
Improving Spectrum-Based Fault Localization using
quality assessment and optimization of a test suite

Chang Liu
Chinese Aeronautical Radio

Electronics Research Institute
Shang Hai,China

Chunyan Ma
Software College

Northwestern Polytechnical University
Xi’an Shaanxi,China

machunyan@nwpu.edu.cn

TaoZhang
Software College

Northwestern Polytechnical University
Xi’an Shaanxi,China

Abstract—Spectral fault localization is an automatic fault-
localization technique to expedite debugging, which uses risk
evaluation formula to rank the risk of fault existence in each
program entity after collecting testing information. To assess the
potential usefulness of a test suite and improves the accuracy for
spectral fault localization, methods of assessing and optimizing
test suite are proposed in this paper, which. Firstly, Average
Ranking Cost of the test suite quality and two kinds of constrains
are defined; and test suite quality assessment method based on
these definitions is given. Secondly, a new test suite optimization
method based on greedy algorithm is proposed. Finally, two
widely used program databases (SIR and Defects4j) and 8 SFL
techniques are applied to verify the effectiveness of our method;
and the fault localization cost before and after optimizing test
suites of test objects are analyzed using effect size. The largest
effect size reaches 0.5398 and Each SFL technology has different
degrees of improvement in the rankings of faulty statements in
different programs by optimizing test suite.

Keywords—Spectral fault localization, Average Ranking Cost,
Test suite quality assessment

I. INTRODUCTION

The spectral fault localization (SFL), as an automatic
localization technique, has been extensively studied in recent
years. This approach uses risk evaluation formula to calculate
suspicious factor of fault existence in each program entity
after dynamically collecting testing information. The testing
information includes: the execution coverage for each entity
(e.g., statement, function, and basic block), and the execution
result (i.e., pass or fail) for each test case. Then, all entities
will be sorted in ascending order according to their suspicious
factors. Debugging is then conducted on entities according to
the top-to-bottom ranking list until a fault is found. For
different program entities, the statement and the basic block
have especially received attention. Without loss of generality,
this study considers an entity as a statement. In order to make
SFL techniques effective and useful, there are two things that
should be considered. One is proposing new and effective
SFL techniques. So far, more than 50 SFL techniques and
related technologies have been proposed over the years, such
as O and Op [2], DE(J) and DE(C) [1], Wong [3], Jaccard [4],
Kulczynski1[5], D*[6], EMF [20] and so on. The other, which
[7,15-16,18-19, 28] has adopted empirical approaches
according to the established experimental setups and
benchmarks, such as Siemens Suite, is improving the
performance of existing SFL techniques through
understanding the quality of test suites.

The goal of this work is to perform such an investigation
of test suite quality assessment to improve spectral fault
localization technique. We propose an Average Ranking Cost
with two kinds of constraints to measure test suites quality
and then a test suite optimization method using greedy

algorithm for SFL techniques. The major contributions of this
research are summarized as follows:

� We propose an evaluation method that provides a
repeatable and objective way investigating and
assessing test suites through an Average Ranking Cost
with two constraints.

� With the proposed evaluation method of test suites, we
explore an aspect about how to improve the
performance of SFL by optimizing test suite based on
the greedy algorithm.

� Nine typical SFL techniques such as O, Op and two
widely used program databases (SIR [7] and Defects4j
[8]) are applied to verify the effectiveness of our
method.

Next section provides the necessary background on SFL
techniques. Section III presents the proposed quality
assessment of a test suite in detail. Section IV explores test
suite optimization method based on greedy algorithm. Section
V provides evaluation for our method. Section VI gives the
related work. Section VII draws conclusions.

II. TECHNIQUES REVISITED

For example, two SFL techniques O and Op are shown in
the following equations.

