� Nine typical SFL techniques such as O, Op and two
widely used program databases (SIR [7] and Defects4j
[8]) are applied to verify the effectiveness of our
method.

Next section provides the necessary background on SFL 
techniques. Section III presents the proposed quality 
assessment of a test suite in detail. Section IV explores test 
suite optimization method based on greedy algorithm. Section 
V provides evaluation for our method. Section VI gives the 
related work. Section VII draws conclusions. 

II. TECHNIQUES REVISITED

For example, two SFL techniques O and Op are shown in 
the following equations. 
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Figure 1. An example for SFL 

Considering the example in Fig. 1, a program PG has ten 
statements from s1 to s10, and test suite TS has nine test cases 
from t1 to t9. Specifically, t7 to t9 give rise to fail runs and the 
remaining six test cases give rise to pass runs, as indicated in 
binary outcomes OC which records the testing results of TS. 
In OC, 1 indicates to pass and 0 indicates to fail. The elements 
in the ith row of matrix M represent the test coverage 
information of statement si executing t1 to t9, in which 1 
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indicates that si is executed by the corresponding test case, and 
0 otherwise. Matrix MA is such defined that its ith row 
represents the corresponding four values of the vector <anf, anp, 
aef, aep> for si. SF is the suspicious factor list of statements 
using SFL O. For instance, anp= 4 for s3 means that four test 
cases give pass without executing s3; and in SF, “4” represents 
the suspicious factor of s3 which is highest in the suspicious 
factors of all statements and “-1” represents the suspicious 
factors of s2 and s8 which is lowest in the SF. SF is using to 
rank statements from s1 to s10. The derived ranking list of 
statements using O is [s3, “s5, s6, s10”, “s1, s4, s7, s9”, “s2, s8”], 
where from left to right, the statements ranked from high to 
low and some statements have been marked by each “ ” have 
the same ranking. 

For the performance measurement of SFLs, the EXAM is 
appropriate and majority of the SFL community use the same 
measurement as the EXAM or its equivalent. Therefore, we 
use the EXAM with tie-breaking ways as ranking cost in this 
paper.  

n
eg 2/	          (3) 

� g is the number of correct statements ranked strictly 
higher than all faults. 

� e is the number of all statements ranked equal to the 
highest ranked fault and if no correct statement ranked 
equal to the highest ranked fault, then e = 0.  

� n is the number of statements in the program.  

For example, in Fig.1, if the s1 is assumed to be faulty, then 
for s1, g=4 and e=3, and the fault localization cost  is 
(4+3/2)/10 = 11/20 using O. The smaller the value of fault 
localization cost is, the better the performance of locating a 
fault for the SFL technique is. 

III. THE QUALITY ASSESSMENT METHOD OF A TEST SUITE 
Before quantify test suite quality, several assumptions, 

which are adopted from most of the previous SFL studies [2], 
[19], [10], [11], [12], are first listed. 

� The SFL techniques are applied to programs whose 
testing result of either fail or pass can be decided for 
any test case.  

� Debuggers examine the statements one by one from the 
top to bottom of the ranking list returned by SFL, and 
once the faulty statement is examined, the fault can 
always be identified.  

� The test suite is assumed to have 100% statement 
coverage and also is assumed that the test suite contains 
at least one passed test case and one failed test case.  

� The faulty statement must be executed by all failed test 
cases in a given single-fault program. 

For a real faulty program, it is impossible to know which 
test suite is better to locate the specific fault using a SFL 
technique, because we don’t know where the faulty statement 
is. The efficiency and effectiveness of a test suite cannot be 
evaluated when the faulty statement is unknown. In a single-
fault program, one statement cannot be faulty if it is not 
covered by some failed execution and this view has been 
discussed detailly in [21]. So in order to generalize the test 
suite quality evaluation, we assume the single faulty statement 
exists in statements whose value of anf is equal to 0. These 
statements are called possible faulty statements. Then we 

measure the test suite quality on Average Ranking Cost of 
locating all possible faulty statements. The definition of 
“Average Ranking Cost” of a test suite is as follows.  

Definition 1 Average Ranking Cost of a test suite. Given 
a program PG =< s1, s2, ..., sn > with n statements, a SFL and 
a test suite, the Average Ranking Cost is the average of the 
sum of performance calculated in terms of equation (3) for all 
possible faulty statements. All possible fault statements can 
refer to the set of statements with anf = 0 in the single fault 
scenario, or the set of statements with the top 20% of 
suspicious factor (exonerating about 80% of the blocks of 
code on average) in [22]. We take each of the possible faulty 
statements as a real faulty statement to calculate the ranking 
cost of the test suite respectively. If there are x possible faulty 
statements, we will calculate the average ranking cost of x 
statements to evaluate the ability of the test suite to locate 
faults. 

