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Abstract— This is a survey of autonomous driving technologies 

with deep learning methods. We investigate the major fields of 
self-driving systems, such as perception, mapping and localization, 
prediction, planning and control, simulation, V2X and safety etc. 
Due to the limited space, we focus the analysis on several key areas, 
i.e. 3D object detection, depth estimation from cameras, multiple 
sensor fusion on the data, feature and task level respectively, 
behavior modelling and prediction of vehicle driving and 
pedestrian trajectories. 

Keywords—autonomous driving, deep learning, perception, 
planning, prediction 

I. INTRODUCTION 
Autonomous Driving has been active for more than 10 

years. In 2004 and 2005, DARPA held the Grand Challenges in 
rural driving of driverless vehicles. In 2007, DAPRA also held 
the Urban Challenges for autonomous driving in street 
environments. Then professor S. Thrun at Stanford university, 
the first-place winner in 2005 and the second-place winner in 
2007, joined Google and built Google X and the self-driving 
team. 

 
Fig. 1. Deep learning kingdom. 

Breakthroughs on deep learning have been achieved since 
Hinton published new deep structured learning architecture, 
called deep belief network (DBN) [5]. The past decade has seen 
rapid developments of deep learning techniques with 
significant impacts on signal and information processing. In the 
ImageNet Challenge 2002, the first-place winner came from 
Hinton’s group, using a novel Convolutional Neural Network 
(CNN) called AlexNet [5]. 

In this paper, we investigate how autonomous driving 
marries deep learning [1, 2]. Our survey work spans the state-
of-art technology in major fields of self-driving technologies, 
such as perception, mapping and localization, prediction, 

planning and control, simulation, V2X and safety etc. Due to the 
limited space, we focus on some critical areas, i.e. 3D object 
detection based on different sensors (cameras, radar and 
LiDAR), depth estimation from cameras, sensor fusion in data, 
feature and task level respectively, behavior modeling and 
prediction for vehicle and pedestrian trajectories. 

II. OVERVIEW OF DEEP LEARNING 

A. Basic Theory 
Like machine learning, deep learning also follows the 

category as unsupervised, semi-supervised, supervised and 
reinforcement learning (RL) [5], shown in Fig. 1.  

In supervised learning domain, there are different deep 
leaning methods, including Deep Neural Networks (DNN), 
Convolutional Neural Networks (CNN), Recurrent Neural 
Networks (RNN) as Long Short-Term Memory (LSTM) and 
Gated Recurrent Units (GRU). In unsupervised learning 
domain, there are several members for clustering and non-linear 
dimensionality reduction, including Auto Encoders (AE), Deep 
Restricted Boltzmann Machines (RBM), and GAN (Generative 
Adversarial Networks). In addition, RNNs, such as LSTM and 
Deep RL, are also used for unsupervised learning in many 
application domains. In semi-supervised learning domain, Deep 
RL and GAN are used; additionally, including RNN (LSTM and 
GRU) as well. 

Deep reinforcement learning is the combination of RL and 
deep learning [4]. To make machine learning techniques easier 
to apply and reduce the demand for experienced human experts, 
automated machine learning (AutoML) has emerged as a hot 
topic [9]. The famous AutoML in deep learning is neural 
architecture search (NAS) proposed by Google [8].  

GANs [10] are an unsupervised approach where the 
generator and the discriminator compete against each other in a 
zero-sum game. Graph neural networks (GNNs) capture the 
dependence of graphs via message passing between the nodes of 
graphs [6]. Optimization in training a deep learning model is 
critical, to avoid overfitting, gradient exploding or diminishing 
and to accelerate the training process.  

There are open deep learning platforms for researchers and 
engineers to design and develop models, such as PyTorch, 
Tensorflow, MxNet, Caffe and CNTK. 

221

2020 IEEE 20th International Conference on Software Quality, Reliability and Security Companion (QRS-C)

978-1-7281-8915-4/20/$31.00 ©2020 IEEE
DOI 10.1109/QRS-C51114.2020.00045



B. Distributed Learning 
Accelerating deep learning training is a major challenge and 

techniques range from distributed algorithms to low-level circuit 
design [7], where a main effort is to exploit their inherent 
parallelism. Most of the operations in learning can be modelled 
as operations on tensors as a parallel programming model. 