�
�
� ��

�
)(

)0(1
),,,(

otherwisea
a

aaaaO
np

nf
efepnpnf

(1)

1
),,,(

�
��

p
a

aaaaaO ep
efefepnpnf

p (2)

Figure 1. An example for SFL

Considering the example in Fig. 1, a program PG has ten
statements from s1 to s10, and test suite TS has nine test cases
from t1 to t9. Specifically, t7 to t9 give rise to fail runs and the
remaining six test cases give rise to pass runs, as indicated in
binary outcomes OC which records the testing results of TS.
In OC, 1 indicates to pass and 0 indicates to fail. The elements
in the ith row of matrix M represent the test coverage
information of statement si executing t1 to t9, in which 1

72

2020 IEEE 20th International Conference on Software Quality, Reliability and Security Companion (QRS-C)

978-1-7281-8915-4/20/$31.00 ©2020 IEEE
DOI 10.1109/QRS-C51114.2020.00023

indicates that si is executed by the corresponding test case, and
0 otherwise. Matrix MA is such defined that its ith row
represents the corresponding four values of the vector <anf, anp,
aef, aep> for si. SF is the suspicious factor list of statements
using SFL O. For instance, anp= 4 for s3 means that four test
cases give pass without executing s3; and in SF, “4” represents
the suspicious factor of s3 which is highest in the suspicious
factors of all statements and “-1” represents the suspicious
factors of s2 and s8 which is lowest in the SF. SF is using to
rank statements from s1 to s10. The derived ranking list of
statements using O is [s3, “s5, s6, s10”, “s1, s4, s7, s9”, “s2, s8”],
where from left to right, the statements ranked from high to
low and some statements have been marked by each “ ” have
the same ranking.

For the performance measurement of SFLs, the EXAM is
appropriate and majority of the SFL community use the same
measurement as the EXAM or its equivalent. Therefore, we
use the EXAM with tie-breaking ways as ranking cost in this
paper.

n
eg 2/	 (3)

� g is the number of correct statements ranked strictly
higher than all faults.

� e is the number of all statements ranked equal to the
highest ranked fault and if no correct statement ranked
equal to the highest ranked fault, then e = 0.

� n is the number of statements in the program.

For example, in Fig.1, if the s1 is assumed to be faulty, then
for s1, g=4 and e=3, and the fault localization cost is
(4+3/2)/10 = 11/20 using O. The smaller the value of fault
localization cost is, the better the performance of locating a
fault for the SFL technique is.

III. THE QUALITY ASSESSMENT METHOD OF A TEST SUITE
Before quantify test suite quality, several assumptions,

which are adopted from most of the previous SFL studies [2],
[19], [10], [11], [12], are first listed.

� The SFL techniques are applied to programs whose
testing result of either fail or pass can be decided for
any test case.

� Debuggers examine the statements one by one from the
top to bottom of the ranking list returned by SFL, and
once the faulty statement is examined, the fault can
always be identified.

� The test suite is assumed to have 100% statement
coverage and also is assumed that the test suite contains
at least one passed test case and one failed test case.

� The faulty statement must be executed by all failed test
cases in a given single-fault program.

For a real faulty program, it is impossible to know which
test suite is better to locate the specific fault using a SFL
technique, because we don’t know where the faulty statement
is. The efficiency and effectiveness of a test suite cannot be
evaluated when the faulty statement is unknown. In a single-
fault program, one statement cannot be faulty if it is not
covered by some failed execution and this view has been
discussed detailly in [21]. So in order to generalize the test
suite quality evaluation, we assume the single faulty statement
exists in statements whose value of anf is equal to 0. These
statements are called possible faulty statements. Then we

measure the test suite quality on Average Ranking Cost of
locating all possible faulty statements. The definition of
“Average Ranking Cost” of a test suite is as follows.

Definition 1 Average Ranking Cost of a test suite. Given
a program PG =< s1, s2, ..., sn > with n statements, a SFL and
a test suite, the Average Ranking Cost is the average of the
sum of performance calculated in terms of equation (3) for all
possible faulty statements. All possible fault statements can
refer to the set of statements with anf = 0 in the single fault
scenario, or the set of statements with the top 20% of
suspicious factor (exonerating about 80% of the blocks of
code on average) in [22]. We take each of the possible faulty
statements as a real faulty statement to calculate the ranking
cost of the test suite respectively. If there are x possible faulty
statements, we will calculate the average ranking cost of x
statements to evaluate the ability of the test suite to locate
faults.

For the example of fig.1, the statements s1, s3, s4, s5, s6, s7,
s9 and s10 are the possible faulty statements because their nfa
equal 0. The corresponding Average Ranking Cost is
(11/20+0+11/20+ 1/5 + 1/5 + 11/20 + 11/20 + 1/5)/8 = 9/40
referring to equation (3). The smaller the value of Average
Ranking Cost of a SFL applying for a test suite, the higher the
quality of this test suite.