For the example of fig.1, the statements s1, s3, s4, s5, s6, s7, 
s9 and s10 are the possible faulty statements because their nfa  
equal 0. The corresponding Average Ranking Cost is 
(11/20+0+11/20+ 1/5 + 1/5 + 11/20 + 11/20 + 1/5)/8 = 9/40 
referring to equation (3). The smaller the value of Average 
Ranking Cost of a SFL applying for a test suite, the higher the 
quality of this test suite.  

If we only use the Average Ranking Cost to evaluate the 
quality of a test suite, we found that sometimes Lowering the 
Average Ranking Cost can improve the rankings of some 
faulty statements, but it may also cause many statements, 
including faulty ones, to be ranked equal and indistinguishable. 
For example, in an original test suite, possible faulty 
statements in a program are ranked [1, 2, 2], and Average 
Ranking Cost of these statements is 1. When a test case is 
removed for optimization, these statements are ranked [1, 1, 
1], and Average Ranking Cost is 2/3. Thus when we use a 
method of reducing the test case to decrease Average Ranking 
Cost of possible faulty statements, the suspicious factors of 
more statements may be equal. This situation is contrary to the 
SFL’s principle of making statements more distinguishable. 
To prevent this situation, we define some constraints for the 
Average Ranking Cost.  

In order to give constraints for Average Ranking Cost, we 
first give some definitions.  

Definition 2 Partition. The partition is a list which is 
formed of consecutive equal values and it at least include 2 
equal values in SF. In Figure 1, SF has three partitions which 
are [3,3,3], [0,0,0,0] and [-1,-1].  

The more the number of partitions, the better the 
differentiation among risk rankings of statements. So 
Constraint 1 is proposed. 

Constraint 1 The number of the partitions cannot be 
reduced when the Average Ranking Cost is reduced after 
optimizing test cases.   

Definition 3 Degree of a Partition. The degree of a 
partition is the number of elements contained by this partition. 
In Figure 1, the degree of the partition [3,3,3] is 3.   

Definition 4 Degree of the program. The degree of the 
program is the sum of the degrees of all partitions with respect 
to all possible faulty statements. Taking Figure 1 as an 
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example, the degree of the program is 7, where s1 and s8, 
whose nfa are not 0, they do not participate in calculation. 

The greater the degree of program, the worse the 
distinction among risk rankings of statements. So Constraint 
2 is proposed. 

Constraint 2 The degree of the program cannot be 
increased when the Average Ranking Cost is reduced after 
optimizing test cases.  

Combining definition 1 with constraint 1 and 2, we can 
calculate and compare the quality of the test suite according to 
the steps shown in Figure 2. For example, for any program, if 
we let the already available test suite be TS’,  the test suite be 
TS after TS’ is reduced; or any program corresponds to two 
test suites TS and TS’. The following steps can be applied to 
compare TS and TS’. 

test suite TS

Test program PG

test suite TS
The quality assessment of a test suite

Calculate the Exam for 
each possible faulty 

statement

Calculate the average of the 
Exam for all possible faulty 

statements

The quality of 
TS is better 
then TS

Calculate average ranking 
costs of the TS and TS

Spectral fault localization SFL

Derive the test coverage 
matrix M and binary 

outcomes OC

Calculate< nf, np, ef, ep> of 
each statement of PG, 

Construct the matrix MA

Calculate the suspiciousness factors of 
each statement of PG using a SFL, 

Construct the matrix SF

Rank each statement 
of PG based on SF

Calculation The degree  and the 
number of partitions for PG

The degree 
for  TS is less 
than that for 

TS

The number of 
the partitions for 
TS is more  than 

that for  TS

Yes

The quality of 
the two cannot 
be compared

No

 
Figure 2. The assessment method of a test suite 

1) For two sets of test suites TS and TS’, we use any 
SFL to obtain suspicious factors of all possible 
faulty statements.  

2) We can calculate the EXAMs of all possible faulty 
statements by a ranking list of the suspicious factors 
of these statements.  

3) By calculating the average of EXAMs, we can get 
Average Ranking Cost of TS and TS’. We assume 
that the value of TS is less than TS’.  

