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Abstract—Since current specification-based testing (SBT) 
faces some challenges in regression test case generation, we have 
already proposed a new method for test case generation that 
combines formal specification and genetic algorithms (GA). This 
method mainly reconfigures formal specifications though GA to 
generate inputs data that can kill as many as possible mutants of 
the target program under test. In this paper, we propose ideas to 
improve the operability and the accuracy of solution search of this 
method. Specifically, we propose a specification-level constrained 
operation using genetic programming and discuss effectiveness 
from the viewpoint of clarity of chromosome notation and ability 
to search for solutions. 

Keywords—test data generation, genetic programming, 
specification-based testing, regression testing, mutant testing 

I.� INTRODUCTION 
Functional scenario-based test data generation [1] is 

attracting attention as a method for generating test data from 
formal specifications. In this approach, the specification is 
converted into an equivalent expression called functional 
scenario form (FSF). The FSF is a disjunction of multiple 
independent functional scenarios and each functional scenario 
(FS) is a conjunction of test condition and defining condition 
expressed in a mathematical expression. The test condition only 
involves input variables of the operation while the defining 
condition must involve some output variables. when the test 
condition holds on the input variables, the output variables will 
be defined by the defining condition. Currently, test data 
generation from a functional scenario only takes the test 
condition into account and leaves the defining condition 
untouched [2-4]. Thus, the code implementing the defining 
condition, which can be long and complex, may not be 
thoroughly tested and bugs existing inside it may not be easily 
covered. Even if we can use the defining condition for test data 
generation, the effectiveness of the generated test data from the 
original defining condition in terms of identifying bugs in the 
code implementing the defining condition can be extremely 
limited.  

In order to solve this problem, we have used Structured-
Objective-based-formal Language (SOFL) [5] as the formal 
notation for specifications and proposed "Specification-based 
test case generation with genetic algorithm [6]". The method is 
characterized by the combination of functional scenario-based 

test data generation with genetic algorithm and suitable for 
regression testing in particular. We conducted a case study using 
two types of test questions to evaluate the proposed method. The 
results showed that it has a possibility to be useful for generating 
test data for killing more program mutants than traditional 
methods, especially for complex functional scenarios. On the 
other hand, the proposed method can only work on arithmetical 
relationships between inputs and outputs in which outputs affect 
the generation of inputs. Therefore, in this paper, we propose 
specification-level constrained operations using genetic 
programming as one means to enable more flexible operations, 
and discuss the effects of the proposed ideas. 

The remainder of this paper is organized as follows. Section 
2 presents the background of our research and related works, 
Section 3 proposes the specification-level constrained 
operations using genetic programming. Section 4 then discusses 
the effectiveness from the viewpoint of clarity of chromosome 
notation and ability to search for solutions and Section 5 
concludes the paper. 

II.� RELATED WORK 

A.� Background 
A number of related studies have already been reported on 

formal specification-based testing (SBT). For example, 
Mahmood puts together a thesis [7] which is a systemtic review 
on researches concerning Automated Test Data Generation 
(ATDG) technology during the period 1997-2006. Offutt and 
Liu [2] has reported a technique that can be used for automated 
test data generation from SOFL specification. The technique 
basically addresses the issue of developing formalizable and 
measurable criteria for generating test cases from specifications. 
Khurshid and Marinov report on TestEra [8], a framework for 
automated specification-based testing of Java programs. TestEra 
requires as input a Java method (in sourcecode or bytecode), a 
formal specification of the pre- and postconditions of that 
method, and bound that limit the size of the test cases to be 
generated. Using the method's pre-conditions, TestEra will 
automatically generate all non-isomorphic test inputs up to the 
given bound. Martins et al. has reported ConData [9], a test auto-
generation method for communication protocols specified as 
extended finite state machines. It is a test generation method that 
combines various specification-based test methods such as 
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transition testing for the control part of a protocol, and syntax 
and equivalence partitioning for the data part.  

