
Parallel stratified random testing
for concurrent programs

Canh Minh Do, Kazuhiro Ogata
School of Information Science

Japan Advanced of Institute of Science and Technology
1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan

Email: {canhdominh, ogata}@jaist.ac.jp

Abstract—For a concurrent program in Java, the reachable
state space from each initial state is divided into L layers such
that each layer depth is Dl for l = 1, . . . , L. If the program
is exhaustively tested for each layer and there are m states at
depth D1 + . . .+Dl, then there are m sub-state spaces in layer
l + 1 and each of the m sub-state spaces is exhaustively tested.
Instead of exhaustively testing all the m sub-state spaces, we
use a percentage δl% for each layer l, randomly select about
0.01× δl ×m ones among the m states at depth D1 + . . .+Dl

and test only about 0.01× δl ×m sub-state spaces in layer l+1.
For a Java implementation of the NSPK authentication protocol,
even though the number of layers was 2 and each layer depth
was 100, it did not complete in 3 weeks to exhaustively test the
concurrent program. On the other hand, if the number of layers
was 3, each layer depth was 100 and the percentages for layer 1
& layer 2 were 0.05% (or 0.1%) & 0.05% (or 0.1%), respectively,
it completed in 19h to randomly test the concurrent program.

Index Terms—concurrent programs, JPF, Maude, parallel
testing, random testing

I. INTRODUCTION

It is extremely hard to test concurrent programs effectively

and efficiently. This is because there are many processes or

threads running in parallel, which requires us to take into

account many possible combinations caused by interleaving

processes or threads. We have been working on testing con-

current programs so as to make it more effective and efficient

to test concurrent programs. We first proposed specification-

based testing with simulation relations [1] and then a divide

& conquer approach [2] to testing concurrent Java programs

with JPF [3] and Maude [4]. The divide & conquer approach

to testing concurrent programs can be naturally parallelized.

The reachable state space of a concurrent program is divided

into multiple smaller sub-state spaces that can be tested in

parallel. The technique proposed in [2] basically checks if

each execution sequence generated from a Java concurrent

program can be accepted by a formal specification in Maude,

where JPF is used to generate execution sequences from a

Java concurrent program and Maude is used to check if the

execution sequences can be accepted by a Maude formal

specification. We have also demonstrated that the technique

proposed in [2] can be used to test Java concurrent programs

without checking if execution sequences generated from Java

programs can be accepted by Maude specifications [5] in

which we demonstrate that we quickly detect a state of a Java

implementation of the NSPK authentication protocol [6] where

the nonce secrecy property is broken. However, we were not

able to detect a state in which the one-to-many agreement

(authentication) property is broken. This is because a state in

which the latter property is broken is located at a much deeper

position than a state in which the former property is broken.

To aim at making it possible to detect a state in which

the one-to-many agreement property is broken, we introduce

random state selection in our testing technique for concurrent

programs. We suppose that a system (or a protocol) is formally

specified in Maude and a concurrent program is written in Java

based on the formal specification. To test such a concurrent

program, we divide the reachable state space of the concurrent

program into L layers such that each layer depth is Dl for

l = 1, . . . , L. If there is one initial state in the concurrent

program, there is one sub-state space in layer 1. If there are

m states located at depth D1 + . . . + Dl, there are m sub-

state spaces in layer l + 1 if we do not use any random state

selection. We use a percentage δl for l = 1, . . . , L − 1 to

randomly select some states located at D1 + . . . + Dl. If nl

states are generated at depth D1 + . . . + Dl, approximately

0.01×δl×nl states are randomly selected among the nl states

and then we have approximately 0.01×δl×nl sub-state spaces

in layer l + 1.

For a Java implementation of the NSPK authentication

protocol, even though we used 2 layers and each layer depth

was 100, it did not complete in three weeks to exhaustively

test the concurrent program. On the other hand, when we

used 3 layers, each layer depth was 100 and the percentages

for layer 1 & layer 2 were 0.05% (or 0.1%) & 0.05% (or

0.1%), respectively, it completed in 19h to randomly test the

concurrent program. Although we still did not find a state

in which the one-to-many agreement property is broken, we

made some progress toward making it possible to detect such

a state.

The remaining part of the paper is organized as follows.

Sect. II mentions some preliminaries. Sect. III describes how

to generate states from Java concurrent programs with JPF.

Sect. IV describes how to randomly generate states in a strat-

ified way. Sect. V proposes parallel stratified random testing

for concurrent programs. Sect. VI reports on a (preliminary)

case study. Sect. VII mentions some existing related work.

Sect. VIII finally concludes the paper and mentions some

future directions.

79

2020 IEEE 20th International Conference on Software Quality, Reliability and Security Companion (QRS-C)

978-1-7281-8915-4/20/$31.00 ©2020 IEEE
DOI 10.1109/QRS-C51114.2020.00024

II. PRELIMINARIES

A state machine M � 〈S, I, T 〉 consists of a set S of

states, the set I ⊆ S of initial states and a binary relation

T ⊆ S × S over states. (s, s′) ∈ T is called a state transition

and may be written as s→M s′. States are expressed as braced

soups of observable components, where soups are associative-

commutative collections and observable components are name-

value pairs in this paper. The state that consists of observable

components oc1, oc2 and oc3 is expressed as {oc1 oc2 oc3},
which equals {oc3 oc1 oc2} and some others because of

associativity and commutativity. We use Maude [4], a rewriting

logic-based computer language, as a specification language be-

cause Maude makes it possible to use associative-commutative

collections. State transitions are specified in Maude rewrite

rules.