4) We can calculate the degree of the program and the 
number of the partitions. If the degree of the 
program the number of the partitions for TS is less 
than TS’, quality of TS is better than TS’.  

5) Otherwise we cannot judge whose quality is better 
for  both TS and TS’.  

IV. A TEST SUITE OPTIMIZATION METHOD BASED ON 
GREEDY ALGORITHM 

How to reduce test cases from an already available test 
suite to improve the performance of SFL techniques? 

In this paper, a test suite optimization method based on 
greedy algorithm is proposed. 

Greedy algorithm divides the problem (i.e. test suite 
optimization) into multiple sub-problems (i.e. Comparing the 
quality of test suite before and after deleting a test case). 
According to the chosen greedy strategy (heuristic principle), 
we select an optimal solution of each sub-problem, and finally 
constitute the optimal solution of the problem. The greedy 
strategy is to choose best Average Ranking Cost with two 
kinds of constraints in the sub-question. We build a subset of 
test suites by reducing test cases and then calculate the 
Average Ranking Cost with two kinds of constraints the test 
suites subset. According to the greedy strategy, a subset of test 
suites that reduces the Average Ranking Cost with two kinds 
of constraints are selected as local optimal solutions. Thus, an 
optimized test suite is constructed by multiple local optimal 
solutions within the time complexity of O(n). We will 
introduce the process of using the greedy algorithm to solve 
the problem about optimization test suite from the design 
heuristic principle and algorithm implementation. 

A. Heuristic principle 
Before implementing the greedy algorithm, we need to 

design a heuristic principle for solving this problem, as shown 
below.  

1) We assume a negative correlation between Average 
Ranking Cost with two kinds of constraints and 
quality of a test suite. The lower is Average Ranking 
Cost with two kinds of constraints, the higher is the 
quality of the test suite.  

2) At the same time, two test cases that increase Average 
Ranking Cost with two kinds of constraints are 
removed, and the Average Ranking Cost is 
statistically more likely to decrease. In other words, 
removing test cases t1 and t2 separately can reduce the 
Average Ranking Cost with two kinds of constraints, 
but removing them at the same time will increase the 
Average Ranking Cost with two kinds of constraints. 
Although the above may theoretically exist, we 
assume that the probability of this happening is low.  

B. Test suite optimization based on greedy algorithm 
The main idea of the greedy algorithm in this paper is 

based on the heuristic principle of test suite optimization 
problem. A test case is removed from the original test suite to 
form a subset of the test cases. The optimal Average Ranking 
Cost with two kinds of constraints of solving the subset of the 
test cases is a sub-question, and the solution result of the 
combined sub-problem constitutes a solution to the problem. 

Figure 3 gives the Test suite optimization algorithm based 
on greedy algorithm. In line 1 to line 4 of this algorithm, it 
retains all test cases and calculates their Average Ranking Cost, 
the number of partitions (constraint 1) and the degree of the 
program(constraint 2). Next, for each test case, we remove a 
test case which execute the program and pass it on line 7 and 
then calculate Average Ranking Cost, the number of partitions 
(constraint 1) and the degree of the program(constraint 2) on 
line 11. If Average Ranking Cost is lower or unchanged, 
degree of the program is higher or unchanged and the number 
of the partitions for statements is more or unchanged, we 
should keep removing the test case and go to the next test case. 
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Otherwise, re-add this removed test case to the test case set on 
line 16.  

Average Ranking Cost is the average of Exam for program 
statements (excluding statements with anf
0 ), so first we need 
to calculate the Exam cost for each possible faulty statements. 
We calculate the suspicious factor matrix SF of the program 
through the MA matrix. For each statements, we count the 
number of statements whose ranking is higher than the 
ranking and the number of statements in the program, and then 
the Exam value is calculated by the formula (2). 

 
Figure 3. Test suite optimization based on greedy algorithm 

V. EVALUATION 

A. Experimental objects 
This experiment uses seven C language programs and 3 

language Java programs. This C language experimental 
objects consists of five programs in the Software-artifact 
Infrastructure Repository [7]. TABLE 1 lists all information 
of programs. The TABLE 2 describes Java experimental 
objects are from Defects4j through the number of versions and 
the maximum and minimum values of the number of test cases 
in these programs. 