On the other hand, a method using a probabilistic search 
method such as a genetic algorithm has also been proposed. The 
technique proposed by Pargas et al. [10] is used to automatically 
search for test data using genetic algorithms with control 
dependence graphs of the program. In this method, the genetic 
algorithm conducts its search by constructing new test data from 
previously generated test data that are evaluated as good 
candidates. Harman et al. introduced a mutation-based test data 
generation approach [11], which targets strong mutation 
adequacy and is capable of killing both first and higher order 
mutants. Madronal et al. have proposed a method [12] that 
combines stochastic mutation and random selection. These 
studies are just examples, and research on software testing using 
evolutionary computing is becoming active, with special 
sessions being planned at major international conferences on 
evolutionary computing such as IEEE Congress on Evolutionary 
Computation. 

All the above techniques of SBT deal with developing 
specifications for test data generation or directly generating the 
test data from the existing specifications.  However, it may not 
be possible to easily find out the bugs present in the program 
code by only using the relationships of inputs from 
specifications. To solve this problem, we have proposed a 
formal specification using SOFL and test case generation using 
GA, focusing on the relationship between input and output [6]. 

B.� Specification-based Test Case Generation with Genetic 
Algorith 
1)�Functional Scenario-based Testing: We used SOFL as 

the formal notation for specifications. Because, SOFL as a 
formal notation is more comprehensible than other formal 
notations due to the combination of comprehensible condition 
data flow diagrams (CDFD) for system structure and pre- and 
post- conditions for defining individual operations in the system. 
Another reason is its use in industry has been increasing [13]. 
The most advanced technique for test data generation from 
formal specifications is known as functional scenario-based test 
data generation. Figure 1 outlines the flow of program 
development and functional scenario-based testing.  

 

 
Fig. 1.� The flow of program development and functional scenario-based testing. 

In this approach, the specification is converted into an 
equivalent expression called functional scenario form (FSF). 
FSF is a disjunction of functional scenarios and each functional 

scenario (FS) is a conjunction of test condition and defining 
condition. 

Definition 1 An FSF of process S is the disjunction of 
functional scenarios: 

����
� (Ti � Di) (i = 1, · · · , N) where Ti = Spre���Gi is called a 

test condition, which is the conjunction of the pre-condition Spre 
and a guard condition Gi, and Di is a predicate called a defining 
condition.  

The pre-condition Spre of process S is a constraint on the input 
and it contains only input variables. A guard condition Gi is part 
of the post-condition but contains no output variables. A 
defining condition Di is also part of the post-condition but 
contains at least one output variable. The functional scenario Ti 
� Di describes a single specific functional behavior: when test 
condition Ti is true, the output of the operation is defined using 
defining condition Di. In this paper, we assume that any FSF 
����

�  (Ti � Di) of process S is complete, which means that any 
input satisfying Spre must make ����

� Ti true. An example of 
Process Mod for finding the quotient q and remainder r from 
dividing y by x is shown in Figure 2. 

 
Fig. 2. An example of Process Mod for finding the quotient q and remainder r

from dividing y by x. 

2) Test Case Generation using GA: In the case of a complex 
program, it is difficult to directly generate the inputs that 
satisfies the definition condition without knowing the outputs. 
For instance, suppose input variable x and output variable y 
satisfy the defining condition “x 	  y > x + y”, we cannot 
generate input x from “x 	 y > x + y” for the unknown output y. 
Therefore, usually “x 	 y > x + y” is not used to help generate 
the input, but used to check the result of executing the program 
with input x. However, by assigning good values to output 
variables, we can get some useful reformed specifications. For 
the defining condition x 	 y > x + y mentioned above, input data 
generated from x 	 3 > x + 3 (when y = 3) may be more likely 
to trigger bugs than that of x * 1 > x + 1 (when y = 1). In this 
way, the reformed specifications that keeps the constraints of 
only input variables can be directly used for test data 
generations. To obtain this kind of useful reformed 
specifications, we apply GA for seeking good values for outputs 
from the defining condition. 

Figure 3 shows an overview of the specification-based test 
case generation system using GA. We defined each functional 
scenario as a phenotype chromosome and applied modified GA 
to generate reformed specifications. Specification mutants are 
first created and then GA is used to find the best mutant test 
condition and test data is generated from the mutant test 
condition. Thea expected effect of the test data generated in this 
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way is to find more bugs in the code. Here, Mutant testing, also 
called program mutation [14], is used to design test cases and 
evaluate the quality of existing testing techniques. In mutation 
testing, some small modifications are injected into the original 
program. Each mutated version is called program mutant and a 
test case is regarded as good one for it killing program mutants 
by making the behaviors of program mutants different from that 
of the original program. Using this Mutant testing, we 
compared the test cases created by the conventional ATG and 
the test cases generated by the proposed method, and showed 
the effectiveness of the proposed method [6]. 

