

Specification-based Test Case Generation with
Constrained Genetic Programming

Yuji Sato
Faculty of Computer and Information

Sciences
Hosei University

Tokyo, Japan
yuji@k.hosei.ac.jp

Abstract—Since current specification-based testing (SBT)
faces some challenges in regression test case generation, we have
already proposed a new method for test case generation that
combines formal specification and genetic algorithms (GA). This
method mainly reconfigures formal specifications though GA to
generate inputs data that can kill as many as possible mutants of
the target program under test. In this paper, we propose ideas to
improve the operability and the accuracy of solution search of this
method. Specifically, we propose a specification-level constrained
operation using genetic programming and discuss effectiveness
from the viewpoint of clarity of chromosome notation and ability
to search for solutions.

Keywords—test data generation, genetic programming,
specification-based testing, regression testing, mutant testing

I.� INTRODUCTION
Functional scenario-based test data generation [1] is

attracting attention as a method for generating test data from
formal specifications. In this approach, the specification is
converted into an equivalent expression called functional
scenario form (FSF). The FSF is a disjunction of multiple
independent functional scenarios and each functional scenario
(FS) is a conjunction of test condition and defining condition
expressed in a mathematical expression. The test condition only
involves input variables of the operation while the defining
condition must involve some output variables. when the test
condition holds on the input variables, the output variables will
be defined by the defining condition. Currently, test data
generation from a functional scenario only takes the test
condition into account and leaves the defining condition
untouched [2-4]. Thus, the code implementing the defining
condition, which can be long and complex, may not be
thoroughly tested and bugs existing inside it may not be easily
covered. Even if we can use the defining condition for test data
generation, the effectiveness of the generated test data from the
original defining condition in terms of identifying bugs in the
code implementing the defining condition can be extremely
limited.

In order to solve this problem, we have used Structured-
Objective-based-formal Language (SOFL) [5] as the formal
notation for specifications and proposed "Specification-based
test case generation with genetic algorithm [6]". The method is
characterized by the combination of functional scenario-based

test data generation with genetic algorithm and suitable for
regression testing in particular. We conducted a case study using
two types of test questions to evaluate the proposed method. The
results showed that it has a possibility to be useful for generating
test data for killing more program mutants than traditional
methods, especially for complex functional scenarios. On the
other hand, the proposed method can only work on arithmetical
relationships between inputs and outputs in which outputs affect
the generation of inputs. Therefore, in this paper, we propose
specification-level constrained operations using genetic
programming as one means to enable more flexible operations,
and discuss the effects of the proposed ideas.

The remainder of this paper is organized as follows. Section
2 presents the background of our research and related works,
Section 3 proposes the specification-level constrained
operations using genetic programming. Section 4 then discusses
the effectiveness from the viewpoint of clarity of chromosome
notation and ability to search for solutions and Section 5
concludes the paper.

II.� RELATED WORK

A.� Background
A number of related studies have already been reported on

formal specification-based testing (SBT). For example,
Mahmood puts together a thesis [7] which is a systemtic review
on researches concerning Automated Test Data Generation
(ATDG) technology during the period 1997-2006. Offutt and
Liu [2] has reported a technique that can be used for automated
test data generation from SOFL specification. The technique
basically addresses the issue of developing formalizable and
measurable criteria for generating test cases from specifications.
Khurshid and Marinov report on TestEra [8], a framework for
automated specification-based testing of Java programs. TestEra
requires as input a Java method (in sourcecode or bytecode), a
formal specification of the pre- and postconditions of that
method, and bound that limit the size of the test cases to be
generated. Using the method's pre-conditions, TestEra will
automatically generate all non-isomorphic test inputs up to the
given bound. Martins et al. has reported ConData [9], a test auto-
generation method for communication protocols specified as
extended finite state machines. It is a test generation method that
combines various specification-based test methods such as

98

2020 IEEE 20th International Conference on Software Quality, Reliability and Security Companion (QRS-C)

978-1-7281-8915-4/20/$31.00 ©2020 IEEE
DOI 10.1109/QRS-C51114.2020.00027

transition testing for the control part of a protocol, and syntax
and equivalence partitioning for the data part.