Table 1: Experimental objects using C language 
Name Description Number of 

versions 
Number of 
test cases 

Number 
of lines  

tcas 
Air collision 
avoidance 

system 
41 1500 174 

print_ 
tokens 

Lexical 
analyzer 7 4130 726 

schedule2 Priority 
scheduler 10 2710 374 

replace Mode 
replacement 32 5542 564 

tot_ info Information 
statistics 23 1052 565 

expression 
_parser 

Expression 
parsing and 
arithmetic 

13 1361 1039 

my_sort 

Comparison 
of various 

sorting 
algorithms 

10 1500 2512 

 

Table 2: Experimental objects using Java language 
Program 

name 
Project name Number of 

test cases 
Number of 
test cases 

Chart JFreeChart 26 1591∼2193 

Math Apache 
commonsmath 106 817∼4378 

Time Joda-Timet 27 3749∼4041 
 

B. Evaluation method 
In order to compare the quality of the test suite before and 

after optimization, we use the effect size to evaluate the 
comparison results. The effect size is a value used to express 
the degree of correlation between two sets. Currently, there 
are two commonly used effect size measures  

� Pearson correlation coefficient. It is mainly used to 
calculate the degree of correlation between two sets.  

� Cohen’s d metric. It is mainly used to calculate the 
difference between two sets. 

Since the main purpose of this experiment is to explore the 
difference between ranking costs of real faulty statements 
before and after the test suite optimization, Cohen’s d metric 
is used as a formula for calculating the effect size. Cohen’s d 
is formula (4).  

s
uud 21 ��       (4) 

In formula 5, u1 represents the average of the first sample 
(that is ranking cost of the faulty statement for each faulty 
version after test suite optimization) and u2 represents the 
average of the second sample (that is ranking cost of the faulty 
statement for each faulty version after test suite optimization). 
s represents the combined standard deviation of two samples, 
the formula of which is given by (5). 
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In the above formula, n1 and n2 are the sizes of the two 
samples, respectively, and 2

1s  and 2
2s  represent the variance 

of the two samples.  

In this paper, ranking costs of real faulty statements before 
optimization is used as the data with subscript 1 in the above 
formula, and ranking costs of real faulty statements after 
optimization is used as the data with subscript 2. A positive 
number indicates that the Average Ranking Costs of faulty 
statements on the optimized test suite is lower than before 
optimization, and vice versa. The larger the absolute value is, 
the greater the difference between the two sets of data (before 
and after optimization). In short, the larger the effect size is, 
the better the quality of test suite after optimization will be.  

C. Experimental method  
We perform experiments on the above eleven programs, 

compare the ranking of faulty statements calculated on the 
optimized test suite with the ranking of faulty statements 
before optimization, and use the effect size to quantify the 
experimental results.  
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StartOriginal test 
suite TS

SIR(7 C language programs)
Defects4j(4 Java language programs)

(Multiple error versions in each program)

Optimized test 
suite TS

Calculate the EXAM 
of each statement

Remove the statement of nf≠0 

Calculate the Average Ranking Cost of 
EXAM of the remaining  statementsCalculate the Average 

performance(AP) of the TS
degree of the program(d) and 

equivalence class of a program(c)

Remove a 
test case tsi 

from the TS

Calculate the AP',d',c' 
of the TS' which 
consists of the 

remaining test cases

AP
d'>=d
c' >=c

convergence

Add
tsi

Remove 
tsi

Construct 
new TS

i=i+1

Derive  matrix M and  OC

Calculate< nf, np, ef, ep> of each 
statement of PG, Construct the 

matrix MA

Construct the matrix SF

Rank each statement of PG 
based on SF

Statement 
ranking 

sequence R 
based on TS

Statement 
ranking 

sequence R' 
based on TS'

Effective 
Size

N

Y

N

Y

End Y

9 suspicious factor 
calculation formulas

fault 
statement 

line number 

Whether each formula is 
calculated once

N

 
Figure 4. Experimental procedure 

The overall experimental process is shown in Figure 4. 
First we run the original test suite in the test program. The 
matrix M and OC are constructed based on the collected 
operational information, and then the vector <anf, anp, aef, aep> 
of each statement which is used to construct the MA matrix is 
statistically calculated. We use nine suspicious factor 
calculation formulas to calculate the suspect factor for each 
statements to get the matrix SF. We can rank each statements 
of the program based on the value in SF and calculate the 
Average Ranking Cost of the original test suite. Based on the 
heuristic principle, we use greedy algorithm to get the sub-test 
suite whose Average Ranking Cost is lower than the original 
test suite and which makes less degrees of program and more 
the number of equivalence class for statements. To prove that 
the optimized test suite is higher quality than the original test 
suite, we use the optimized test suite to test program and use 
SFL technology to get a suspicious factor ranking sequence 
for each statements. We check the ranking and cost change of 
the corresponding faulty statements according to the line 
number of the specific faulty statement in the experiment 
object. That is based on the line number of the faulty statement 
and the SF matrix, a ranking sequence of faulty statements 
before and after optimization is constructed. Finally, we use 
effect size to quantify the contrast between the two. 