Let us consider as an example a mutual exclusion proto-

col (the test&set protocol) in which the atomic instruction

test&set is used. The protocol written in an Algol-like pseudo-

code is as follows:

Loop : ”RemainderSection(RS)”
rs : repeat while test&set(lock) = true;

”CriticalSection(CS)”
cs : lock := false;

lock is a Boolean variable shared by all processes (or threads)

participating in the protocol. test&set(lock) does the follow-

ing atomically: it sets lock false and returns the old value

stored in lock. Each process is located at either rs (remainder

section) or cs (critical section). Initially each process is located

at rs and lock is false. When a process is located at rs,
it does something (which is abstracted away in the pseudo-

code) that never requires any shared resources; if it wants to

use some shared resources that must be used in the critical

section, then it performs the repeat while loop. It waits

there while test&set(lock) returns true. When test&set(lock)
returns false, the process is allowed to enter the critical section.

The process then does something (which is also abstracted

away in the pseudo-code) that requires to use some shared

resources in the critical section. When the process finishes its

task in the critical section, it leaves there, sets lock false and

goes back to the remainder section.

When there are three processes p1, p2 and p3,

each state of the protocol is formalized as a term

{(lock : b) (pc[p1] : l1) (pc[p2] : l2) (pc[p3] : l3)}, where

b is a Boolean value and each li is either rs or cs. Initially b is

false and each li is rs. The state transitions are formalized as

two rewrite rules. One rewrite rule says that if b is false and

li is rs, then b becomes true, li becomes cs and any other lj
(such that j �= i) does not change. The other rewrite rule says

that if li is cs, then b becomes false, li becomes rs and any

other lj (such that j �= i) does not change. The two rules are

specified in Maude as follows:

rl [enter] : {(lock: false) (pc[I]: rs) OCs}
=> {(lock: true) (pc[I]: cs) OCs} .

rl [leave] : {(lock: B) (pc[I]: cs) OCs}
=> {(lock: false) (pc[I]: rs) OCs} .

where enter and leave are the labels (or names) given to

the two rewrite rules, I is a Maude variable of process IDs,

B is a Maude variable of Boolean values and OCs is a Maude

variable of observable component soups. OCs represents the

remaining part (the other processes but process I) of the

system. Both rules never change OCs.

�������

������	

��������

�������	

������
�����
�
�

Fig. 1. Stratified random state generation

III. STATE GENERATION FROM CONCURRENT PROGRAMS

A. Java Pathfinder (JPF)

JPF is an extensible software model checking framework

for Java bytecode programs that are generated by a standard

Java compiler from Java programs. It has a special Virtual

Machine (VM) that can be backtracked to support model

checking of concurrent Java programs so that it is able to

detect some flaws lurking in programs, such as race conditions

and deadlocks, when it reports a whole execution leading to

the flaw. Basically, JPF can identify execution choices in a

program from which the execution could proceed differently.

A state in JPF is mainly constituted of a heap and threads

plus an execution history (or path) that leads to the state that

is given a unique ID number. Looking inside the heap of a

state, we may analyze the values of the data of a program

at each state. JPF uses a search component in charge of

selecting the next state from which the VM should proceed,

either by directing the VM to generate the next state (forward)

or by telling it to backtrack to a previously generated one

(backtrack).

B. Generating states located at depth with JPF

The most important extension mechanism of JPF is listeners

that allow us to observe, interact with, and extend JPF while

executing. We can use the listener mechanism to analyze the

values of the program’s data as well as navigate JPF to transit

between states. Indeed, we create a listener that subscribes to

some events emitted from JPF execution. Whenever JPF hits to

a depth bound, we look inside the heap of the state and extract

all values of observer components from the program. Those

values are then encapsulated into a Configuration object, then

checking whether or not the object has already been explored

before in a cache. If so, we do not need to take the object into

account. Otherwise, we save the object into the cache and then

send it to a message queue to handle later. Thereby, we could

generate a set of states located at a given depth with JPF.

80

Because the state space could be enormous, we manage

a DEPTH bound parameter to make sure that JPF can

terminate. The DEPTH bound is the maximum depth from

the initial state; once JPF reaches any state whose depth from

the initial state is DEPTH , we send a backtrack message to

request the search component for backtracking. The DEPTH
bound could be set unbounded, meaning that we ask JPF

to check the entire state space. Note that JPF not only can

generate states but also jointly verify programs that enjoy

desired properties.