C. Model Compression and Acceleration 
Deep neural network models are computationally expensive 

and memory intensive, prohibiting their deployment in devices 
with small memory resources or in applications with low latency 
requirements. A solution is to perform model compression and 
acceleration without significantly decreasing the model 
performance. So far there are some techniques proposed for use, 
roughly categorized into four types [3]: parameter pruning and 
sharing, low-rank factorization, transferred/compact 
convolutional filters, and knowledge distillation.  

Due to the difficulty of deploying various deep learning 
models on diverse DL hardware, to develop the deep learning 
compilers gets important. Several compilers have been proposed 
such as Tensorflow XLA/MLIR and the open source TVM [11]. 

III. OVERVIEW OF AUTONOMOUS DRIVING 

 
Fig. 2. HW and SW of the autonmous driving platform. 

A. Hardware 
Fig.2 shows the HW and SW of autonomous driving 

platform. Autonomous driving vehicle test platforms should be 
capable of realizing real-time communication, such as in 
controller area network (CAN) buses, and can accurately 
complete and control the directions, throttles, and brakes of 
vehicles in real time [15].  

Sensing of autonomous driving vehicles falls into three main 
categories [13]: self-sensing, localization and surrounding 
sensing. Surrounding sensing uses exteroceptive sensors to 
perceive road markings, road slope, traffic signs, weather 
conditions and obstacles. Proprioceptive and exteroceptive 
sensors can be categorized as either active or passive sensors. 
The popular sensors include GPS, IMU, cameras, LiDAR, radar 
and ultrasound etc. 

There are different computing platforms, from CPUs, GPUs, 
ASIC to FPGAs etc., at the vehicle, the roadside and the cloud 
server. 

B. Software  
A software platform of autonomous driving is classified 

multiple layers, from bottom to top as the real time operating 
system (RTOS), middleware, function software and application 
software. The software architecture could be end-to-end or 
modular style. Key functions of a modular system are regularly 
summarized as [13]: perception, localization and mapping, 
prediction, planning/decision making, and vehicle control etc. 

� Perception collects information from sensors and 
discovers relevant knowledge from the environment. It 
develops a contextual understanding of driving 
environment, such as detection, tracking and 
segmentation of obstacles, road signs/marking and free 
space drivable areas. Based on the sensors implemented, 
the environment perception task can be tackled by using 
LIDARs, cameras, radars or a fusion between these three 
kinds of devices. 

� Mapping refers to building the map with information of 
roads, lanes, signs/markings and traffic rules etc. 
Localization determines its position with respect to the 
driving environment [12]. 

� Prediction refers to estimating the obstacles’ trajectories 
based on their kinematics, behaviors and long-
term/short-term histories.  

� Planning makes decisions on taking the vehicle to the 
destination while avoiding obstacles, which generates a 
reference path or trajectory. Route planning is referred as 
finding the point-to-point shortest path in a directed 
graph. Behavioral planning decides on a local driving 
task that progresses the vehicle towards the destination 
and abides by traffic rules, traditionally defined by a 
finite state machine (FSM). Motion planning then picks 
up a continuous path through the environment to 
accomplish a local driving task, for example RRT and 
Lattice planning 

� Control executes the planned actions by selecting 
appropriate actuator inputs, classified as trajectory or 
path tracking. 

� V2X (vehicle to everything) is a vehicular technology 
system that enables vehicles to communicate with the 
traffic and the environment around them [14], including 
vehicle-to-vehicle communication (V2V) and vehicle-
to-infrastructure (V2I). 

It is worth to mention, the ISO (International Organization 
for Standardization) 26262 standard for functional safety of 
driving vehicles defines a comprehensive set of requirements for 
assuring safety in vehicle software development [13]. 

Since driving of an experimental vehicle on the road still 
costs highly and experiments on existing human driving road 
networks are restricted, a simulation environment is beneficial 
for developing before real road tests [15]. 

IV. PERCEPTION 
In this section, we focus on the detection, reconstruction 

(depth) and sensor fusion, besides of image processing as 
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denoising and super-resolution, segmentation [110], motion 
estimation, tracking [111] and human pose estimation (used for 
pedestrian movement analysis). The detection part is split into 
2-D and 3-D. The 3-D method is classified as camera-based, 
LiDAR-based, radar-based and sensor fusion-based. Similarly, 
depth estimation is categorized as monocular image-based, 
stereo and sensor fusion. 

