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Abstract—Identifying people from anonymous location 

histories is important for two purposes. i.e. to clarify privacy risks 
in using the location histories and to find evidence of who went 
where and when. Although linking with social network accounts is 
an excellent approach for such identification, previous methods 
need information about social relationships and have a limitation 
on the number of target data sets. Moreover, they make limited 
use of time information. We present models that overcome these 
problems by estimating the sameness and difference of people by 
using combinations of time and distance. Our proposed method 
uses these models along with multi-resolution models for both 
sides of linking, i.e. location histories and social network accounts. 
Evaluation using real data demonstrated the effectiveness of our 
method even when linking only one pseudonymized and 
obfuscated location history to 1 of 10,000 social network accounts 
without any information about social relationships. 

Keywords—Privacy, Re-identification, Location history, Social 
network 

I. INTRODUCTION 
Location histories of people, i.e. when and where people 

have been, are used for marketing, shop placement, and 
sophisticated advertising in the commercial sector and for 
tuning transportation systems and planning evacuations in the 
public sector. However, there is much concern about using 
location histories because malicious people can analyze them 
to estimate private information of individuals such as addresses, 
affiliations, human relationships, and unusual behaviors. 
Location histories are therefore often anonymized to hide the 
persons they represent [1, 2]. However, researchers have 
demonstrated that such hidden people can be “re-identified” by 
linking the location histories with other data so that the persons 
represented by the two sets of data are the same.  

Location histories are also important for forensics in cyber 
and physical worlds. We can analyze them to estimate when 
and where people were. However, because location histories are 
usually anonymous, we cannot directly know who the people 
were. Study of re-identifying people from location histories is 

therefore important to clarify privacy risks as well as to use the 
location histories for forensic purposes. 

Re-identification of location histories has been actively 
studied [3–11]. Srivatsa et al. proposed linking location 
histories to social network accounts [3], which is an effective 
approach because social network data are generally easy to 
obtain. Moreover, it is often easier to re-identify social network 
accounts than to re-identify location histories directly. 
However, Srivatsa et al.’s method requires two assumptions: (1) 
people represented by location histories and social networks 
have social relationships that are observable in both sets of data, 
and (2) the number of location histories is not too small and is 
not too different from the number of social network accounts. 
Murakami proposed a method for linking location histories to 
mobile profiles that correspond to individuals [4]. He asserted 
that his method can be used to link location histories and social 
network accounts by deriving mobile profiles from social 
network data. However, his method makes limited use of time-
related information because a mobile profile in his method is 
represented by a set of probabilities of moving from one 
location to another. It thus uses only the order in which two 
locations were visited. 

Using time information more effectively could improve the 
precision of re-identifying location histories. However, it is not 
easy to put this idea into practice because the combination of 
location and time does not affect re-identification uniformly—
the effect depends on the person. 

In this paper, we present a method that links location 
histories and social network accounts based on the content of 
these data instead of the relationships between them. Because 
the method selects a corresponding social network account for 
each location history independently, it works for any numbers 
of location histories and social network accounts. It  improves 
the accuracy of re-identification by making use of time 
information in a novel way. Our contributions are summarized 
as follows. 
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• Our method does not assume any social relationship 
between people represented by the data and it works 
when the numbers of people represented by the two sets 
of data are greatly different, e.g. it works for the 1 vs. 
10,000 case. 

• How the combination of time and distance affects re-
identification is learned for each (unknown) person from 
the location history and social network account data.  

• Evaluation using 53 location histories and 100,053 social 
network accounts demonstrated the re-identification 
performance of our proposed method as well as its ability 
to search millions of social network accounts for the one 
that correspond to the given location history. 

II. RELATED WORK 

A. Overview of re-identifying location histories 
Hereafter we use LH for location history and AC for social 

network account. Methods for re-identification have been 
investigated in various data domains such as LHs [3–11], social 
networks [12–15], Web browsing histories [16], purchase 
records [17], and databases [18]. A few methods have been 
developed for general data types [19, 20]. We focus on re-
identification of LHs and social networks.  

Re-identification of LHs. Re-identification of an LH has been 
generally approached by linking it to another data record so that 
both data records represent the same person. If the other data 
record is not anonymous, the LH is directly re-identified and, 
even if the data record is anonymous, the attacker obtains more 
clues to re-identify the LH.  

Shokri et al. developed a method that re-identifies 
pseudonymized obfuscated LHs by linking them to mobile 
profiles that correspond to individuals [5]. Srivatsa et al. linked 
pseudonymized LHs to social network accounts (ACs) by 
matching a social graph generated from LHs to one generated 
from ACs [3]. The methods of Shokri et al. and Srivatsa et al. 
will be analyzed in detail in Section 2.2.  