On the other hand, a method using a probabilistic search
method such as a genetic algorithm has also been proposed. The
technique proposed by Pargas et al. [10] is used to automatically
search for test data using genetic algorithms with control
dependence graphs of the program. In this method, the genetic
algorithm conducts its search by constructing new test data from
previously generated test data that are evaluated as good
candidates. Harman et al. introduced a mutation-based test data
generation approach [11], which targets strong mutation
adequacy and is capable of killing both first and higher order
mutants. Madronal et al. have proposed a method [12] that
combines stochastic mutation and random selection. These
studies are just examples, and research on software testing using
evolutionary computing is becoming active, with special
sessions being planned at major international conferences on
evolutionary computing such as IEEE Congress on Evolutionary
Computation.

All the above techniques of SBT deal with developing
specifications for test data generation or directly generating the
test data from the existing specifications. However, it may not
be possible to easily find out the bugs present in the program
code by only using the relationships of inputs from
specifications. To solve this problem, we have proposed a
formal specification using SOFL and test case generation using
GA, focusing on the relationship between input and output [6].

B.� Specification-based Test Case Generation with Genetic
Algorith
1)�Functional Scenario-based Testing: We used SOFL as

the formal notation for specifications. Because, SOFL as a
formal notation is more comprehensible than other formal
notations due to the combination of comprehensible condition
data flow diagrams (CDFD) for system structure and pre- and
post- conditions for defining individual operations in the system.
Another reason is its use in industry has been increasing [13].
The most advanced technique for test data generation from
formal specifications is known as functional scenario-based test
data generation. Figure 1 outlines the flow of program
development and functional scenario-based testing.

Fig. 1.� The flow of program development and functional scenario-based testing.

In this approach, the specification is converted into an
equivalent expression called functional scenario form (FSF).
FSF is a disjunction of functional scenarios and each functional

scenario (FS) is a conjunction of test condition and defining
condition.

Definition 1 An FSF of process S is the disjunction of
functional scenarios:

����
� (Ti � Di) (i = 1, · · · , N) where Ti = Spre���Gi is called a

test condition, which is the conjunction of the pre-condition Spre
and a guard condition Gi, and Di is a predicate called a defining
condition.

The pre-condition Spre of process S is a constraint on the input
and it contains only input variables. A guard condition Gi is part
of the post-condition but contains no output variables. A
defining condition Di is also part of the post-condition but
contains at least one output variable. The functional scenario Ti
� Di describes a single specific functional behavior: when test
condition Ti is true, the output of the operation is defined using
defining condition Di. In this paper, we assume that any FSF
����

� (Ti � Di) of process S is complete, which means that any
input satisfying Spre must make ����

� Ti true. An example of
Process Mod for finding the quotient q and remainder r from
dividing y by x is shown in Figure 2.

Fig. 2. An example of Process Mod for finding the quotient q and remainder r

from dividing y by x.

2) Test Case Generation using GA: In the case of a complex
program, it is difficult to directly generate the inputs that
satisfies the definition condition without knowing the outputs.
For instance, suppose input variable x and output variable y
satisfy the defining condition “x 	 y > x + y”, we cannot
generate input x from “x 	 y > x + y” for the unknown output y.
Therefore, usually “x 	 y > x + y” is not used to help generate
the input, but used to check the result of executing the program
with input x. However, by assigning good values to output
variables, we can get some useful reformed specifications. For
the defining condition x 	 y > x + y mentioned above, input data
generated from x 	 3 > x + 3 (when y = 3) may be more likely
to trigger bugs than that of x * 1 > x + 1 (when y = 1). In this
way, the reformed specifications that keeps the constraints of
only input variables can be directly used for test data
generations. To obtain this kind of useful reformed
specifications, we apply GA for seeking good values for outputs
from the defining condition.