If we only use the Average Ranking Cost to evaluate the
quality of a test suite, we found that sometimes Lowering the
Average Ranking Cost can improve the rankings of some
faulty statements, but it may also cause many statements,
including faulty ones, to be ranked equal and indistinguishable.
For example, in an original test suite, possible faulty
statements in a program are ranked [1, 2, 2], and Average
Ranking Cost of these statements is 1. When a test case is
removed for optimization, these statements are ranked [1, 1,
1], and Average Ranking Cost is 2/3. Thus when we use a
method of reducing the test case to decrease Average Ranking
Cost of possible faulty statements, the suspicious factors of
more statements may be equal. This situation is contrary to the
SFL’s principle of making statements more distinguishable.
To prevent this situation, we define some constraints for the
Average Ranking Cost.

In order to give constraints for Average Ranking Cost, we
first give some definitions.

Definition 2 Partition. The partition is a list which is
formed of consecutive equal values and it at least include 2
equal values in SF. In Figure 1, SF has three partitions which
are [3,3,3], [0,0,0,0] and [-1,-1].

The more the number of partitions, the better the
differentiation among risk rankings of statements. So
Constraint 1 is proposed.

Constraint 1 The number of the partitions cannot be
reduced when the Average Ranking Cost is reduced after
optimizing test cases.

Definition 3 Degree of a Partition. The degree of a
partition is the number of elements contained by this partition.
In Figure 1, the degree of the partition [3,3,3] is 3.

Definition 4 Degree of the program. The degree of the
program is the sum of the degrees of all partitions with respect
to all possible faulty statements. Taking Figure 1 as an

73

example, the degree of the program is 7, where s1 and s8,
whose nfa are not 0, they do not participate in calculation.

The greater the degree of program, the worse the
distinction among risk rankings of statements. So Constraint
2 is proposed.

Constraint 2 The degree of the program cannot be
increased when the Average Ranking Cost is reduced after
optimizing test cases.

Combining definition 1 with constraint 1 and 2, we can
calculate and compare the quality of the test suite according to
the steps shown in Figure 2. For example, for any program, if
we let the already available test suite be TS’, the test suite be
TS after TS’ is reduced; or any program corresponds to two
test suites TS and TS’. The following steps can be applied to
compare TS and TS’.

test suite TS

Test program PG

test suite TS
The quality assessment of a test suite

Calculate the Exam for
each possible faulty

statement

Calculate the average of the
Exam for all possible faulty

statements

The quality of
TS is better
then TS

Calculate average ranking
costs of the TS and TS

Spectral fault localization SFL

Derive the test coverage
matrix M and binary

outcomes OC

Calculate< nf, np, ef, ep> of
each statement of PG,

Construct the matrix MA

Calculate the suspiciousness factors of
each statement of PG using a SFL,

Construct the matrix SF

Rank each statement
of PG based on SF

Calculation The degree and the
number of partitions for PG

The degree
for TS is less
than that for

TS

The number of
the partitions for
TS is more than

that for TS

Yes

The quality of
the two cannot
be compared

No

Figure 2. The assessment method of a test suite

1) For two sets of test suites TS and TS’, we use any
SFL to obtain suspicious factors of all possible
faulty statements.

2) We can calculate the EXAMs of all possible faulty
statements by a ranking list of the suspicious factors
of these statements.

3) By calculating the average of EXAMs, we can get
Average Ranking Cost of TS and TS’. We assume
that the value of TS is less than TS’.

4) We can calculate the degree of the program and the
number of the partitions. If the degree of the
program the number of the partitions for TS is less
than TS’, quality of TS is better than TS’.

5) Otherwise we cannot judge whose quality is better
for both TS and TS’.

IV. A TEST SUITE OPTIMIZATION METHOD BASED ON
GREEDY ALGORITHM

How to reduce test cases from an already available test
suite to improve the performance of SFL techniques?

In this paper, a test suite optimization method based on
greedy algorithm is proposed.