Ma et al. linked pseudonymized noisy LHs to the original 
LHs. They assumed probabilistic distributions of noises and 
performed maximum likelihood estimation on the basis of the 
probability of pseudonymized noisy LHs being generated from 
the original LHs [6]. Gambs et al. generated a transition matrix 
between two locations from each LH and identified pairs of 
LHs that represented the same person on the basis of the 
similarity between the two corresponding transition matrices 
[7]. Riederer et al. assumed a Poison distribution for the 
probability of a person visiting each location in the target area. 
They estimated the degree of two LHs representing the same 
person by calculating the likelihood of the LH amalgamated 
from the two LHs on the basis of the assumed Poison 
distribution [8]. Murakami enhanced Shokri et al.’s method to 
enable it to cope with mobile profiles that have little 
information, which will be detailed in Section 2.2 [4, 9]. 
Manousakas et al. used the topology of graphs in which a node 
represents a location and an edge represents the transition 
between locations [10].  

Re-identification of social networks. Narayanan et al. 
developed two classical methods that use graph matching [12] 
and machine learning [13]. Most recent methods are based on 
one of these two methods [14] [15]. 
 

B. Re-identifying LHs using social networks 
Srivatsa et al. re-identified LHs using real data from social 

networks [3]. Murakami asserted that his method can also re-
identify LHs using social networks [4]. Since Murakami’s 
method is based on that of Shokri et al. [5], we analyzed the 
methods of Srivatsa et al., Shokri et al., and Murakami. 

Srivatsa et al.’s method transforms a set of LHs into a graph 
in which each node represents the LH of a person [3]. An edge 
between two nodes represents contact between the two 
corresponding people, meaning that they were in close 
proximity of each other for at least a specified period. A set of 
ACs are also transformed into a graph in which each node 
represents an AC, and an edge between two nodes represents a 
link (such as friendship link) between them. The two graphs are 
matched, and each pair of nodes in the two graphs is linked.  

Srivatsa et al.’s approach is effective because social 
network data are generally easy to obtain. ACs are often 
accompanied with real names. Even if they are not, they may 
be easier to re-identify than to re-identify LHs directly. 
However, their method requires two assumptions, which are too 
strong in many real situations. 

1. People represented by LHs and ACs have social 
relationships that are observable in both sets of data.  

2. The number of LHs is not too small and is not too different 
from the number of ACs.  

The first assumption is too strong because it does not hold 
if the people represented by the LHs are not socially related. It 
does not hold either if the LHs are obfuscated as is usual in real 
world use. For examples, with perturbation of location up to 
100 m, we cannot know whether two persons were spatially 
close or 100-m distant and, with time perturbation, we cannot 
know whether they were spatially close or only visited the same 
place at different times.  

The second assumption is also too strong. Assume, for 
example, three LHs that have a mutual relationship (i.e. the 
graph for them is a triangle) and three ACs that also have a 
mutual relationship. There are six equally possible mappings 
between the two graphs and we cannot re-identify at all. 
Assume we have 10 LHs to re-identify but have ACs of 1000 
candidate people because we cannot narrow down the 
candidates. The graph of 10 LHs probably matches multiple 
subgraphs of the graph of 1000 ACs. Thus, we also cannot re-
identify. 

In Shokri et al.’s method [5] [11], knowledge about each 
person’s mobility (e.g. location of home and workplace) is used 
to generate a model of the person, which is called a mobile 
profile. The model is represented by a matrix in which the 
elements represent the probability of transition between two 
locations. For each pair of a pseudonymized obfuscated LH and 
a transition matrix (i.e. the person’s mobile profile), the 
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probability of the LH being produced from the matrix is 
calculated. The calculated probabilities are used to identify the 
mapping between the LHs and matrices. 

Murakami enhanced Shokri et al.’s method by forming a 
tensor from the transition matrices of people (i.e. their mobile 
profiles) [4]. Elements of the profile are complemented by 
factorizing the tensor using information from other elements of 
the same profile as well as using information from other profiles. 
Murakami’s method thus copes with incomplete knowledge 
about the mobility of people. He asserted that knowledge about 
mobility can be derived from social networks. 

Although an LH and knowledge about a person’s mobility 
have information of time as well as of locations, Shokri et al.’s 
and Murakami’s methods use limited time information, i.e. the 
order in which two locations were visited, because the basic 
tool for representing a model is a transition matrix. 