 
Fig. 3.�An overview of the specification-based test case generation system using 

GA. 

We defined a genotype chromosome is a vector constructed 
by output variab;es and dummy variables: o’ = (o1, … , on, d1, 
… , dc), where oi (i = 1, … , n) are output variables, and di (i = 
1, … , c) are dummy variables. That is, for an equation f (inputs, 
outputs) = 0 from any defining condition Di, modify it into an 
inequality d1 
 f (inputs, outputs) 
 d2. Below is an example of 
the correspondence between phenotype and genotype 
chromosomes.  

Phenotype chromosome:  
x > 0 � y � 0 � d1 
 q 	x + r – y 
 d2 � Abs(r) < x � xr � 0 

Genotype chromosome: (q, r, d1, d2) 

For crossover operation, a pair of individuals [Ti � Di] o’1 and 
[Ti � Di] o’2 from the current population are selected as parents 
and get their corresponding genotype chromosome o’1 and o’2, 
then, between the two genotype chromosomes, the value of each 
locus is swapped by the probability of the crossover rate pc. In 
the mutation, the value of each locus on the genotype 
chromosome after crossover changes slightly with a probability 
of mutation rate pm.

Here, parents is selected according to the evaluation function 
Grade. This function is to evaluate an individual or a solution 
� � �� ��  by assigning a fitness value. let Datas = 

data_suit_from([Ti �  Di] o’) which is a data suit from the 
individual � � �� �� , let N_killi,o’ = (k1, ... , km) where kj is the 
number of datas from � � �� ��that is able to kill the program 
mutant muj. A test case kills a program mutant means that this 
test data fails based on the original specifications after it is 
executed by the program mutant. We consider both the killing 
rate of program mutants and killing rate of a data suit, so the 
grade for � � �� �� is calculated as: 

����� � � �� �� �
��������� ����������  !"# ����������

#  ��$%�& ����' ( )
 

where
��������� ���������� �

* +,-./
,

01�234 5�+�006�7�

8 �9 : ; �
)����9 : ;

;����9 
 ;
��������������������������

 

We evaluate all individuals using the Grade function, sort 
them in descending order, then weed out the bottom 50% of 
individuals, select the parent individual based on the remaining 
50%, and apply crossover and mutation operation. To 
supplement the deleted individuals to form a new population for 
the next generation. 

III.� TEST CASE GENERATION USING GENETIC PROGRAMMING 
The results of case studies of our proposed method 

presented in the previous section showed that, for complicated 
function scenarios, the method efficiently generates useful test 
data for killing as many as possible program mutants [6]. But, 
there were also some limitations that the proposed method can 
only work on arithmetical relationships between inputs and 
outputs in which outputs affect the generation of inputs. Here, 
we propose ideas to improve the operability and the accuracy 
of solution search by using genetic programming (GP) [15] 
with restrictions on genetic manipulations.  

A.� Overview of genetic programming 
In GP, a LISP program (symbolic expression: S expression) 

having the following features is an individual.

•� The only target handled by LISP is a symbolic 
expression “S expression”.  

•� S-expression consists of atoms or lists. 

•� Atom is a symbol such as a number such as 0, 3.14, or a 
character string such as X, Y, AND. 

•� A list is recursively defined as an arbitrary number of 
atoms including 0 and a list enclosed by left parentheses 
(and right parentheses). For example, (), (1 2 4), (AND 
(X Y)), etc. 

•� LISP receives an S-expression as input and outputs the 
S-expression as the result of evaluating it. Thus, the LISP 
program is an S-expression. 

•� When an S-expression of the form (F x1 x2 … xn) is input, 
x1 x2 … xn is evaluated first, and then the function F 
whose argument is the result is evaluated.

Therefore, for example, an S-expression (LISP program) that 
realizes (3+1) �	2 is expressed as (	  (+3 1) 2 ). In GP, it is 
necessary to design the function used in the S-expression and the 
type and range of the atom in advance. 