Greedy algorithm divides the problem (i.e. test suite
optimization) into multiple sub-problems (i.e. Comparing the
quality of test suite before and after deleting a test case).
According to the chosen greedy strategy (heuristic principle),
we select an optimal solution of each sub-problem, and finally
constitute the optimal solution of the problem. The greedy
strategy is to choose best Average Ranking Cost with two
kinds of constraints in the sub-question. We build a subset of
test suites by reducing test cases and then calculate the
Average Ranking Cost with two kinds of constraints the test
suites subset. According to the greedy strategy, a subset of test
suites that reduces the Average Ranking Cost with two kinds
of constraints are selected as local optimal solutions. Thus, an
optimized test suite is constructed by multiple local optimal
solutions within the time complexity of O(n). We will
introduce the process of using the greedy algorithm to solve
the problem about optimization test suite from the design
heuristic principle and algorithm implementation.

A. Heuristic principle
Before implementing the greedy algorithm, we need to

design a heuristic principle for solving this problem, as shown
below.

1) We assume a negative correlation between Average
Ranking Cost with two kinds of constraints and
quality of a test suite. The lower is Average Ranking
Cost with two kinds of constraints, the higher is the
quality of the test suite.

2) At the same time, two test cases that increase Average
Ranking Cost with two kinds of constraints are
removed, and the Average Ranking Cost is
statistically more likely to decrease. In other words,
removing test cases t1 and t2 separately can reduce the
Average Ranking Cost with two kinds of constraints,
but removing them at the same time will increase the
Average Ranking Cost with two kinds of constraints.
Although the above may theoretically exist, we
assume that the probability of this happening is low.

B. Test suite optimization based on greedy algorithm
The main idea of the greedy algorithm in this paper is

based on the heuristic principle of test suite optimization
problem. A test case is removed from the original test suite to
form a subset of the test cases. The optimal Average Ranking
Cost with two kinds of constraints of solving the subset of the
test cases is a sub-question, and the solution result of the
combined sub-problem constitutes a solution to the problem.

Figure 3 gives the Test suite optimization algorithm based
on greedy algorithm. In line 1 to line 4 of this algorithm, it
retains all test cases and calculates their Average Ranking Cost,
the number of partitions (constraint 1) and the degree of the
program(constraint 2). Next, for each test case, we remove a
test case which execute the program and pass it on line 7 and
then calculate Average Ranking Cost, the number of partitions
(constraint 1) and the degree of the program(constraint 2) on
line 11. If Average Ranking Cost is lower or unchanged,
degree of the program is higher or unchanged and the number
of the partitions for statements is more or unchanged, we
should keep removing the test case and go to the next test case.

74

Otherwise, re-add this removed test case to the test case set on
line 16.

Average Ranking Cost is the average of Exam for program
statements (excluding statements with anf
0), so first we need
to calculate the Exam cost for each possible faulty statements.
We calculate the suspicious factor matrix SF of the program
through the MA matrix. For each statements, we count the
number of statements whose ranking is higher than the
ranking and the number of statements in the program, and then
the Exam value is calculated by the formula (2).

Figure 3. Test suite optimization based on greedy algorithm

V. EVALUATION

A. Experimental objects
This experiment uses seven C language programs and 3

language Java programs. This C language experimental
objects consists of five programs in the Software-artifact
Infrastructure Repository [7]. TABLE 1 lists all information
of programs. The TABLE 2 describes Java experimental
objects are from Defects4j through the number of versions and
the maximum and minimum values of the number of test cases
in these programs.

Table 1: Experimental objects using C language
Name Description Number of

versions
Number of
test cases

Number
of lines

tcas
Air collision
avoidance

system
41 1500 174

print_
tokens

Lexical
analyzer 7 4130 726

schedule2 Priority
scheduler 10 2710 374

replace Mode
replacement 32 5542 564

tot_ info Information
statistics 23 1052 565

expression
_parser

Expression
parsing and
arithmetic

13 1361 1039

my_sort

Comparison
of various

sorting
algorithms

10 1500 2512

Table 2: Experimental objects using Java language
Program

name
Project name Number of

test cases
Number of
test cases

Chart JFreeChart 26 1591∼2193

Math Apache
commonsmath 106 817∼4378

Time Joda-Timet 27 3749∼4041

B. Evaluation method
In order to compare the quality of the test suite before and

after optimization, we use the effect size to evaluate the
comparison results. The effect size is a value used to express
the degree of correlation between two sets. Currently, there
are two commonly used effect size measures

� Pearson correlation coefficient. It is mainly used to
calculate the degree of correlation between two sets.