IV. STRATIFIED RANDOM STATE GENERATION

The use of JPF often encounters the notorious state space

explosion while checking property violations through search-

ing. Our previous work on a divide & conquer approach to

testing concurrent programs can enhance the use of JPF in

verification by parallelization [5]. In some cases, however, we

were not able to complete testing of a concurrent program

or to find a flaw located at a deep position in a concurrent

program that has a huge reachable state space. For example,

it is known that NSPK enjoys neither the nonce secrecy

property nor the one-to-many agreement (or authentication)

property and so does any of its implementations. A state in

which the one-to-many agreement property is broken is located

at a deeper position that one in which the nonce secrecy

property is broken. A parallel version of the divide & conquer

approach to testing concurrent program can detect a state in

which the nonce secrecy property is broken lurking in an

implementation of NSPK, while it cannot detect a state in

which the one-to-many agreement property is broken. This

is because even the bounded reachable state space up to a

state in which the one-to-many agreement property is broken

is too huge, which cannot be tackled by our parallel stratified

testing technique. To alleviate the situation, we extend our

parallel stratified testing in that we randomly select some states

located at some depth from which we test states located at deep

positions instead of exhaustively testing all states located at

deep positions.

We first generate all states located at depth D1 from each

initial state for layer 1 (see Fig. 1). If D1 is small enough,

it is possible to do so. Given one initial state, there is one

sub-state space in the first layer explored with JPF. From all

states located at the bottom positions of layer 1 (or at layer 1),

we specify a percentage of states to select states randomly for

succeeding layer exploration instead of taking all states into

account. In Fig. 1, the blue circles represent the selected states,

while the yellow circles are ignored. For each one s among the

randomly selected states at layer 1, we then generate all states

located at depth D2 (depth D1 + D2 from the initial state)

(see Fig. 1) reachable from s. If D2 is small enough and the

number of the randomly selected states is small enough, it is

possible to do so. There are as many sub-state spaces in layer

2 as the randomly selected states at layer 1.

The technique could be generalized such that the number

of layers is N ≥ 2. We can do the same thing for the states at

layer 2 as we did for the states at layer 1. We can randomly

select states at layer 2 (or at depth D1 +D2 from the initial

state) according to the percentage of the states generated at

layer 2. Then, we can randomly select states at layer 3 (or

at depth D1 + D2 + D3 from the initial state) according to

the percentage of the states generated at layer 3. It is worth

mentioning that generating states for each sub-state space is

independent of any other sub-state spaces in the same layer.

This characteristic of the proposed technique makes it possible

to generate states from concurrent programs at each layer in

parallel.

V. PARALLEL STRATIFIED RANDOM TESTING FOR

CONCURRENT PROGRAMS

From an initial state, we start verifying that programs enjoy

desired properties in a stratified and randomized way such that

it is possible to tackle multiple sub-state spaces in parallel.

For each layer l, we specify a percentage based on which

we randomly select states among those generated and located

at the bottom positions of layer l (or at layer l). We do

verification for each sub-state space in layer l at the same time

when we generate states at layer l, and so do we for layer l+1.

The technique to test concurrent programs in this way is called

the parallel stratified random testing for concurrent programs.

Our tool supporting the parallel stratified random testing for

concurrent programs has been implemented in Java. The tool

architecture is depicted in Fig. 2, which is based on the master-

worker model (or pattern). We use one master and four workers

to conduct verification with our technique. The current number

(4) of workers is tailored for the currently used computer, and

can be increased and decreased depending on the computer

used. We use Redis [7] and RabbitMQ [8] to develop our tool:

• Redis is an advanced key-value store and supports many

different kinds of data structures, such as strings, lists,

maps, sets and hashes. It could hold its database entirely

in memory. Hence, we use Redis as an effective cache

to avoid duplicating states when generating states at each

layer. We also use Redis to select states randomly given a

percentage of states at each layer. Besides, we use Redis

to store the status of workers running in our environment.

• RabbitMQ is used as a message broker. The RabbitMQ

master maintains message queues to dispatch messages

to RabbitMQ (RMQ) clients. Each worker consists of a

RabbitMQ client and JPF.

In the beginning, we run a starter program to do several

things for initialization. Firstly, we clean up everything from

Redis cache as well as RabbitMQ master. Secondly, we send

an initial state (as a message) to a message queue, where the

initial state corresponds to the initial state specified in the

specification concerned. States as messages are distributed to

workers through the message queue. The initial state will be

distributed to a worker that works on the first layer, generating

all states located at (the bottom of) the first layer and do testing

each state that occurs to all the states generated from the initial

state as well. Let depth-D be a set of states located at depth D,

where D is the depth from the initial state. If there are n states

generated at depth D from the initial state and we specify δ%

81

�����
��	
�

��������
���
�	�

��
��
��

��
��
��

��
��
��

��
��
��

���
������ ���

���
������ ���

���
������ ���

���
������ ���

�������������

������������
�������

�������������

������������������������������
	
������������
���������������

�������

�������	�������

Fig. 2. The environment architecture

to randomly select those among the n states, depth-D is to

contain approximately 0.01×δ×n states. We will describe why

it contains approximately but not exactly 0.01× δ × n states.

Because states are randomly selected, although the number

of states in depth-D does not change drastically, depth-D
can be drastically different from test to test. If there is one

initial state, depth-0 contains the initial state. If the depth

of layer 1 is D1, the number of all states located at depth

D1 from the initial state is n1 and the percentage of layer

1 is δ1%, depth-D1 contains approximately 0.01 × δ1 × n1

states located at depth D1 from the initial state. In general, if

D(1,...,l+1) is the depth of layer l+1 from the initial state, nl+1

is the number of states located at D(1,...,l+1) reachable from all

states in depth-Dl and the percentage of layer l+1 is δl+1%,

depth-D(1,...,l+1) contains approximately 0.01× δl+1 × nl+1

states located at depth D(1,...,l+1) from the initial state. As

depth-D, the number of states in depth-D(1,...,l+1) does not

change drastically but the states in depth-D(1,...,l+1) can be

drastically different from test to test. Besides, we store other

initialization information to Redis, such as 0 as the current

depth and 1 as the current layer in the beginning.