III. PROBLEM STATEMENT 

A. Terminology 
• Data item: Quadrant consisting of a pseudonym, latitude, 

longitude, and time, where pseudonym is consistent for 
each person.  

• Location history (LH): Set of data items, as shown in Fig. 
1.  

• ���={LH1, LH2, ���LHi, ���LHM}: Set of �	
 that are 
the targets of re-identification, where M=�����. Note that 
��� is a set of sets because each element, i.e. each �	, is 
a set of data items.  

• �� � {AC1, AC2, ��� ACj, ��� ACN}: Set of social 
network accounts (ACs) used to re-identify ���, where 
N=����.  

• ������� : Set of people including those represented by 
��� and ��. It may also include other people.  

• ���
���� : Mapping from ���  to �������  such that 
���
����(�	) is the person represented by LH.  

• ���
��� : Mapping from ��  to �������  such that 
���
����(��) is the person represented by AC.  

 
���
���� ( �	 ) and ����
��� ( �	 ) are abbreviated 

Person(LH) and Person(AC) when obvious. �LHi and ACj are 
used to denote an arbitrary LH in ���� and AC in �� , 
respectively. Fig. 2 illustrates the problem structure.  

 

 
Fig. 1. Example location history 

 
Fig. 2. Problem structure 

• Same(i, j): Proposition that Person(LHi) and Person(ACj) 
are the same person.  

• Model(<model descriptor>, ACj): Model of 
Person(ACj)’s mobility, generated from data of ACj; used 
to calculate Score(i, j) for 1� i�M. Because multiple 
models are generated for the same AC, a model descriptor 
is used to discriminate them. Mobile profiles like those 
used in Shokri et al.’s and Murakami’s methods are kinds 
of model.  

• Model(<model descriptor>, LHi): Data generated from 
LHi; used to calculate Score(i, j) for 1�j�N.  

• Score(<model>, i, j): Numerical value calculated using a 
model representing the likelihood of Same(i, j). 

• Score(i, j): Numerical value representing the overall 
likelihood of Same(i, j), which is obtained by fusing  
Score(<model>, i, j)s from multiple models.   

B. Our problem 
Given ���={LH1, LH2, ���LHi, ���LHM} and �� �{AC1, 

AC2, ���ACj, ���ACN}, we attempt to estimate the correct 
mapping correct from ��� to ��, which satisfies Same(i, j’) for 
ACj’= correct LHi  and 1� i�M  Note that we neither know 
���
���� nor any pair of LH and AC that represents the same 
person when we start this estimation. The estimation results in 
the answer, i.e. estimated mapping est The metric used for 
evaluating our answer is �������� �!M, where ������� ={LH | 
LH" ����� est(LH) correct(LH)}. 

To overcome the problems in previous methods, we aimed 
to achieve three goals. 

1. The method should not require an assumption about any 
relationship among people represented by LHs and those 
represented by ACs. 

2. The method should work with any number of LHs and ACs; 
specifically, it should work when there is only one LH and 
when the number of LHs is far less than that of ACs. 

3. The method should use more time information than simply 
the order in which two locations were visited. 

Pseudonym Latitude Longitude Time
6 35.65703 139.71451 2017/1/25   6:16:35

6 35.33917 139.48697 2017/2/6    6:26:08
6 35.39559 139.46653 2017/2/6     6:27:42
6 35.6988 139.77228 2017/2/6     6:30:59
6 35.64999 139.54363 2017/3/19   16:53:02

LH1 LH2 LHM

... LHi

... AC1 AC2 ACN

... ACj

...

SLH SAC

SPerson

PersonLH(LHi)
(i.e. Person(LHi))

PersonLH PersonAC

PersonAC(ACj)
(i.e. Person(ACj))
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IV. DATASETS 

A. Location history dataset 
We obtained LHs for 53 volunteers in cooperation with a 

Wi-Fi service company. The company collected records of 
probe requests that included the volunteers’ MAC addresses 
obtained at 400,000 nationwide Wi-Fi base stations in Japan1. 
The collection period was 90 days (January 25 through April 
23, 2017). Data was not obtained for all 90 days for some 
volunteers due to stoppage of the Wi-Fi function on their device. 
The company provided the records after transforming them into 
a set of data items, each of which is a quadrant consisting of a 
pseudonym for the volunteer’s MAC address, the latitude and 
longitude of the Wi-Fi base station, and the time of the probe 
request. The location of the probing device was within 100 m 
of the base station as that was the maximum distance at which 
probe requests could be received. Table � shows the statistics 
for the volunteers’ LH data, where the average and median were 
taken over the 53 volunteers. 