Figure 3 shows an overview of the specification-based test
case generation system using GA. We defined each functional
scenario as a phenotype chromosome and applied modified GA
to generate reformed specifications. Specification mutants are
first created and then GA is used to find the best mutant test
condition and test data is generated from the mutant test
condition. Thea expected effect of the test data generated in this

99

way is to find more bugs in the code. Here, Mutant testing, also
called program mutation [14], is used to design test cases and
evaluate the quality of existing testing techniques. In mutation
testing, some small modifications are injected into the original
program. Each mutated version is called program mutant and a
test case is regarded as good one for it killing program mutants
by making the behaviors of program mutants different from that
of the original program. Using this Mutant testing, we
compared the test cases created by the conventional ATG and
the test cases generated by the proposed method, and showed
the effectiveness of the proposed method [6].

Fig. 3.�An overview of the specification-based test case generation system using

GA.

We defined a genotype chromosome is a vector constructed
by output variab;es and dummy variables: o’ = (o1, … , on, d1,
… , dc), where oi (i = 1, … , n) are output variables, and di (i =
1, … , c) are dummy variables. That is, for an equation f (inputs,
outputs) = 0 from any defining condition Di, modify it into an
inequality d1
 f (inputs, outputs)
 d2. Below is an example of
the correspondence between phenotype and genotype
chromosomes.

Phenotype chromosome:
x > 0 � y � 0 � d1
 q 	x + r – y
 d2 � Abs(r) < x � xr � 0

Genotype chromosome: (q, r, d1, d2)

For crossover operation, a pair of individuals [Ti � Di] o’1 and
[Ti � Di] o’2 from the current population are selected as parents
and get their corresponding genotype chromosome o’1 and o’2,
then, between the two genotype chromosomes, the value of each
locus is swapped by the probability of the crossover rate pc. In
the mutation, the value of each locus on the genotype
chromosome after crossover changes slightly with a probability
of mutation rate pm.

Here, parents is selected according to the evaluation function
Grade. This function is to evaluate an individual or a solution
� � �� �� by assigning a fitness value. let Datas =

data_suit_from([Ti � Di] o’) which is a data suit from the
individual � � �� �� , let N_killi,o’ = (k1, ... , km) where kj is the
number of datas from � � �� ��that is able to kill the program
mutant muj. A test case kills a program mutant means that this
test data fails based on the original specifications after it is
executed by the program mutant. We consider both the killing
rate of program mutants and killing rate of a data suit, so the
grade for � � �� �� is calculated as:

����� � � �� �� �
��������� ���������� !"# ����������

��$%�& ����' ()

where
��������� ���������� �

* +,-./
,

01�234 5�+�006�7�

8 �9 : ; �
)����9 : ;

;����9
 ;
��������������������������

We evaluate all individuals using the Grade function, sort
them in descending order, then weed out the bottom 50% of
individuals, select the parent individual based on the remaining
50%, and apply crossover and mutation operation. To
supplement the deleted individuals to form a new population for
the next generation.

III.� TEST CASE GENERATION USING GENETIC PROGRAMMING
The results of case studies of our proposed method

presented in the previous section showed that, for complicated
function scenarios, the method efficiently generates useful test
data for killing as many as possible program mutants [6]. But,
there were also some limitations that the proposed method can
only work on arithmetical relationships between inputs and
outputs in which outputs affect the generation of inputs. Here,
we propose ideas to improve the operability and the accuracy
of solution search by using genetic programming (GP) [15]
with restrictions on genetic manipulations.

A.� Overview of genetic programming
In GP, a LISP program (symbolic expression: S expression)

having the following features is an individual.

•� The only target handled by LISP is a symbolic
expression “S expression”.

•� S-expression consists of atoms or lists.

•� Atom is a symbol such as a number such as 0, 3.14, or a
character string such as X, Y, AND.

•� A list is recursively defined as an arbitrary number of
atoms including 0 and a list enclosed by left parentheses
(and right parentheses). For example, (), (1 2 4), (AND
(X Y)), etc.