D. Analysis of experimental results 
Figure 5 shows the effect size of faulty statements before 

and after the test suite optimization for each programs under 
each formula. As shown in Figure 5, after using the greedy 
algorithm to optimize the test suites, in most cases the 
rankings of faulty statements have increased Effect Sizes. The 
largest effect size reaches 0.5398. For each SFL excluding 
Jaccard, Ochiai and SBI, the ranking costs with two kinds of 
constraints decrease after optimizing test cases. So the 
rankings of faulty statements in different programs has 
different degrees of improvement by optimizing test suite. 

 For Jaccard, Ochiai and SBI, the ranking cost of some 
faulty versions increased slightly after optimizing test 
cases.Due to the randomness of a real fault of programs, when 
test suite quality is assessed, all possible fault statements are 
involved in performance calculations in this paper. Our 
method takes the Average Ranking Cost as a measurement, the 
high-quality test suite could improve the average localization 
performance of faulty programs when we do not know where 
the real fault is. However, this does not show that it must 
improve the localization performance of a real fault in a given 
program. In the case of guaranteeing average performance, 

two kinds of constraints can further reduce the cost of finding 
faulty statements in practical applications. 

At the same time, it is shown in the Figure 5 that the effect 
amount on SIR[12] is significantly higher than that on 
Defects4j [13]. Because there are a large number of repetitive 
(redundant) test cases in the SIR test suite, it is better to 
optimize the test suite by reducing the number of test cases. 
There are no redundant test cases in Defects4j, so the results 
are not obvious. From the results, there are still some negative 
effects in the partial program under some formulas.  

 
Figure 5. Average of the effect size of each formula 

VI. RELATED WORK 
Several researchers have begun to empirically investigate 

the ways in which the composition of the test suite impacts the 
effectiveness of fault-localization technique.  

How to reduce test cases from an already available test 
suite to improve the performance of SFL techniques? Hao et 
al. [16] posits that test-case similarity or redundancy results in 
a loss of fault-localization effectiveness. They performed an 
empirical study to show that injected redundancy can impair a 
fault-localization technique’s effectiveness. Their results 
suggest that reduction of test cases could improve 
effectiveness. In [15], for their subject programs and test suites, 
they found that including more than six failed test cases or 
more than twenty passed test cases produces minimal effects 
on the effectiveness of the spectral fault localization. In [14] 
the first experiment using two types of test suite reduction 
strategies on the effectiveness of fault localization techniques 
are presented: (1) statement-based reduction, which generate 
a reduced test suite that covers the same statements as the 
original suite, and (2) vector-based reduction where the 
reduced test suite covers the same set of statement vectors as 
the original test suit. Statement based reduction significantly 
affects the effectiveness, while vector-based reduction has 
negligible effect. This experiment shows that four spectral 
fault-localization effectiveness(Tarantula, Ochiai, SBI, 
Jaccard) varies depending on the test-suite reduction strategy 
used. In [13], several spectra metrics (functions mapped from 
program spectra) are evaluated using the non-redundant test 
cases. In their proposed approach, by only selecting non 
redundant test case instances for pass and fail class, the 
effectiveness of SFL could be improved on several metrics 
include Op through experimental set-up. Masri et al. [7] 
proposed techniques to predict coincidentally correct test 
cases and remove them from the test suite to improve the 
effectiveness of SFL. Zhang et al. report a comprehensive 
study to investigate the impact of cloning the failed test cases 
on the effectiveness of typical SFL techniques [28].  

These methods above show some test suites may be 
redundant and some subsets of the original test cases could 
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improve fault-localization effectiveness. The rankings of 
some statements may be more distinguished than before via 
removing the redundant test cases, but this situation is not 
necessarily occur. These methods were unable to reveal the 
underlying rationale for all of their observations, and did not 
consider how and why removing test cases from the test suite 
can improve the fault localization.  