 

B. Social network dataset 
We obtained access to the Twitter accounts of the 53 

volunteers, collected the tweets on each account at the end of 
April, 2017, and thereby obtained 3645.6 tweets per account.  

We applied a tool for natural language analysis to these 
tweets to identify the tweets that may refer to places. We 
analyzed these identified tweets and found that ”places” were 
mentioned in one of five ways: (1) the volunteer was at the 
place mentioned in the tweet at the time of the tweet (e.g. “I’m 
drinking in Shinjuku”), (2) the volunteer was at the place 
mentioned in the tweet at a time different from that of the tweet 
(e.g. “I drank in Shibuya last week”), (3) the volunteer was not 
at the mentioned place (e.g. “I wish I could live in Kyoto”), (4) 
there was ambiguity about whether the tweet belonged in (1) 
through (3) without additional information such as a photo, and 
(5) the “place” was not actually a place but another thing such 
as the name of a person or a company. 

TABLE I.  STATISTICS FOR VOLUNTEERS’ LOCATION HISTORY DATA 

 Average Median 
No. of data items 21,361.36 13,068 

No. of data items per day 244.90 161.04 

TABLE II.  STATISTICS FOR VOLUNTEERS’ TWITTER ACCOUNT DATA 

 Average Median 
No. of times that place names 

were tweeted 
67.54 
116.58 

13 
50 

No. of times that place names 
were tweeted per day 

0.69 
1.31 

0.34 
0.96 

 
Type (1) tweets are useful for correct re-identification. Type 

(2) tweets are partially useful for an appropriate re-
identification algorithm. Some type (4) tweets are potentially 

                                                           
1  Each volunteer gave written permission for us to obtain their 

location and Twitter data. The ethical committee of our university 
authorized this research. 

type (1) or (2) and therefore are useful or partially useful. Type 
(3) tweets are noises that lead to incorrect linking. Type (5) 
tweets are also noises that are inevitable when we automate our 
method by using a natural language analyzer.  

Table � shows the statistics for the volunteers’ AC data 
reflecting this analysis. The top number in each cell is for type 
(1) tweets, and the bottom number is the total for types (1), (2), 
and (4). The two numbers respectively represent the infimum 
and supremum of the number of tweets useful for correct re-
identification; the numbers are surprisingly small. 

 

V. PROPOSED METHOD 

A. Linking different types of data 
Because we must not use any relationship between people 

represented by LHs and ACs, we based our method on the 
content of each LH and AC. The main contents of an AC are 
texts, pictures, and user profile. We use only the texts for our 
method. Because an LH is represented as a set of quadrants, as 
shown in Fig. 1, and texts are represented in natural language, 
we must first unify their data types to enable matching. We 
convert the texts into quadrants by extracting the place names 
from them, converting each place name into a coordinate value 
(i.e. a pair of latitude and longitude), and using the times of the 
posts. We use Google’s Geocoding API [21] to convert the 
place names into coordinate values. 
 

B. Models of people’s mobility 
For each account ACj, we generate three models that 

represent the mobility of Person(ACj). The first and second 
models represent the location-visiting pattern of Person(ACj). 
They are based on the frequency of visiting each location (i.e. 
the number of times each location was visited) as represented 
by the data of ACj. The difference between these two models is 
in area and resolution. The first model (the small-fine model) 
uses detailed discrimination for locations in the region of 
Person(ACj)’s daily life, and the second model (the large-
coarse model) uses rough discrimination for locations in the 
wider region. For each LHi, the number of times each location 
was visited is counted, and the totals are input into the small-
fine and large-coarse models of Person(ACj) to calculate 
Score(small-fine ACj, i, j) and Score(large-coarse ACj, i, j).  

The third model of Person(ACj), the time-aware model, 
utilizes the time information to estimate the sameness and 
difference of people. It reflects physical impossibility, i.e. a 
person cannot be at two locations at the same time and cannot 
move between distant locations in an impossibly short time. 
The time-aware model also reflects our intuition that the greater 
the number of pairs of data items from an LHi and an ACj that 
are close in location and time, the greater the probability of 
Same(i, j). The data items in LHi and those in ACj are compared 
to calculate time difference and distance between them. The 
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calculated time difference and distance are input into the time-
aware model of ACj to obtain Score(time-aware ACj, i, j).  
Details of generating and using these models are described in 
Section 6.  

C. Dual models 
We generate not only models of Person(ACj) but also 

models of Person(LHi) for each LHi though the identify of 
Person(LHi) is unknown. These models are used to calculate 
Score(small-fine LHi, i, j), Score(large-coarse LHi, i, j), and 
Score(time-aware LHi, i, j). Thus, we generate and use three 
models for each side of the linking.  