To make the environment working effectively, we use three

message queues to store as well as dispatch states as messages

to workers: QUEUE-1, QUEUE-2 and QUEUE-3. For ex-

ample, we put all states generated and located at layer 1 into

QUEUE-2. Let us suppose that the depth of layer 1 is D1,

the depth of layer 2 from the initial state is D(1,2) and the

depth of layer 3 from the initial state is D(1,2,3). To work on

states located at (the bottom positions of) layer 1, workers are

supposed to fetch states as messages from QUEUE-2 and to

check if the states are registered in depth-D1. If so, workers

generate the states located at depth D(1,2) reachable from the

states fetched from QUEUE-2, putting the states generated

into QUEUE-3 and depth-D(1,2) as well. Otherwise, workers

just put away the states fetched from QUEUE-2. There may

be the time when a worker (called the last worker for layer

2) fetches the last state from QUEUE-2 and the state is

registered in depth-D1. Then, the worker starts generating the

states located at depth D(1,2) reachable from the state lastly

fetched from QUEUE-2, when there may be some workers

that have completely generated the states located at D(1,2)

reachable from some states fetched from QUEUE-2. Such

workers are called free workers for layer 2 because there are

no more states left in QUEUE-2. Free workers for layer 2 do

not need to wait until the last worker completes its current

task. Thus, free workers starts working on states fetched

from QUEUE-3. Note that such states are also registered in

depth-D(1,2) because random selection of the states located

at depth D(1,2) is not done. When the last worker for layer

2 completes its task, it does random selection of the states

located at depth D(1,2). The last worker for layer 2 uses

the percentage δ2% to delete some states from depth-D(1,2).

Let n2 be the number of states in depth-D(1,2) just before

the random selection. Because some states may have been

fetched from QUEUE-3 by some free workers for layer 2,

the final result left in depth-D(1,2) by the random selection

may contain a bit larger than 0.01 × δ2 × n2 states. This is

the reason why depth-D(1,2) contains approximately but not

exactly 0.01× δ2 × n2 states.

The three message queues are used in turn. For example,

QUEUE-1 is used to store the state located at depth 0 (namely

the initial state), QUEUE-2 is used to store states located at

depth D1, QUEUE-3 is used to store states located at depth

D(1,2), and then QUEUE-1 is used to store states located at

depth D(1,2,3). Let us suppose that we only use two message

queues QUEUE-1 & QUEUE-2 and worker 1 has just fetched

the last message from QUEUE-2, which becomes empty at

this moment. We also suppose that the other workers are

free for some layer (say layer 2). If the free workers work

on some states fetched from QUEUE-1 and generate & put

some states into QUEUE-2, worker 1 will deal with the states

newly put into QUEUE-2 incorrectly because worker 1 has

not yet changed the queue from which messages are fetched.

Thus, the free workers need to wait until worker 1 has fully

completed its task, which is less efficient. If we use one more

queue QUEUE-3, the free workers do not need to wait but

can generate & put states into QUEUE-3. We do not need

to use more than three message queues because after worker

1 has completed its task, QUEUE-2 will never become fully

empty. When workers work on the final layer, they do not put

any states into any message queues. If all workers are free for

the final layer and there is no message in the three message

queues, the verification is done.

Note that a message is a state. As soon as the RabbitMQ

master has received a message, the RabbitMQ master stores

the message in a designated message queue among those three

message queues. By default, the RabbitMQ master will pop

a message from the queue and then dispatch it to a worker

in sequence. We suppose that all tasks have almost the same

load, where each task is to generate all states located at some

depth reachable from a given state and test each state that

occurs from the given state to all the states located at the depth.

Therefore, on average, every worker will get the same number

of messages because we use the round-robin scheduling for

distributing messages to workers. This makes the load labored

by each worker well-balanced.

Regarding JPF workers, in the beginning, each worker needs

82

to fetch the current status of the environment from Redis to

initialize its own information, where the current status consists

of information about whether some other workers are running

and if so what message queue (among QUEUE-1, QUEUE-2
and QUEUE-3) the running workers fetch messages from.

From the current status, the worker decides a message queue

from which it fetches a message. If there are no workers

running, QUEUE-1 is selected by default. Conversely, If

there are some workers running to fetch messages from a

message queue, say QUEUE-k, where k is 1, 2 or 3. We

check if QUEUE-k has any messages. If so, QUEUE-k is

selected. Otherwise, QUEUE-k′, where k′ = (k mod 3) + 1,

is selected; after that the worker updates the current message

queue being consumed to Redis, which makes it possible for

the other workers to keep track on the up-to-date status of

the environment. Note that every time a worker has changed

the message queue from which messages are fetched, we

need to update Redis about it. From the time on, workers

listen to the message queue until messages arrive at the queue

from which messages are dispatched to the workers or some

existing messages in the queue are dispatched to the workers.