� Cohen’s d metric. It is mainly used to calculate the
difference between two sets.

Since the main purpose of this experiment is to explore the
difference between ranking costs of real faulty statements
before and after the test suite optimization, Cohen’s d metric
is used as a formula for calculating the effect size. Cohen’s d
is formula (4).

s
uud 21 �� (4)

In formula 5, u1 represents the average of the first sample
(that is ranking cost of the faulty statement for each faulty
version after test suite optimization) and u2 represents the
average of the second sample (that is ranking cost of the faulty
statement for each faulty version after test suite optimization).
s represents the combined standard deviation of two samples,
the formula of which is given by (5).

2
)1()1(

21

2
22

2
11

�	
��	��

�
nn

snsns (5)

In the above formula, n1 and n2 are the sizes of the two
samples, respectively, and 2

1s and 2
2s represent the variance

of the two samples.

In this paper, ranking costs of real faulty statements before
optimization is used as the data with subscript 1 in the above
formula, and ranking costs of real faulty statements after
optimization is used as the data with subscript 2. A positive
number indicates that the Average Ranking Costs of faulty
statements on the optimized test suite is lower than before
optimization, and vice versa. The larger the absolute value is,
the greater the difference between the two sets of data (before
and after optimization). In short, the larger the effect size is,
the better the quality of test suite after optimization will be.

C. Experimental method
We perform experiments on the above eleven programs,

compare the ranking of faulty statements calculated on the
optimized test suite with the ranking of faulty statements
before optimization, and use the effect size to quantify the
experimental results.

75

StartOriginal test
suite TS

SIR(7 C language programs)
Defects4j(4 Java language programs)

(Multiple error versions in each program)

Optimized test
suite TS

Calculate the EXAM
of each statement

Remove the statement of nf≠0

Calculate the Average Ranking Cost of
EXAM of the remaining statementsCalculate the Average

performance(AP) of the TS
degree of the program(d) and

equivalence class of a program(c)

Remove a
test case tsi

from the TS

Calculate the AP',d',c'
of the TS' which
consists of the

remaining test cases

AP
d'>=d
c' >=c

convergence

Add
tsi

Remove
tsi

Construct
new TS

i=i+1

Derive matrix M and OC

Calculate< nf, np, ef, ep> of each
statement of PG, Construct the

matrix MA

Construct the matrix SF

Rank each statement of PG
based on SF

Statement
ranking

sequence R
based on TS

Statement
ranking

sequence R'
based on TS'

Effective
Size

N

Y

N

Y

End Y

9 suspicious factor
calculation formulas

fault
statement

line number

Whether each formula is
calculated once

N

Figure 4. Experimental procedure

The overall experimental process is shown in Figure 4.
First we run the original test suite in the test program. The
matrix M and OC are constructed based on the collected
operational information, and then the vector <anf, anp, aef, aep>
of each statement which is used to construct the MA matrix is
statistically calculated. We use nine suspicious factor
calculation formulas to calculate the suspect factor for each
statements to get the matrix SF. We can rank each statements
of the program based on the value in SF and calculate the
Average Ranking Cost of the original test suite. Based on the
heuristic principle, we use greedy algorithm to get the sub-test
suite whose Average Ranking Cost is lower than the original
test suite and which makes less degrees of program and more
the number of equivalence class for statements. To prove that
the optimized test suite is higher quality than the original test
suite, we use the optimized test suite to test program and use
SFL technology to get a suspicious factor ranking sequence
for each statements. We check the ranking and cost change of
the corresponding faulty statements according to the line
number of the specific faulty statement in the experiment
object. That is based on the line number of the faulty statement
and the SF matrix, a ranking sequence of faulty statements
before and after optimization is constructed. Finally, we use
effect size to quantify the contrast between the two.

D. Analysis of experimental results
Figure 5 shows the effect size of faulty statements before

and after the test suite optimization for each programs under
each formula. As shown in Figure 5, after using the greedy
algorithm to optimize the test suites, in most cases the
rankings of faulty statements have increased Effect Sizes. The
largest effect size reaches 0.5398. For each SFL excluding
Jaccard, Ochiai and SBI, the ranking costs with two kinds of
constraints decrease after optimizing test cases. So the
rankings of faulty statements in different programs has
different degrees of improvement by optimizing test suite.