Genetic manipulation in GP is mutation, crossover and 
Inversion. Mutation operation is defined by changing atoms in 
an individual, crossover is exchange of lists between different 
individuals, and inversion is exchange of sub-lists in an 
individual. Figure 4 shows an example of these three types of 
operations.  
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Fig. 4.�An example of mutation, inversion and crossover operations in GP. 

B.� Constrained GP for SBT 
Since genetic manipulation based on FSF, which is a 

mathematically described specification, is easy and it is easier to 
define genetic manipulations that search for a wider range of 
solutions than GA, we consider SBT using GP here.  

The Phenotype chromosome exemplified in the previous 
section is expressed below in GP. The first underlined sub-list is 
the test condition and the remaining sub-lists are the defining 
condition. 

(��(� (> (x 0)) (� (y 0))) (> (- (+<	 =�>) r) y) d1) (< (- (+<	
=�>) r) y) d2) (< (Abs r) x) (� <	 >��?�;))) 

When variables q, r and dummy variables d1 and d2 overlap 
between sub-lists as in this example, it is appropriate to define a 
genotype chromosome and perform genetic manipulation as in 
the previous section. On the other hand, when independent 
variables are used between sub-lists, this phenotype 
chromosome can be used as it is for genetic manipulation of GP. 
In addition, genotype level crossover can be performed between 
sub-lists with different numbers of atoms and between 
individuals with different numbers of sub-lists. In the following, 
we will describe the improved methods for efficiently applying 
GP to SBT.  

1)�List attribute definition: There should be no genetic 
manipulation between the test condition and defining condition 
sections. Therefore, both have different attributes and different 
list notations are defined. For example, the list of test condition 
parts is written in [] instead of ().There is a constraint that 
genetic operations are performed only within the same list 
notation. For example, the phenotype chromosome is expressed 
as follows. 

(��[� (> (x 0)) (� (y 0))] (> (- (+<	 =�>) r) y) d1) (< (- (+<	
=�>) r) y) d2) (< (Abs r) x) (� <	 >��?�;))) 

2)�Atoms attribute definition: When only specific variables 
are to be manipulated, a genetype chromosome consisting of 
only the variables to be manipulated as described in the 
previous section may be used separately. However, it is also 
possible to deal with phenotypic chromosomes by giving each 
atom an attribute as to whether or not it is targeted for genetic 
manipulation. For example, the following shows an example in 
which only the target atom is bolded.  

(��[� (> (x 0)) (� (y 0))] (> (- (+<	 @�>) r) y) d1) (< (- (+<	
@�>) r) y) d2) (< (Abs r) x) (� <	 >�A?�;))) 

Alternatively, a wider range of search may be realized by not 
limiting the operation to a specific variable. Below is an example 
of a crossover that exchanges sub-lists on a phenotype 
chromosome with different gene length of the defining condition 
part. That is, it is possible to exchange sub-lists between 
different forms of function definitions. 

P1: (=  (+�<	 ��>�>)  <	 B�>�)  c)  y) 

P2: (=  (+�<	 ��>�) e)  y) 

� 

P1
’: (=  (+�<	 ��>�>)  (+�<	 ��>�)  e)  c)  y) 

P2
’: (= �<	 B�>�)  y) 

3)�Knowledge database using ADF: GP has a function 
called Automatically Defined Functions (ADF) [16] that 
defines frequently used lists as subroutines to improve the 
efficiency of searches and simplify chromosome expressions. 
By utilizing this ADF function as a knowledge database and 
registering the FSF or list that was effective for bug detection 
as an ADF, it is possible to efficiently search for test cases that 
are effective for bug detection. 

4)�Visualization: Another advantage of using GP is that it 
allows visualization of the chromosome, the FSF during the 
search. The LISP S-expression can be represented by a tree 
structure, so by applying the S-expression to the FSF notation, 
the tree structure can be used to visualize the FSF of the search 
process. Figure 5 shows the tree structure of the defining 
condition part, taking the crossover using P1 and P2 as an 
example.  

 
Fig. 5.�An example of crossover operation using tree structure representation.  