Whenever a worker receives a message from the message

queue, it will check whether or not the message exists in the

randomly selected states at the current layer l stored in the set

depth-D of states in Redis, where D is the depth of the layer l
from the initial state. If no, we ignore the message and wait for

a succeeding message. Otherwise, the worker internally starts

a JPF instance with a configuration built from the message,

generating all states located at some depth reachable from the

message (a state) and testing each state that occurs from the

message to all the states located at the depth. The configuration

consists of values of observable components used in a program

under verification. We then add our own listener class to JPF,

which allows us to interact with JPF while executing. Note that

all workers and JPF programs are running parallel and using

the same Redis instance as a shared cache. For each layer

exploration, we use a different set of states stored in Redis,

namely depth-D, where D is the depth of the layer from

the initial state. After the layer exploration, based on a given

percentage of states for the layer, we select states randomly

among those in depth-D for the succeeding layer by deleting

states randomly from the set depth-D of states in Redis.

Whenever JPF reaches the designated depth or finds that the

current state has no more successor states, our listener class

can listen to those events and do the following.

1) Looking inside the JPF heap of the current state to

extract the values of observable components of the

program; those values are then encapsulated into a

Configuration object;

2) Checking if the state is in Redis cache; if yes, skipping

what follows; otherwise, we ask the Redis to save the

state to the set of states at the current depth and send the

state to the next message queue among the three message

queues; those messages in the next message queue are

used to generate states in the next layer; note that, every

time we have a new state that is jointly stored into Redis

cache and send it to a message queue for consuming.

To control workers working smoothly with the three message

queues, each worker is associated with a monitor thread

to supervise the worker’s activity and periodically check

the status of the message queues by communicating with

RabbitMQ Management HTTP API. Thereby, we can decide

when a worker should change the message queue from which

messages are fetched and which is the last worker left to switch

to the next message queue.

VI. A CASE STUDY

Let us take the Needham-Schroeder Public-Key authen-

tication protocol (NSPK) [6] as an example. NSPK can be

described as three message exchanges:

Challenge: A → B : {Na, A}Kb

Response: B → A : {Na, Nb}Ka

Confirmation: A → B : {Nb}Kb

where A and B are principals called an initiator and a

responder, respectively, Kp is the public key owned by a

principal p, Np is a nonce generated by p and mKp
is the

ciphertext obtained by encrypting a message m with Kp. Note

that mKp can only be decrypted by a principal who owns the

private key that corresponds to Kp. Lowe found an attack

to NSPK and corrected it [9]. The corrected version is called

NSLPK that can be described as follows:

Challenge: A → B : {Na, A}Kb

Response: B → A : {Na, Nb, B}Ka

Confirmation: A → B : {Nb}Kb

The difference between NSPK and NSLPK is that the sender

principal ID B is used to construct the Response message, the

ciphertext obtained by encrypting Na, Nb and B with the A’s

public key Ka.

Let us describe the formal specification of NSPK (but not

NSLPK) in Maude. We use the following operators as the

constructors of observable components:

op nw:_ : Soup{Msg} -> OCom [ctor] .
op rand:_ : Soup{Rand} -> OCom [ctor] .
op nonces:_ : Soup{Nonce} -> OCom [ctor] .
op prins:_ : Soup{Prin} -> OCom [ctor] .

where Soup{Msg}, Soup{Rand}, Soup{Nonce} and

Soup{Prin} are the sorts for soups of messages, random

numbers, nonces and principals, respectively. The nw ob-

servable component stores all messages sent by principals.

The rand observable component stores the random numbers

available. The nonces observable component stores the nonces

gleaned by the intruder. The prins observable component

stores the principals participating in the protocol. The nw
observable component formalizes the network. We suppose

that the network is initially empty and then the nw observable

component is initially the empty soup denoted emp. We also

suppose that there are two random numbers initially available

and three principals (two trustable ones and one intruder) and

then the rand observable component is initially r1 r2 and the

83

prins observable component is initially p q intrdr. where p
and q denote the two trustable principals and intrdr denotes

the intruder. Because nothing has been initially gleaned by the

intruder, the nonces observable component is emp. The initial

state denoted init is as follows:

op init : -> Config .
eq init = {(nw: emp) (rand: (r1 r2))

(nonces: emp) (prins: (p q intrdr))} .

The actions of NSPK that exactly obey the protocol are

specified in the following three rewrite rules:

rl [Challenge] : {(nw: NW) (nonces: Ns)
(rand: (R Rs)) (prins: (P Q Ps))}
=>
{(nw: (m1(P,P,Q,c1(Q,n(P,Q,R),P)) NW))
(nonces: (if Q == intrdr then (n(P,Q,R) Ns)
else Ns fi)) (rand: Rs) (prins: (P Q Ps))} .

rl [Response] : {(nw: (m1(P’,P,Q,c1(Q,N,P))
NW)) (rand: (R Rs)) (nonces: Ns) OCs}
=>
{(nw: (m2(Q,Q,P,c2(P,N,n(Q,P,R)))
m1(P’,P,Q,c1(Q,N,P)) NW)) (rand: Rs)
(nonces: (if P == intrdr then (N n(Q,P,R) Ns)
else Ns fi)) OCs} .

rl [Confirmation] : {(nw: (m2(Q’,Q,P,c2(P,N,
N’))
m1(P,P,Q,c1(Q,N,P)) NW)) (nonces: Ns) OCs}
=>
{(nw: (m3(P,P,Q,c3(Q,N’)) m2(Q’,Q,P,c2(P,N,
N’))
m1(P,P,Q,c1(Q,N,P)) NW))
(nonces: (if Q == intrdr then (N’ Ns)
else Ns fi)) OCs} .