 For Jaccard, Ochiai and SBI, the ranking cost of some
faulty versions increased slightly after optimizing test
cases.Due to the randomness of a real fault of programs, when
test suite quality is assessed, all possible fault statements are
involved in performance calculations in this paper. Our
method takes the Average Ranking Cost as a measurement, the
high-quality test suite could improve the average localization
performance of faulty programs when we do not know where
the real fault is. However, this does not show that it must
improve the localization performance of a real fault in a given
program. In the case of guaranteeing average performance,

two kinds of constraints can further reduce the cost of finding
faulty statements in practical applications.

At the same time, it is shown in the Figure 5 that the effect
amount on SIR[12] is significantly higher than that on
Defects4j [13]. Because there are a large number of repetitive
(redundant) test cases in the SIR test suite, it is better to
optimize the test suite by reducing the number of test cases.
There are no redundant test cases in Defects4j, so the results
are not obvious. From the results, there are still some negative
effects in the partial program under some formulas.

Figure 5. Average of the effect size of each formula

VI. RELATED WORK
Several researchers have begun to empirically investigate

the ways in which the composition of the test suite impacts the
effectiveness of fault-localization technique.

How to reduce test cases from an already available test
suite to improve the performance of SFL techniques? Hao et
al. [16] posits that test-case similarity or redundancy results in
a loss of fault-localization effectiveness. They performed an
empirical study to show that injected redundancy can impair a
fault-localization technique’s effectiveness. Their results
suggest that reduction of test cases could improve
effectiveness. In [15], for their subject programs and test suites,
they found that including more than six failed test cases or
more than twenty passed test cases produces minimal effects
on the effectiveness of the spectral fault localization. In [14]
the first experiment using two types of test suite reduction
strategies on the effectiveness of fault localization techniques
are presented: (1) statement-based reduction, which generate
a reduced test suite that covers the same statements as the
original suite, and (2) vector-based reduction where the
reduced test suite covers the same set of statement vectors as
the original test suit. Statement based reduction significantly
affects the effectiveness, while vector-based reduction has
negligible effect. This experiment shows that four spectral
fault-localization effectiveness(Tarantula, Ochiai, SBI,
Jaccard) varies depending on the test-suite reduction strategy
used. In [13], several spectra metrics (functions mapped from
program spectra) are evaluated using the non-redundant test
cases. In their proposed approach, by only selecting non
redundant test case instances for pass and fail class, the
effectiveness of SFL could be improved on several metrics
include Op through experimental set-up. Masri et al. [7]
proposed techniques to predict coincidentally correct test
cases and remove them from the test suite to improve the
effectiveness of SFL. Zhang et al. report a comprehensive
study to investigate the impact of cloning the failed test cases
on the effectiveness of typical SFL techniques [28].

These methods above show some test suites may be
redundant and some subsets of the original test cases could

76

improve fault-localization effectiveness. The rankings of
some statements may be more distinguished than before via
removing the redundant test cases, but this situation is not
necessarily occur. These methods were unable to reveal the
underlying rationale for all of their observations, and did not
consider how and why removing test cases from the test suite
can improve the fault localization.

In this paper, section IV and section V could guide us to
assess test suite quality and find an optimal subset of a test
suite which leads to high Average Ranking Cost with two
kinds of constraints. These works above are specific cases of
our approach could explain their experimental results; and
they evaluated the effects of test suite reduction using some
programs, and thus, they are unable to definitively state that
their findings will hold for programming in general. For
example, for the reference [13], after so-called redundant test
cases are removed, the effectiveness cannot be improved even
lower with respect to the existing test suites and the Op (or O);
for the example in Figure 1 which has the same meaning with
the Figure 1, where s10 is faulty, if the first column test case
and the seventh test case which are redundant test cases are
removed, the rankings of s1 to s10 are 9/7, 2/7, 11/7, 9/7, 11/7,
11/7, 9/7, 2/7, 9/7 and 11/7, thus, the ranking of s10 are
reduced from being higher than s3, s5 and s6 to equaling s3, s5
and s6, and the performance of Op are lower than before
removing redundant test cases.