D. Basic flow 
Perform preprocessing. Texts posted on each ACj are 
transformed into a set of data items, each of which is a quadrant 
(pseudonym, latitude, longitude, time). 
Generate models for ACs. The data items of each ACj are 
transformed into three kinds of data for the small-fine, large-
coarse, and time-aware models, from which three models, i.e. 
Model(small-fine, ACj), Model(large-coarse, ACj), and 
Model(time-aware, ACj) are generated. 
Generate models for LHs. Three models, i.e. Model(small-
fine, LHi), Model(large-coarse, LHi), and Model(time-aware, 
LHi), are similarly generated for each LHi. 
Use models to calculate scores. The three models for each AC 
and those for each LH are used to calculate six scores for each 
pair of LHi and ACj; the scores are fused into Score(i, j).  
Link LHs and ACs. Each LHi is linked to ACj’, where #$ �
%&'()*+,-.-/01234&5+6� 708.  

VI. BUILDING AND USING MODELS 
The six models of people’s mobility introduced in Section 

5.2 are described in detail here along with how they are 
generated and used.  

A. Frequency-based models 
We use the term region for the entire geographical area 

considered for re-identification and the term cell for a sub-
region, i.e. the unit used for representing a location. 

Feature used for generating models. While the amount of 
data in social networks useful for re-identification is limited, as 
shown in Table �, the region we considered is wide, i.e. the 
whole of Japan, leading to very sparse data. Murakami 
demonstrated that, when data are sparse, a simple model based 
on the frequency of visiting each cell is better than one based 
on the frequency of moving between cells [9]. We therefore 
used the frequency of visiting each cell to generate the models.  

Multiple resolutions for representing models. Because the 
volunteers lived in or around Tokyo, most locations in their 
LHs were in the Tokyo area. However, they sometimes 
travelled to distant locations. Such outliers are strong clues for 
re-identification. However, if the region considered is large to 
include distant locations, e.g. the whole country, we must 
consider many cells, making our data sparse with little AC 
information. We therefore use two models, i.e. a small-fine 

model with fine-grained cells for the region around Tokyo and 
a large-coarse model with coarse-grained cells for the whole 
country. In the evaluations described in Section 7, the region 
for the small-fine model was 126 km × 126 km centred around 
Tokyo with a cell size of 1 km2. The region and cell size for the 
large-coarse model were 2370 km × 2140 km and 5 km2. 

Generating models. Texts posted on each ACj (1�j�N) are 
transformed into quadrants, from which feature vectors are 
generated for the small-fine and large-coarse models. The value 
of the k-th element in a feature vector is the number of times 
the k-th cell was visited. Models for ACj are generated by using 
a machine learning algorithm with these feature vectors as 
positive and negative samples. The positive samples are feature 
vectors generated from ACj data, and the negative samples are 
those generated from data from other ACs. Models for each LHi 
are generated similarly. 

Using models. Given LHi, we generate feature vectors for the 
small-fine and large-coarse models in the same way as in the 
generation phase. These two sets of feature vectors are input 
into Model(small-fine, ACj) and Model(large-coarse, ACj) to 
obtain Score(small-fine ACj, i, j) and Score(large-coarse ACj, i, 
j), respectively. Given ACj, we similarly generate two sets of 
feature vectors and input them into Model(small-fine, LHi) and 
Model(large-coarse, LHi) to obtain Score(small-fine LHi, i, j) 
and Score(large-coarse LHi, i, j), respectively. We thereby 
obtain four scores for each i and j. 

B. Time-aware models 
Dividing a model on the basis of time, as suggested by 

Shokri et al. [5], is not effective because it makes the sparse 
data even sparser. We therefore use time information based on 
physical impossibility. However, the determination of physical 
impossibility depends on the person. For example, it is unlikely 
that an elderly person can walk 1 km in 10 minutes while it is 
likely for a younger person. Thus, the probability of Same(i, j) 
for an elderly person is less than that for a younger person when 
a data item in LHi has location L1 and time T1 while a data item 
derived from ACj has L2 being 1 km from L1 and T2 being 10 
minutes after T1. Because the attribute information (such as age 
and gender) of a person is not available for re-identification, a 
model of physical impossibility must be learned for each 
(unknown) person from the person’s LH and AC data. 

Moreover, we attempted to model our intuition that the 
greater the number of pairs of data items from an LHi and an 
ACj that are close in location and time, the greater the 
probability of Same(i, j). Because the validity of this intuition 
also depends on the person, a model reflecting this intuition 
must be learned for each person on the basis of his or her data. 