The intruder can fake messages based on the nonces

gleaned and the message in the network. The intruder’s actions

that fake messages are specified in the following six rewrite

rules:

rl [fake11] : {(nw: NW) (nonces: (N Ns))
(prins: (P Q Ps)) OCs}
=>
{(nw: (m1(intrdr,P,Q,c1(Q,N,P)) NW))
(nonces: (N Ns)) (prins: (P Q Ps)) OCs} .

rl [fake12] : {(nw: (m1(P’,P’’,Q’’,C1) NW))
(prins: (P Q Ps)) OCs}
=>
{(nw: (m1(intrdr,P,Q,C1) m1(P’,P’’,Q’’,C1) NW))
(prins: (P Q Ps)) OCs} .

rl [fake21] : {(nw: NW) (nonces: (N N’ Ns))
(prins: (P Q Ps)) OCs}
=>
{(nw: (m2(intrdr,Q,P,c2(P,N,N’)) NW))
(nonces: (N N’ Ns)) (prins: (P Q Ps)) OCs} .

rl [fake22] : {(nw: (m2(Q’,Q’’,P’’,C2) NW))
(prins: (P Q Ps)) OCs}
=>
{(nw: (m2(intrdr,Q,P,C2) m2(Q’,Q’’,P’’,C2) NW))
(prins: (P Q Ps)) OCs} .

rl [fake31] : {(nw: NW) (nonces: (N Ns))
(prins: (P Q Ps)) OCs}

=>
{(nw: (m3(intrdr,P,Q,c3(Q,N)) NW))
(nonces: (N Ns)) (prins: (P Q Ps)) OCs} .

rl [fake32] : {(nw: (m3(P’,P’’,Q’’,C3) NW))
(prins: (P Q Ps)) OCs}
=>
{(nw: (m3(intrdr,P,Q,C3) m3(P’,P’’,Q’’,C3) NW))
(prins: (P Q Ps)) OCs} .

Let SNSPK refers to the specification of NSPK in Maude. A

concurrent program PNSPK is written in Java based on SNSPK,

where each thread of (two non-intruder and one intruder)

principals performs the three actions Challenge, Response,

and Confirmation and one thread of the intruder principal

also performs the fake actions fake11, fake12, fake21, fake22,

fake31, and fake32. When PNSPK runs, it is necessary to select

an initiator and a responder. If we select two principals as

an initiator and a responder in a deterministic way, we may

overlook several possible scenarios, which is not good from

a verification point of view. We could use a pseudo-random

number generator provided by Java to select principals. But,

the pseudo-random generator cannot be controlled by JPF. To

this end, JPF prepares Verify.getInt that generates pseudo-

random numbers and can control it like the JPF Java VM.

Given two integers min and max such that min < max,

Verify.getInt(min,max) generates pseudo-random numbers

between min and max. JPF takes all integers between min

and max into account when it verifies a program in which

Verify.getInt(min,max) is used.

To verify a concurrent program with JPF by using our

technique proposed, we need to pass a message (state) directly

to the Java program as a string argument. It is necessary to

parse a string that denotes a state so that we can extract the

value stored in each observable component. One state of NSPK

protocol is as follows:

{nw: (
m1(p,p,intrdr,c1(intrdr,n(p,intrdr,r1),p))
m1(intrdr,p,q,c1(q,n(p,intrdr,r1),p))
m2(q,q,p,c2(p,n(p,intrdr,r1),n(q,p,r2)))
m2(intrdr,intrdr,p,c2(p,n(p,intrdr,r1),
n(q,p,r2)))
m3(p,p,intrdr,c3(intrdr,n(q,p,r2))))
rand: r1 r2
nonces: (n(p,intrdr,r1) n(q,p,r2))
prins: (p q intrdr)
rw_p: (Challenge Confirmation)
rw_q: (Confirmation)
rw_intrdr: emp}

We use Context-Free Grammar (CFG) with ANTLR library -

a powerful parser generator for parsing these kinds of string

messages [10]. Given grammar specified by an Extended

Backus-Naur-Format (EBNF), ANTLR may generate a parser

corresponding to the grammar. Basically, ANTLR does two

phases. The first phase is to do a lexical analysis that breaks

sentences into a series of tokens. The second phase is to do

a syntax analysis. Given the series of tokens from the lexical

analysis, the syntax analysis performs actual parsing, where

the tokens are analyzed with the grammar for their structure

84

such that a parse tree can be built as the output at the end. The

following is the grammar of NSPK protocol used to generate

a parser:

grammar Nspk;
start : ’{’ oc+ ’}’;
oc :