Lei, Y. et al. [19] have also identified “in a test suite, the
passing test cases that do not execute the faulty statements and
the failing test cases have a positive impact on the fault
localization effectiveness, whereas the passing test cases that
exercise the faulty statements have a negative effect on
localization performance”. Their result is drawn from a large-
scale empirical analysis on the localization effectiveness with
respect to randomly sampled test suites and improve fault
localization performance by removing those passing tests. Our
quality assessment method for a test suite can shows “the
failing test cases maybe have a positive impact on the fault
localization effectiveness or no impact, and the passing test
cases maybe have a positive impact or negative”. For example,
if the faulty statement is one of s3, s5, s6 or s10, and a new failed
test case t10=[1,0,1,1,1,1,1,1,1,1] is added, then the
suspiciousness has not changed in Figure 1, so the localization
performance has not changed. We argue against that “the
failing test cases must have a positive impact on the fault
localization effectiveness”. Our work does not distinguish the
impact of the passing test cases, and Lei, Y. et al. break the
passing test cases down into two cases. Lei, Y. et al. also
proposed a method for improving fault localization
performance by removing those passing tests. Through our
example analysis, this method is not a stable method to
improve performance and the result is random. For example,
in Figure 1, according to the author’s method, we remove t3
and t6 by that the feasible percentage value for PTD-TO is 90%.

� The derived ranking list of statements using O is [“s5, s6,
s10”, s3, “s1, s4, s7, s9”, “s2, s8”]. If s3 is faulty, it is
changed from the previous ranking 1([s3, “s5, s6, s10”, “s1,
s4, s7, s9”, “s2, s8”]) to the current ranking 4; and if s5, s6
or s10 is faulty, their rankings have been improved.

� The derived ranking list of statements using GP02 is [“s5,
s6”, s3, s10, “s1, s4, s7, s9”, s2, s8]. If s3 is faulty, it is
changed from the previous ranking 1([s3, “s5, s6, s10”, “s1,

s4, s7, s9”, s2, s8]) to the current ranking 3; and if s5 or s6
is faulty, their rankings have been improved.

� The derived ranking list of statements using GP03 is [“s5,
s6, s10”, s3, “s1, s4, s7, s9”, s2, s8]. If s3 is faulty, it is
changed from the previous ranking 1([s3, “s5, s6, s10”, “s1,
s4, s7, s9”, s8, s2]) to the current ranking 4; and if s5, s6 or
s10 is faulty, their rankings have been improved.

Our method takes the Average Ranking Cost with two
kinds of constraints as a measurement, the high-quality test
suite could improve the average localization performance of
faulty programs when we do not know where the real fault is.
Although this does not show that it must improve the
localization performance of a real fault in a given program, it
is a big probability event for all possible faulty statements. In
the case of guaranteeing Average Ranking Cost , two kinds of
constraints can further reduce the cost of finding faulty
statements in practical applications.

VII. CONCLUSIONS
The quality evaluation of test suite can promote the

activity of improving the quality of test suite for the better
localization performance of SFL techniques. This could be of
significant practical benefit for larger programs. This study has
proposed a method of test suite quality assessment through
Average Ranking Cost and two kinds of constraints. Base on
test suite quality assessment method, the greedy algorithm is
used to optimize the test suite, which improves the accuracy
of spectral fault localization. And so if an available test suite
exists, the greedy algorithm can guide us to reduce test cases
from an available test suite to improve the fault localization
performance.

ACKNOWLEDGMENTS
This work was supported by Key laboratory project of

China aviation science foundation (20175553028 and
20185853038) and the China Aerospace funded project
entitled “Fault prediction and location technology of
aerospace embedded software based on variables and values”.
We also thank all the anonymous reviewers for their
constructive comments.

REFERENCES
[1] Lee, H. J., Naish, L., and Kotagiri, R., 2009a. The Effectiveness of

Using Non redundant Test Cases with Program Spectra for Bug
Localization. 2nd IEEE International Conference on Computer Science
and Information Technology. ICCSIT, pp.127-134.

[2] Naish, L., Lee, H. J., and Ramamohanarao, K., 2011. A model for
spectra-based software diagnosis. ACM Transactions on Software
Engineering and Methodology 20, 3, pp. 11:1-11:32.

[3] Wong, W. E., Qi, Y., Zhao, L., and Cai, K. Y., 2007. Effective fault
localization using code coverage. In Proceedings of the 31st Annual
International Conference on Computer Software and Applications.
Beijing, China, pp. 449-456.