Overview of learning and using models. A time-aware model 
that represents these two properties (i.e. physical impossibility 
and spatial-temporal closeness) is learned on the basis of the 
number of data items that satisfy each combination of time and 
distance interval. Fig. 3 illustrates the data structure, a time-
distance matrix, used to do this. Each row in the matrix 
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represents a time interval such that 9:  represents the interval 
[9:, 9:;,), and each column represents a distance interval such 
that <=  represents the interval [<= , <=;, ), where > � ? � @ , 
> � A � B, and @ and B are the number of time and distance 
intervals, respectively. The element in row 9: and column <=  
represents the intersection of [9:, 9:;,) and [<= , <=;,). A time-
aware model is learned for each LH by filling each cell of the 
matrix with the number of times that pairs of data items satisfy 
the corresponding time-distance condition. The symbol 3:=  
represents the number in the cell+?� A0. A time-aware model is 
similarly learned for each AC.  

A time-aware model learned from pairs of data items for a 
person should have smaller values in the upper-right cells, 
which correspond to pairs of data items close in time but distant 
in location (i.e. representing physical impossibility). In 
contrast, it should have larger values in the upper-left cells, 
which correspond to pairs of data items close in location and 
time (i.e. representing spatial-temporal closeness).  
In the time-aware-model usage phase, we assume that an LH 
and an AC represent the same person and the cells in the time-
distance matrix are filled using pairs of data items from the LHi 
and ACj. The resultant matrix is checked to determine whether 
it has the same pattern as those of the time-aware models of LHi 
and ACj, i.e. whether the LH and AC truly represent the same 
person.   
 

 <, … <= … <C 
9, 3,,  3,=  3,C 
…      
9: 3:,  3:=  3:C 
…      
9D 3D,  3D=  3DC 

Fig. 3. Time-distance matrix for learning and using time-aware model 

Details of learning models. The data items (i.e. quadrants) in 
each LH are divided into subsets under the condition that the 
period (i.e. start and end times) of each subset are common 
among LHs (Fig. 4 (a)). A feature vector for a positive example 
is generated from each subset of quadrants as follows. We 
consider all pairs of quadrants in the subset. For example, if the 
subset consists of three quadrants, q1, q2, and q3, we consider 
six pairs (Fig. 4 (b)). For each pair of quadrants, we calculate 
the distance between the two locations and the time difference. 
We then add frequency values to the corresponding cells in the 
time-distance matrix (shown in Fig. 3). The resultant matrix 
represents how far Person(LHi) moves in a specific time 
interval. It is transformed into one dimension, which is a feature 
vector of a positive example for Model(time-aware, LHi).  

A negative example is generated from each subset � of 
quadrants in LHi. For each of the other LHs, we take a subset � 
of quadrants so that the periods of � and � coincide. We 
consider all pairs of a quadrant from � and one from � and, by 
using these pairs, we add frequency values to the time-distance 
matrix as we do for positive examples (Fig. 4(c)). The resultant 
matrix represents the distribution of the time differences and 
distances between Person(LHi) and persons represented by 

other LHs. These positive and negative examples are used to 
learn Model(time-aware, LHi), as shown in Fig. 4(d).  

A time-aware model for each ACj is similarly learned 
following a pre-process that transforms text in ACj into 
quadrants.  

 
Fig. 4. Learning time-aware model for LHi (�ab and �ab represent 
time difference and distance between quadrants qa and qb) 

Details of using models. Given LHi and ACj, we divide the LHi 
and ACj data in the same way as in the learning phase. We 
consider all pairs of a subset of quadrants from LHi and one 
from ACj under the condition that the two subsets have the 
same period. For each pair of subsets, say � and �, we consider 
all pairs of a quadrant from � and one from �. For example, if � 
has five quadrants and � has two quadrants, we consider ten 
pairs. Using these pairs, we add frequency values to the time-
distance matrix as in the learning phase. The resultant matrix 
represents the distribution of time differences and distances 
between Person(LHi) and Person(ACj). The matrix is then 
transformed into a feature vector. The feature vectors generated 
from LHi and ACj are input into Model(time-aware, ACj) and 
Model(time-aware, LHi) to obtain two score values for the 
time-aware models, i.e. Score(time-aware ACj, i, j) and 
Score(time-aware LHi, i, j), for each i and j.  