’nw:’ messagelist # networkOC
| ’rand:’ randlist # randOC
| ’nonces:’ noncelist # noncesOC
| ’prins:’ prinslist # prinsOC
| rw rulelist #rwOC
;

rw : RW_P | RW_Q | RW_INTRDR ;
RW_P : ’rw_p:’ ;
RW_Q : ’rw_q:’ ;
RW_INTRDR : ’rw_intrdr:’ ;
RULE : ’Challenge’ | ’Response’

| ’Confirmation’ | ’Fake’ ;
rulelist : RULE | RULE rulelist

| ’(’ rulelist ’)’ | EMPTY ;
MESSAGENAME : ’m1’ | ’m2’ | ’m3’ ;
message : MESSAGENAME ’(’ prin ’,’ prin ’,’

prin ’,’ cipher ’)’ ;
messagelist : message | message messagelist |

’(’ messagelist ’)’ | EMPTY ;
prin : ’p’ | ’q’ | ’intrdr’ ;
prinslist : prin | prin prinslist |

’(’ prinslist ’)’ | EMPTY ;
cipher : ’c1’ ’(’ prin ’,’ nonce ’,’ prin ’)’
| ’c2’ ’(’ prin ’,’ nonce ’,’ nonce ’)’
| ’c3’ ’(’ prin ’,’ nonce ’)’ ;
nonce : ’n’ ’(’ prin ’,’ prin ’,’ RAND ’)’ ;
noncelist : nonce | nonce noncelist |

’(’ noncelist ’)’ | EMPTY ;
RAND : ’r1’ | ’r2’ ;
randlist : RAND | RAND randlist

| ’(’ randlist ’)’| EMPTY ;
EMPTY : ’emp’ ;
WS : [\t\r\n]+ -> skip ;

Firstly, we need to generate an NSPK parser based on the

given grammar by ANTLR. This parser is used to parse the

NSPK messages that are NSPK states. Secondly, we need

to write a Visitor class to extract all elements as well as

corresponding values in the abstract parse tree. Basically, our

Visitor class will subscribe to some events emitted from the

parser while creating the abstract parse tree. Listening to these

events, we can extract values correctly to initialize the values

of the observable components in the program before starting.

For NSPK experiment, we suppose that there are two non-

intruder and one intruder principals with two unique random

values. The reachable state space of NSPK is too huge to

exhaustively explore the entire reachable state space. Even

though the depth bound is set to 200, the number of layers

is 2 such that each layer depth is 100 and the multiple sub-

state spaced obtained are tackled in parallel, the exhaustive

exploration cannot be completed in three weeks. Therefore, we

have conducted some preliminary experiments with parallel

stratified random testing to demonstrate that the technique

may mitigate the state space explosion to some extent. In the

preliminary experiments conducted, the number of layers is

three, each layer depth is 100 and the percentages of states

TABLE I
EXPERIMENTAL DATA FOR THE NSPK PROTOCOL

Total Depth Layer 1(%) Layer 2(%) Worker Time (d:h:m)

300 0.05 0.05

Worker 1 0:11:58
Worker 2 0:12:03
Worker 3 0:13:11
Worker 4 0:11:43

300 0.05 0.1

Worker 1 0:07:56
Worker 2 0:08:15
Worker 3 0:06:42
Worker 4 0:06:45

300 0.1 0.05

Worker 1 0:17:44
Worker 2 0:18:51
Worker 3 0:17:53
Worker 4 0:17:51

300 0.1 0.1

Worker 1 0:16:29
Worker 2 0:16:27
Worker 3 0:15:00
Worker 4 0:16:32

• Time – time taken to verify (sub-)state spaces with parallel stratified
random testing.

• The number of layers used is three and each layer depths is 100.

generated for layer 1 and layer 2 are as follows: (1) 0.05%
and 0.05%; (2) 0.05% and 0.1%; (3) 0.1% and 0.05%; and

(4) 0.1% and 0.1%. Because layer 3 is the final layer, it is

not necessary to specify the percentage of states generated.

The experimental data are shown in Table I. The computer

used for the experiments carried 2.9GHz micro-processor and

32GB main memory. Each experiment completes in 19h, while

it does not complete to exhaustively test the reachable state

space up to depth 200 in three weeks. The experimental data

exhibit some mitigation of the state space explosion to some

extent. In the experiments, however, we tried to detect a state

in which the one-to-many agreement property is broken but

did not find any such state, although we quickly found a state

in which the nonce secrecy property is broken with parallel

stratified (exhaustive but non-random) testing [5].

VII. RELATED WORK

Model checking is a systematic way to verify concurrent

programs by exhaustively searching all possible thread inter-

leaving. However, it does not scale well on program size that

often leads to the state space explosion. Random testing is an

approach to avoiding the stuck with model checking. There-

fore, several random testing techniques have been devised for

testing concurrent programs. Most of them rely on randomized

schedulers to explore the state space [11], [12], [13], [14], [15],

[16].