[4] Chen, M. Y., Kiciman, E., Fratkin, E., Fox, A., Brewer, E., 2002.
Pinpoint: Problem determination in large, dynamic internet services. In
Dependable Systems and Networks. DSN 2002. Proceedings.
International Conference on . IEEE.,pp. 595-604.

[5] S. Choi, S. Cha, and C. C. Tappert. 2010, Jan.. A survey of binary
similarity and distance measures.J. Systemics, Cybern. Inf., vol. 8, no.
1, pp.43-48.

[6] Wong, W. E., Debroy, V., Gao, R., Li, Y., 2014. The dstar method for
effective software fault localization. Reliability, IEEE Transactions on.
vol.63, no.1, pp.290-308.

[7] Software-artifactinfrastructurerepository[EB/OL].2005.
http://sir.csc.ncsu.edu/php/ index.php.

[8] Defects4j[EB/OL]. https://github.com/rjust/defects4j.

77

[9] Xie, X. Y., WONG, W. E., CHEN, T. Y., AND XU, B. W., 2011.
Spectrum-based fault localization: Testing oracles are no longer
mandatory. In Proceedings of the 11th International Conference on
Quality Software. pp. 1-10.

[10] Chen, T. Y., Xie, X., Kuo, F. C., and Xu, B. 2015. A Revisit of a
Theoretical Analysis on Spectrum-Based Fault Localization. IEEE,
Computer Software and Applications Conference (Vol.1, pp.17-22).
IEEE.

[11] Zhang, L., Yan, L., Zhang, Z., Zhang, J., Chan, W. K., and Zheng, Z.
2017. A theoretical analysis on cloning the failed test cases to improve
spectrum-based fault localization. Journal of Systems and Software,
129, 35-57.

[12] Ma, C., Nie, C., Chao, W., and Zhang, B. 2018. A vector table
modelbased systematic analysis of spectral fault localization
techniques. Software Quality Journal(11), 1-36.

[13] Lee, H. J., Naish, L., and Kotagiri, R., 2009a. The Effectiveness of
Using Non redundant Test Cases with Program Spectra for Bug
Localization. 2nd IEEE International Conference on Computer Science
and Information Technology. ICCSIT, pp.127-134.

[14] R. Abreu, P. Zoeteweij, and A. J. C. van Gemund, 2007. On the
accuracy of spectrum-based fault localization. In Testing: Academic
and Industrial Conference, Practice and Research Techniques, Windsor,
UK.

[15] D. Hao, Y. Pan, L. Zhang, W. Zhao, H. Mei, and J. Sun., 2005. A
similarity-aware approach to testing based fault localization. In

Proceedings of the Conference on Automated Software Engineering,
pp. 291-294.

[16] Bo Jiang, Zhenyu Zhang, W.K. Chan, T.H. Tse, Tsong Yueh
Chen.,2012. How well does test case prioritization integrate with
statistical fault localization? Information and Software Technology 54,
pp. 739-758.

[17] Zhang, L., Yan, L., Zhang, Z., Zhang, J., Chan, W. K., and Zheng, Z.
2017. A theoretical analysis on cloning the failed test cases to improve
spectrum-based fault localization. Journal of Systems and Software,
129, 35-57.

[18] WONG,W. E., DEBROY, V., AND CHOI, B., 2010. A family of code
coverage based heuristics for effective fault localization. Journal of
Systems and Software 83, 2, pp.188-208.

[19] Lei Y, Sun C, Mao X, et al. How test suites impact fault localisation
starting from the size[J]. IET software, 2018, 12(3): 190-205.

[20] Jeongju Sohn, Shin Yoo: Why train-and-select when you can use them
all?: ensemble model for fault localisation. GECCO 2019: 1408-1416.

[21] Chunyan Ma, Chenyang Nie, Weicheng Chao, Bowei Zhang. A Vecto
r Table Model based Systematic Analysis of Spectral Fault Localizati
on Techniques, Software Quality Journal, DOI: 10.1007/s11219-018-
9402-1 2018.

[22] Abreu, R., Zoeteweij, P., Golsteijn, R., and van Gemund, A. J. C., 2009.
A practical evaluation of spectrum-based fault localization. Journal of
Systems and Software 82 (11), pp.1780-1792.

78