VII. EVALUATION  

A. Implementation and preliminary evaluation 
We fused the six scores into Score(i, j) by normalizing each 

of the scores and averaging them. 
For the time-aware model, we instantiated the time-distance 

matrix with (0, 10, 20, 30, 60, 120, 180, 360) for time intervals 
and with (0, 1, 2, 4, 8, 16) for distance intervals, where the units 
for time and distance were minutes and kilometres, respectively. 
Evaluation using alternative parameters is left for future work.  

For the time-aware models, the data for each LH and AC 
were divided into subsets with a period of one day because 
physical impossibility works more effectively for a pair of data 
items for which the times are close. For the two frequency-
based models, the LH data were also day-wise divided into 
subsets whereas we tested several options for dividing the AC 
data. We used scikit-learn [22] for implementing machine 
learning and tested three machine learning algorithms, i.e. 
logistic regression using linear discrimination plane, SVM 
(support vector machine) with a radial basis function kernel 
using a non-linear discrimination plane, and XGBoost 
(eXtreme Gradient Boosting) using decision trees.  
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We evaluated the three machine learning algorithms for the 
time-aware models and found that XGBoost performed best. 
For the two frequency-based models, we evaluated all 
combinations of the three machine learning algorithms and the 
options for dividing the AC data. We found that logistic 
regression performed best with a period of 245 days for a subset 
of AC data 2 . The evaluation results presented below were 
obtained using these best combinations. 

B. Evaluations with original LHs 
Each evaluation was performed ten times because the 

machine learning algorithms used have randomness. The rates 
of correct linking shown hereafter are average values. 

53 vs. 53 evaluation. The 53 LHs of the volunteers were linked 
to their ACs after the correspondence between the LHs and ACs 
was made unknown to the method. Table � shows the results, 
where row A1 shows the number and rate (%) of LHs that were 
linked to the correct ACs using the small-fine AC models. Row 
A3 shows the number and rate using the small-fine and large-
coarse AC models, and row A5 shows the number and rate 
using the small-fine, large-coarse, and time-aware AC models. 
Rows D1 through D5 show the results using dual models, e.g. 
D1 shows the results using the AC and LH small-fine models, 
and D5 shows the results using all six models. From Table �, 
we can see that combining models with different resolutions 
(small-fine and large-coarse) was effective; i.e. the rates for 
A3/L3/D3 were better than those for A1/L1/D1 and those for 
A2/L2/D2 with only one exception (A3 was worse than A1). 
The time-aware models were also effective; i.e. the rates for 
A5/L5/D5 were better than those for A3/L3/D3. The dual-
model approach (combinations of LH and AC models) was also 
effective; i.e. the rates for D1–D5 were better than those for 
A1–A5 and L1–L5. Table � also shows that using all six 
models (D5) resulted in the best performance, and the rates 
shown hereafter are those obtained with this best mode unless 
otherwise noted. 

TABLE III.  RESULTS OF 53 VS. 53 EVALUATION 

ID Model No. of LHs linked 
correctly (%) 

A1 small-fine, AC 17.2 (32.5%) 
A2 large-coarse, AC 13.8 (26.0%) 
A3 A1 & A2 16.8 (31.7%) 
A4 time-aware, AC 24.4 (46.0%) 
A5 A1 & A2 &A4 33.6 (63.4%) 
L1 small-fine, LH 18.0 (34.0%) 
L2 large-coarse, LH 20.2 (38.1%) 
L3 L1 & L2 23.2 (43.8%) 
L4 time-aware, LH 17.2 (32.5%) 
L5 L1 & L2 &L4 29.4 (55.5%) 
D1 small-fine, Dual 23.4 (44.2%) 
D2 large-coarse, Dual 22.6 (42.6%) 
D3 D1 & D2 28.6 (54.0%) 
D4 time-aware, Dual 24.2 (45.7%) 
D5 D1 & D2 & D4 39.8 (75.1%) 

                                                           
2  In Tables � and �, the number of LH data items per day is roughly 

245 while that of AC data items is roughly 1. A period of 245 days 

53 vs. many evaluations. We hid the ACs of the 53 volunteers 
among 1000, 10,000, and 100,000 noise ACs by inserting each 
of the volunteers’ ACs randomly into the list of the noise ACs. 
We then attempted to link the 53 LHs to the 53 ACs hidden in 
the noise ACs. Table � shows the rate of an LH being correctly 
linked and the rate of an LH for which the correct AC was 
among the top 100 scored ACs. As shown, 15.1% of the LHs 
were correctly linked to ACs hidden in the 1000 noise ACs. 
Furthermore, if we assume that the linkability of 100 ACs can 
be checked more precisely with the human eye, 39.8% of the 
LHs might have been correctly linked to ACs hidden in the 
100,000 noise ACs. 