RAPOS is an effective random testing algorithm for the

partial order reduction technique [11]. At each state, there is

a set of threads that could be selected to execute the next

instruction. Rather than randomly choosing a thread, RAPOS

calculates a set of threads such that their next instructions are

independent. From the set of threads, they choose a random

set of threads with a probability. Then the next instruction of

threads in the random set of threads will be executed simul-

taneously without care about the order of instructions. PCT

(Probabilistic Concurrent Testing) [14] is another randomized

85

algorithm for concurrency testing based on a priority scheduler

where the highest priority for a thread at each scheduling step

will be selected. In the beginning, PCT assigns priority values

randomly to threads and creates random places (or change

points) where the scheduler could change the priorities of

threads during execution. It has been proved that PCT can

detect bugs with an efficient probability. By combination of

random testing with parallelization, parallel randomized state-

space search [12] has been proposed. They used a revised ver-

sion of the depth-first search for randomly selecting the next

state among all successor states of a current state. A parallel

version was also developed to check the same state space with

multiple machines independently, making it possible to quickly

find a bug. Along with the use of the depth-first search, the

DFS-RB algorithm has been introduced [15]. Basically, they

use the depth-first search as usage with early backtracking.

To decide when and how many steps are backtracked, DRS-

RB uses some values of parameters to decide it at a state

during searching. Recently, they have adaptive randomized

scheduling (ARS) [16], which uses memory access patterns

(with 17 common patterns) to calculate the distance between

two traces at each scheduling point, where a trace is a path

from a source state to a target state in a search tree. At each

step, ARS maintains only N traces whose distances are largest.

If there is the same distance between traces. ARS randomly

selects N traces from all traces. After some steps, the last N
traces are most likely to lead to a bug. So ARS continuously

does verification based on that N traces.

As described above, any existing randomized testing tech-

niques are different from our parallel stratified random testing

for concurrent programs in some aspects. They mostly use

randomize schedulers with or without a criterion for selecting

a thread to execute a next instruction. Our approach uses a

percentage to select states randomly at each layer for the suc-

ceeding layer exploration. We also develop a parallel version

to improve the effectiveness of sub-state spaces exploration.

VIII. CONCLUSION

We have proposed parallel stratified random testing for

concurrent programs. For a Java implementation of the NSPK

authentication protocol, even though we use 2 layers and each

layer depth is 100, it did not complete in three weeks to

exhaustively test the concurrent program. On the other hand,

when we used 3 layers, each layer depth was 100 and the

percentages for layer 1 & layer 2 were 0.05% or 0.1% &

0.05% or 0.1%, respectively, it completed in 19h to test the

concurrent program. Although we still did not find a state

in which the one-to-many agreement property is broken, we

made some progress toward making it possible to detect such

a state.

One piece of our future work is to detect a state in which

the one-to-many agreement property is broken by increasing

the percentages for layer 1 and/or layer 2. Even though the

percentages for layer 1 and/or layer 2 are increased, we might

not find such a state. If so, we need to use some other criterion

on which states are selected in addition to random state

selection and/or we may need to use randomized schedulers

as the existing related techniques do.

REFERENCES

[1] C. M. Do and K. Ogata, “Specification-based testing with simulation
relations,” in 31st SEKE, 2019, pp. 107–146.

[2] ——, “A divide & conquer approach to testing concurrent Java programs
with JPF and Maude,” in 9th SOFL+MSVL, ser. LNCS, vol. 12028, 2019,
pp. 42–58.

[3] W. Visser, K. Havelund, G. P. Brat, S. Park, and F. Lerda, “Model
checking programs,” Autom. Softw. Eng., vol. 10, no. 2, pp. 203–232,
2003.

[4] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martı́-Oliet, J. Meseguer,
and C. Talcott, All About Maude, ser. LNCS. Springer, 2007, vol. 4350.

[5] C. M. Do and K. Ogata, “A divide & conquer approach to testing
concurrent programs with JPF,” Submitted for publication, 2020.

[6] R. M. Needham and M. D. Schroeder, “Using encryption for authenti-
cation in large networks of computers,” Comm. ACM, vol. 21, no. 12,
pp. 993–999, 1978.

[7] Open source, “Redis,” https://redis.io/, 2009, [Online; accessed 05-
August-2019].

[8] ——, “Rabbitmq,” https://www.rabbitmq.com/, 2007, [Online; accessed
05-August-2019].

[9] G. Lowe, “An attack on the Needham-Schroeder Public-Key authenti-
cation protocol,” Inf. Process. Lett., vol. 56, no. 3, pp. 131–133, 1995.

[10] Open source, “Antlr,” https://www.antlr.org/, 2014, [Online; accessed 05-
March-2020].

[11] K. Sen, “Effective random testing of concurrent programs,” in 22nd ASE,
2007, p. 323332.

[12] M. B. Dwyer, S. Elbaum, S. Person, and R. Purandare, “Parallel
randomized state-space search,” in 29th ICSE, 2007, pp. 3–12.

[13] K. Sen, “Race directed random testing of concurrent programs,” in PLDI
2008, 2008, pp. 11–21.

[14] S. Burckhardt, P. Kothari, M. Musuvathi, and S. Nagarakatte, “A
randomized scheduler with probabilistic guarantees of finding bugs,”
in 15th ASPLOS, 2010, pp. 167–178.

[15] P. Parı́zek and O. Lhoták, “Fast detection of concurrency errors by state
space traversal with randomization and early backtracking,” Int. J. Softw.
Tools Technol. Transf., vol. 21, no. 4, pp. 365–400, 2019.

[16] Z. Wang, D. Zhang, S. Liu, J. Sun, and Y. Zhao, “Adaptive randomized
scheduling for concurrency bug detection,” in 24th ICECCS, 2019, pp.
124–133.

86