•� LISP receives an S-expression as input and outputs the
S-expression as the result of evaluating it. Thus, the LISP
program is an S-expression.

•� When an S-expression of the form (F x1 x2 … xn) is input,
x1 x2 … xn is evaluated first, and then the function F
whose argument is the result is evaluated.

Therefore, for example, an S-expression (LISP program) that
realizes (3+1) �	2 is expressed as ((+3 1) 2). In GP, it is
necessary to design the function used in the S-expression and the
type and range of the atom in advance.

Genetic manipulation in GP is mutation, crossover and
Inversion. Mutation operation is defined by changing atoms in
an individual, crossover is exchange of lists between different
individuals, and inversion is exchange of sub-lists in an
individual. Figure 4 shows an example of these three types of
operations.

100

Fig. 4.�An example of mutation, inversion and crossover operations in GP.

B.� Constrained GP for SBT
Since genetic manipulation based on FSF, which is a

mathematically described specification, is easy and it is easier to
define genetic manipulations that search for a wider range of
solutions than GA, we consider SBT using GP here.

The Phenotype chromosome exemplified in the previous
section is expressed below in GP. The first underlined sub-list is
the test condition and the remaining sub-lists are the defining
condition.

(��(� (> (x 0)) (� (y 0))) (> (- (+<	 =�>) r) y) d1) (< (- (+<	
=�>) r) y) d2) (< (Abs r) x) (� <	 >��?�;)))

When variables q, r and dummy variables d1 and d2 overlap
between sub-lists as in this example, it is appropriate to define a
genotype chromosome and perform genetic manipulation as in
the previous section. On the other hand, when independent
variables are used between sub-lists, this phenotype
chromosome can be used as it is for genetic manipulation of GP.
In addition, genotype level crossover can be performed between
sub-lists with different numbers of atoms and between
individuals with different numbers of sub-lists. In the following,
we will describe the improved methods for efficiently applying
GP to SBT.

1)�List attribute definition: There should be no genetic
manipulation between the test condition and defining condition
sections. Therefore, both have different attributes and different
list notations are defined. For example, the list of test condition
parts is written in [] instead of ().There is a constraint that
genetic operations are performed only within the same list
notation. For example, the phenotype chromosome is expressed
as follows.

(��[� (> (x 0)) (� (y 0))] (> (- (+<	 =�>) r) y) d1) (< (- (+<	
=�>) r) y) d2) (< (Abs r) x) (� <	 >��?�;)))

2)�Atoms attribute definition: When only specific variables
are to be manipulated, a genetype chromosome consisting of
only the variables to be manipulated as described in the
previous section may be used separately. However, it is also
possible to deal with phenotypic chromosomes by giving each
atom an attribute as to whether or not it is targeted for genetic
manipulation. For example, the following shows an example in
which only the target atom is bolded.

(��[� (> (x 0)) (� (y 0))] (> (- (+<	 @�>) r) y) d1) (< (- (+<	
@�>) r) y) d2) (< (Abs r) x) (� <	 >�A?�;)))

Alternatively, a wider range of search may be realized by not
limiting the operation to a specific variable. Below is an example
of a crossover that exchanges sub-lists on a phenotype
chromosome with different gene length of the defining condition
part. That is, it is possible to exchange sub-lists between
different forms of function definitions.

P1: (= (+�<	 ��>�>) <	 B�>�) c) y)

P2: (= (+�<	 ��>�) e) y)

�

P1
’: (= (+�<	 ��>�>) (+�<	 ��>�) e) c) y)

P2
’: (= �<	 B�>�) y)

3)�Knowledge database using ADF: GP has a function
called Automatically Defined Functions (ADF) [16] that
defines frequently used lists as subroutines to improve the
efficiency of searches and simplify chromosome expressions.
By utilizing this ADF function as a knowledge database and
registering the FSF or list that was effective for bug detection
as an ADF, it is possible to efficiently search for test cases that
are effective for bug detection.