The total processing time for the 53 vs. 100,053 evaluation 
was 6.8 days, including 60 hours for obtaining data from ACs, 
96 hours for generating 53 LH models and 100,053 AC models, 
and 8 hours for re-identification. The processing time is 
proportional to the number of ACs if we limit the number of 
other ACs for generating negative samples and limit the number 
of LHs. We used a workstation having a 12-core Intel i-9 CPU 
and 128-GB memory. It cost 3600 USD. We also used three 
PCs, each of which cost 450 USD, to obtain the AC data. Thus, 
it is practical to search millions of candidate ACs for ones to be 
linked with LHs. 

TABLE IV.  RESULTS OF 53 VS. MANY EVALUATION 

No. of ACs 53 1053 10,053 100,053 
Correct linkage 

(%) 75.1 15.1 0.0 0.0 

Top 100 scores 
(%) — 92.5 61.1 39.8 

1 vs. 53 and more evaluations. An LH was linked to one of 
the 53 ACs either not hidden or hidden in 1000, 10,000, or 
100,000 noise ACs. This trial was performed for each of 53 LHs. 
Because we used only one LH in each trial, we could not 
generate a model for the LH because negative examples from 
other LHs were not available. Thus, we used only the three AC 
models instead of using all six models. As shown in Table �, 
the rates for 1 vs. 53 correct linking, 1 vs. 1053 top 100 scores, 
and 1 vs. 10,053 top 100 scores were almost the same as those 
for 53 vs. 53 or more evaluations (Table �). 

TABLE V.  RESULTS OF 1 VS. 53 OR MORE EVALUATIONS 

No. of ACs 53 1053 10,053 100,053 
Correct linkage 

(%) 63.4 3.8 0.0 0.0 

Top 100 scores 
(%) — 84.5 58.5 9.4 

 

C. Evaluations with obfuscated LHs 
We used only parts of the LHs (data for one month, one 

week, and one day) instead of the data for all three months. 
Shortening the LHs corresponds to a type of obfuscation, i.e. 
frequently changing a person’s pseudonym. We also used only 

for a subset of ACs led to roughly the same number of data items 
included in the LH and AC data subsets.   
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the large-coarse models. This limited model usage corresponds 
to another kind of obfuscation, i.e. degrading the resolution of 
the location data from one second and 100 meters to one day 
and 5 km. (Note that a feature vector for a large-coarse model 
is generated from the number of times each 5-km2 cell is visited 
in one day.) 

As shown in Tables � and , there was still the risk of re-
identification with one-week LHs despite the short periods and 
low resolution in both the 53 vs. 53 or more case and the 1 vs. 
53 or more case. 

TABLE VI.  RESULTS OF 53 VS. 53 OR MORE WITH SHORT AND LOW-
RESOLUTION LHS 

Target No. of 
ACs 3 months 1 month 1 week 1 day 

Correct 
linkage (%) 

53 42.6 31.9 26.2 13.0 
1053 7.9 7.0 0.0 0.0 

Top 100 
scores (%) 

10,053 47.5 32.5 30.6 17.7 
100,053 19.6 14.7 9.4 2.6 

TABLE VII.  RESULTS OF 1 VS. 53 OR MORE WITH SHORT AND LOW-
RESOLUTION LHS 

Target No. of 
ACs 3 months 1 month 1 week 1 day 

Correct 
linkage (%) 

53 26.0 24.3 22.3 7.4 
1053 1.5 1.5 0.0 0.0 

Top 100 
scores (%) 

10,053 33.6 24.9 21.7 10.6 
100,053 0.4 0.9 0.4 1.1 

VIII. CONCLUSION  
We identified problems in linking location histories with 

social networks, i.e. the need for information about social 
relationships, a limitation on the number of target data sets, and 
the insufficient use of time information. Our proposed models 
make better use of time information by enabling the sameness 
and difference of people to be estimated on the basis of both 
time and location. Our proposed method uses these models 
along with multi-resolution models for both sides of linking, i.e. 
location histories and social network accounts. Evaluation 
using real data demonstrated the effectiveness of our method 
even for 1 pseudonymized and obfuscated location history vs. 
10,000 social network accounts without any information about 
social relationships.  

Future work includes evaluating the method using different 
data sets and parameters, using meta-learning to fuse the scores, 
and using pictures and user profiles on social network accounts 
as well as texts. Another research direction is to study how to 
utilize location histories while alleviating the privacy risk such 
as the study of tradeoff between the utility and risk of location 
histories [23]. 
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