IV.�DISCUSSION 

A.� Gene notation and solution search ability 
Introducing GP with some restrictions on notation and 

genetic manipulation makes it possible to represent 
chromosomes (ie, FSFs) in a format that conforms to the LISP 
language. This allows a mathematically described specification 
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(FSF) to be directly defined as a gene, allowing FSF to be 
regenerated from a chromosome. In addition, it is possible to 
perform genetic manipulation between chromosomes having 
different gene lengths, that is, between functions having 
different orders, and it is expected that the solution search ability 
is improved. Figures 6 and 7 show the experimental results of 
the previous report [6] using GA. Basically, the method using 
GA succeeds in detecting more mutants than the conventional 
method, but in some cases, the same number of mutants as in the 
conventional method can be detected. 

 
Fig. 6.�Comparison of the ability to detect mutants in the Mod function between 

the conventional method and the test case generation method using GA.  

 
Fig. 7.�Comparison of the ability to detect mutants in the gcd function between 

the conventional method and the test case generation method using GA.  

One possible cause is that GA restricts gene manipulation 
only between chromosomes with the same gene length. 
Therefore, it may be improved by the use of GP, which allows 
genetic manipulation between different gene lengths. However, 
in the future, more rigorous comparative evaluation will be 
required, such as in computer simulations. 

B.�  Possibility of learning efficiency improvement using 
knowledge database 
Since GA and GP are probabilistic search methods, it is 

possible to search using the reinforcement learning function 
even for problems for which the objective function is not known 
explicitly. On the other hand, it is expected that the search ability 

will be improved by using the knowledge acquired in the past 
together. Therefore, if the partial list (that is, a part of the FSF) 
obtained in the past and effective for detecting the mutant can be 
registered and used in the knowledge database, the efficiency of 
the solution search can be expected to be improved. Here, the 
GP has a function that can be used for searching by defining a 
subroutine as an ADF. Figure 8 shows an example of S-
expression using ADF. In the figure, PROGN is composed of a 
main part that determines the value of the entire S-expression 
(subtree on the right) and a function part (a subtree on the left) 
that is referred to as a subroutine in the S-expression. ADF0 
defined as a function part can be called freely within an S-
expression. By defining the partial list obtained in the past that 
was effective for mutant detection as an ADF function at any 
time, a search using a knowledge database can be easily realized.
It is considered that the solution search efficiency is improved 
as it is used, and the expression of chromosomes can be 
simplified. 

 
Fig. 8.�An example of S-expression using ADF.  

C.� Visualization for solution search result analysis 
GP defines a chromosome with the LISP S expression. Since 

the LISP S-expression can be represented by a tree structure, we 
can use the tree structure to visualize the FSF of the search 
process by applying the S-expression to the FSF notation. It is 
possible to use this visualization function for FSF analysis that 
is effective in detecting mutants. In addition, by defining the FSF 
that is found as a result of the analysis and is effective for 
detecting mutants as an ADF, it can be used for solution search 
from the next time. Visualization of the tree structure is 
considered to be effective as an effective FSF analysis method 
for detecting mutants, and as a method for selecting ADF 
definition candidates that contribute to efficient solution search. 
However, as a future issue, it is necessary to verify the 
effectiveness through concrete evaluation experiments.  

V.� CONCLUSIONS 
 We have already proposed a test data generation method 

based on functional scenarios using GA, mainly for regression 
tests. This method obtains a reconstructed specification that is 
useful for bug detection, sensitive to small syntactical changes 
in program code, by assigning appropriate values to unknown 
output variables and making changes to the original 
specification. Therefore, this method mainly deals with 
unknown output from the formal specification and can generate 
input data to test the target program. As a result of a comparison 
experiment with a conventional method of generating a test case 
from a functional scenario, it tends to generate more useful test 
data for killing a program mutant, but in some test problems, it 
was similar to the conventional method. In this paper, as an idea 
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to improve the operability and accuracy of the solution search of 
this method, we proposed a combination of specification level 
constraint operation using genetic programming and knowledge 
database using automatic definition function. Moreover, we 
have examined on the desk about the effectiveness of the 
proposed idea. As a result, we have showed that the idea has a 
possibility to improve detectability of mutants and could be used 
for FSF analysis, which is effective for mutant detection. 
However, a quantitative evaluation experiment by computer 
simulation will be required in the future. 
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