In this paper, section IV and section V could guide us to 
assess test suite quality and find an optimal subset of a test 
suite which leads to high Average Ranking Cost with two 
kinds of constraints. These works above are specific cases of 
our approach could explain their experimental results; and 
they evaluated the effects of test suite reduction using some 
programs, and thus, they are unable to definitively state that 
their findings will hold for programming in general. For 
example, for the reference [13], after so-called redundant test 
cases are removed, the effectiveness cannot be improved even 
lower with respect to the existing test suites and the Op (or O); 
for the example in Figure 1 which has the same meaning with 
the Figure 1, where s10 is faulty, if the first column test case 
and the seventh test case which are redundant test cases are 
removed, the rankings of s1 to s10 are 9/7, 2/7, 11/7, 9/7, 11/7, 
11/7, 9/7, 2/7, 9/7 and 11/7, thus, the ranking of s10 are 
reduced from being higher than s3, s5 and s6 to equaling s3, s5 
and s6, and the performance of Op are lower than before 
removing redundant test cases.  

Lei, Y. et al. [19] have also identified “in a test suite, the 
passing test cases that do not execute the faulty statements and 
the failing test cases have a positive impact on the fault 
localization effectiveness, whereas the passing test cases that 
exercise the faulty statements have a negative effect on 
localization performance”. Their result is drawn from a large-
scale empirical analysis on the localization effectiveness with 
respect to randomly sampled test suites and improve fault 
localization performance by removing those passing tests. Our   
quality assessment method for a test suite can shows “the 
failing test cases maybe have a positive impact on the fault 
localization effectiveness or no impact, and the passing test 
cases maybe have a positive impact or negative”. For example, 
if the faulty statement is one of s3, s5, s6 or s10, and a new failed 
test case t10=[1,0,1,1,1,1,1,1,1,1] is added, then the 
suspiciousness has not changed in Figure 1, so the localization 
performance has not changed. We argue against that “the 
failing test cases must have a positive impact on the fault 
localization effectiveness”. Our work does not distinguish the 
impact of the passing test cases, and Lei, Y. et al. break the 
passing test cases down into two cases. Lei, Y. et al. also 
proposed a method for improving fault localization 
performance by removing those passing tests. Through our 
example analysis, this method is not a stable method to 
improve performance and the result is random. For example, 
in Figure 1, according to the author’s method, we remove t3 
and t6 by that the feasible percentage value for PTD-TO is 90%.  

� The derived ranking list of statements using O is [“s5, s6, 
s10”, s3, “s1, s4, s7, s9”, “s2, s8”]. If s3 is faulty, it is 
changed from the previous ranking 1([s3, “s5, s6, s10”, “s1, 
s4, s7, s9”, “s2, s8”]) to the current ranking 4; and if s5, s6 
or s10 is faulty, their rankings have been improved.  

� The derived ranking list of statements using GP02 is [“s5, 
s6”, s3, s10, “s1, s4, s7, s9”, s2, s8]. If s3 is faulty, it is 
changed from the previous ranking 1([s3, “s5, s6, s10”, “s1, 

s4, s7, s9”, s2, s8]) to the current ranking 3; and if s5 or s6 
is faulty, their rankings have been improved.  

� The derived ranking list of statements using GP03 is [“s5, 
s6, s10”, s3, “s1, s4, s7, s9”, s2, s8]. If s3 is faulty, it is 
changed from the previous ranking 1([s3, “s5, s6, s10”, “s1, 
s4, s7, s9”, s8, s2]) to the current ranking 4; and if s5, s6 or 
s10 is faulty, their rankings have been improved.  

Our method takes the Average Ranking Cost with two 
kinds of constraints as a measurement, the high-quality test 
suite could improve the average localization performance of 
faulty programs when we do not know where the real fault is. 
Although this does not show that it must improve the 
localization performance of a real fault in a given program, it 
is a big probability event for all possible faulty statements. In 
the case of guaranteeing Average Ranking Cost , two kinds of 
constraints can further reduce the cost of finding faulty 
statements in practical applications. 

VII. CONCLUSIONS 
The quality evaluation of test suite can promote the 

activity of improving the quality of test suite for the better 
localization performance of SFL techniques. This could be of 
significant practical benefit for larger programs. This study has 
proposed a method of test suite quality assessment through 
Average Ranking Cost and two kinds of constraints. Base on  
test suite quality assessment method, the greedy algorithm is 
used to optimize the test suite, which improves the accuracy 
of spectral fault localization.  And so if an available test suite 
exists, the greedy algorithm can guide us to reduce test cases 
from an available test suite to improve the fault localization 
performance. 
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