4)�Visualization: Another advantage of using GP is that it
allows visualization of the chromosome, the FSF during the
search. The LISP S-expression can be represented by a tree
structure, so by applying the S-expression to the FSF notation,
the tree structure can be used to visualize the FSF of the search
process. Figure 5 shows the tree structure of the defining
condition part, taking the crossover using P1 and P2 as an
example.

Fig. 5.�An example of crossover operation using tree structure representation.

IV.�DISCUSSION

A.� Gene notation and solution search ability
Introducing GP with some restrictions on notation and

genetic manipulation makes it possible to represent
chromosomes (ie, FSFs) in a format that conforms to the LISP
language. This allows a mathematically described specification

101

(FSF) to be directly defined as a gene, allowing FSF to be
regenerated from a chromosome. In addition, it is possible to
perform genetic manipulation between chromosomes having
different gene lengths, that is, between functions having
different orders, and it is expected that the solution search ability
is improved. Figures 6 and 7 show the experimental results of
the previous report [6] using GA. Basically, the method using
GA succeeds in detecting more mutants than the conventional
method, but in some cases, the same number of mutants as in the
conventional method can be detected.

Fig. 6.�Comparison of the ability to detect mutants in the Mod function between

the conventional method and the test case generation method using GA.

Fig. 7.�Comparison of the ability to detect mutants in the gcd function between

the conventional method and the test case generation method using GA.

One possible cause is that GA restricts gene manipulation
only between chromosomes with the same gene length.
Therefore, it may be improved by the use of GP, which allows
genetic manipulation between different gene lengths. However,
in the future, more rigorous comparative evaluation will be
required, such as in computer simulations.

B.� Possibility of learning efficiency improvement using
knowledge database
Since GA and GP are probabilistic search methods, it is

possible to search using the reinforcement learning function
even for problems for which the objective function is not known
explicitly. On the other hand, it is expected that the search ability

will be improved by using the knowledge acquired in the past
together. Therefore, if the partial list (that is, a part of the FSF)
obtained in the past and effective for detecting the mutant can be
registered and used in the knowledge database, the efficiency of
the solution search can be expected to be improved. Here, the
GP has a function that can be used for searching by defining a
subroutine as an ADF. Figure 8 shows an example of S-
expression using ADF. In the figure, PROGN is composed of a
main part that determines the value of the entire S-expression
(subtree on the right) and a function part (a subtree on the left)
that is referred to as a subroutine in the S-expression. ADF0
defined as a function part can be called freely within an S-
expression. By defining the partial list obtained in the past that
was effective for mutant detection as an ADF function at any
time, a search using a knowledge database can be easily realized.
It is considered that the solution search efficiency is improved
as it is used, and the expression of chromosomes can be
simplified.

Fig. 8.�An example of S-expression using ADF.

C.� Visualization for solution search result analysis
GP defines a chromosome with the LISP S expression. Since

the LISP S-expression can be represented by a tree structure, we
can use the tree structure to visualize the FSF of the search
process by applying the S-expression to the FSF notation. It is
possible to use this visualization function for FSF analysis that
is effective in detecting mutants. In addition, by defining the FSF
that is found as a result of the analysis and is effective for
detecting mutants as an ADF, it can be used for solution search
from the next time. Visualization of the tree structure is
considered to be effective as an effective FSF analysis method
for detecting mutants, and as a method for selecting ADF
definition candidates that contribute to efficient solution search.
However, as a future issue, it is necessary to verify the
effectiveness through concrete evaluation experiments.

V.� CONCLUSIONS
 We have already proposed a test data generation method

based on functional scenarios using GA, mainly for regression
tests. This method obtains a reconstructed specification that is
useful for bug detection, sensitive to small syntactical changes
in program code, by assigning appropriate values to unknown
output variables and making changes to the original
specification. Therefore, this method mainly deals with
unknown output from the formal specification and can generate
input data to test the target program. As a result of a comparison
experiment with a conventional method of generating a test case
from a functional scenario, it tends to generate more useful test
data for killing a program mutant, but in some test problems, it
was similar to the conventional method. In this paper, as an idea

102

to improve the operability and accuracy of the solution search of
this method, we proposed a combination of specification level
constraint operation using genetic programming and knowledge
database using automatic definition function. Moreover, we
have examined on the desk about the effectiveness of the
proposed idea. As a result, we have showed that the idea has a
possibility to improve detectability of mutants and could be used
for FSF analysis, which is effective for mutant detection.
However, a quantitative evaluation experiment by computer
simulation will be required in the future.

REFERENCES
[1] S. Liu and S. Nakajima. Combining Specification Testing, Correctness

Proof, and Inspection for Program Verification in Practice. In Proceedings
of the 3rd International Workshop on SOFL + MSVL (SOFL+MSVL 2013),
pages 3–16, Queenstown, New Zealand, October 29 2013. LNCS 8332,
Springer.

[2] A. J. Offutt and S. Liu. Generating Test Data from SOFL Specifications.
Journal of Systems and Software, 49(1):49–62, December 1999.

[3] Koushik Sen. Concolic testing. In Proceedings of the twenty-second
IEEE/ACM international conference on Automated software engineering,
pages 571–572. ACM, 2007.

[4] Y. Sato and T. Sugihara. Automatic generation of specification- based test
cases by applying genetic algorithms in reinforcement learning. In
International Workshop on Structured Object-Oriented Formal Language
and Method, pages 59–71. Springer, 2015.

[5] S. Liu. Formal Engineering for Industrial Software Development: Using the
SOFL Method. Springer Science & Business Media, 2013.

[6] R. Wang, Y. Sato and S. Liu. Specification-based Test Case Generation with
Genetic Algorithm. In Proceedings of the 2019 IEEE Congress on
Evolutionary Computation. pp. 1359-1366, IEEE, 2019.

[7] Shahid Mahmood. A systematic review of automated test data generation
techniques, 2007.

[8] Sarfraz Khurshid and Darko Marinov. Testera: Specification-based testing
of java programs using sat. Automated Software Engineering, 11(4):403–
434, 2004.

[9] Eliane Martins, Selma B Sabia ̃o, and Ana Maria Ambrosio. Condata: a tool
for automating specification-based test case generation for communication
systems. Software Quality Journal, 8(4):303–320, 1999.

[10] Roy P Pargas, Mary Jean Harrold, and Robert R Peck. Test-data generation
using genetic algorithms. Software testing, verification and reliability,
9(4):263–282, 1999.

[11] Mark Harman, Yue Jia, and William B Langdon. Strong higher order
mutation-based test data generation. In Proceedings of the 19th ACM
SIGSOFT symposium and the 13th European conference on Foundations of
software engineering, pages 212–222. ACM, 2011.

[12] Lorena Gutierrez-Madronal, Antonio Garcia-Dominguez and Inmaculada
Medina-Bulo. Combining Evolutionary Mutation Testing with Random
Selection. In Proceedings of the 2020 IEEE Congress on Evolutionary
Computation. pp. 1-8 (CD-ROM), IEEE, 2020.

[13] Juan Luo, Shaoying Liu, Yanqin Wang, and Tingliang Zhou. Applying
sofl to a railway interlocking system in industry. In International Workshop
on Structured Object-Oriented Formal Language and Method, pages 160–
177. Springer, 2016.

[14] Richard A DeMillo, Richard J Lipton, and Frederick G Sayward. Hints on
test data selection: Help for the practicing programmer. Computer,
11(4):34–41, 1978.

[15] John R. Koza. Genetic Programming: On the Programming of Computers
by Means of Natural Selection. Cambridge, MA: The MIT Press, 1992.

[16] John R. Koz. Genetic Programming II: Automatic Discovery of Reusable
Programs. Cambridge, MA: The MIT Press, 1994.

103