The 2-D object detection by deep learning are roughly 
named as one-stage and two-stage methods [16]. There are 
special objects for autonomous driving to detect/classify, i.e. 
lane [20] and road markings [18], traffic sign [17] and traffic 
light [19]. 

A. 3-D Detection 

TABLE I.  LIDAR-BASED 3-D OBJECT DETECTION METHODS 

 

TABLE II.  CAMERA-BASED 3-D OBJECT DETECTION METHODS 

 
For 3-D sensors, like LiDAR and depth sensor (RGB-D), 3-

D object detection is direct by finding 3-D bounding box. For 
single camera, the 3-D object detection needs extensive 
inference beyond the simple 2-D bound box, to estimate the 3-
D bounding box and 3-D pose. Radar can find the object 
information limited to the scan plane. 

1) LiDAR sensors obtain the point cloud data from the 
surroundings, so the detection methods could be roughly 
categorized [21-49] as 3-D volume-based and projection-based 
(mapping 3-D data onto 2-D planes), shown in Table I. Like 2-
D detection, the algorithms can fall into one stage and two stage 
methods too. 

2) The camera-based 3-D detection methods can be 
classified [50-71] as proposal-based, 3D shape-based, 2D-3D 
geometry-bas ed, depth map-based and 3D transform-based, 
sjown in Table II. 

3) There are some stereo images-based methods with deep 
learning [72-75]. 

4) Deep learning has been also applied in radar-based 
object detection [76-78]. 

B. Depth Estimation 
Depth estimation from images is a reconstruction task in 

computer vision. Stereo matching [102-106] could be 
categorized as bottom-up or top-down, 2-D feature-based or 3-
D cost volume-based. Depth estimation from monocular image 
is more challenging than from stereo images. The methods in 
this domain fall into supervised or unsupervised, with different 
constraints from edge, surface normal, segment, pose and flow 
(videos) [79-101], shown in Table III. Depth completion from 
LiDAR is another topic [107-109]. 

TABLE III.  MONOCULAR CAMERA-BASED DEPTH ESTIMATION METHODS 

 
C. Sensor Fusion 

The sensor fusion could be realized in data level and task 
level. A prerequisite work is calibration of multiple sensors 
[112-113], to determine transform of aligning the data from 
different sensors. The sensor fusion methods include depth 
fusion from camera and LiDAR, and 3-D object detection 
methods with camera, LiDAR and/or radar. 

a) Depth fusion: Similar to depth estimation from 
images, depth fusion methods with camera images and LiDAR 
are also categorized [roughly as supervised and unsupervised, 
with different constraints from pose, flow, edge and surface 
normal etc [114-131], shown in Table IV. 

b) 3-D object detection: Similarly, object detection 
methods with LiDAR and camera are also classified as volume-
based, proposal-based, transform-based and projection-based 
[132-149], shown in Table V. 

V. MAPPING AND LOCALIZATION 
In a SLAM survey paper by Cadena et al. [150], semantic 

SLAM is investigated. Semantic mapping consists in 
associating semantic concepts to geometric entities in robot’s 
surroundings, where deep learning is applied for semantic 
object detection and classification.  

Milz et al. [151] give an overview of deep learning 
applications in visual SLAM, from depth estimation, optic flow 
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estimation, feature extraction and matching, loop closure 
detection/re-localization, semantic segmentation and camera 
pose estimation.  

Huang, Zhao and Liu [152] publish an overview of SLAM 
with LiDAR, camera, IMU and their fusions, in which deep 
learning methods are investigated in respective sessions too, 
like feature extraction, object detection, segmentation, moving 
object removal, pose estimation and localization. 

TABLE IV.  DEPTH FUSION METHODS WITH LIDAR AND CAMERA 

 

TABLE V.  3-D OBJECT DETECTION METHODS WITH CAMERA AND LIDAR 

 

VI. PREDICTION, PLANNING AND DECISION MAKING 

TABLE VI.  PEDESTRAIN BEHAVIOR PREDICTION METHODS 

 

TABLE VII.  VEHICLE BEHAVIOR MODELING AND DECISION MAKING 

 

The challenging issues are vehicle/pedestrian behavior 
modeling and prediction. Ego vehicles will consider learning 
the driving model, while surrounding vehicles will be predicted 
for their trajectories [195]. 

A. Pedestrian behavior modeling and prediction: Pedestrian 
behaviour modelling can be typically classified as physics-
based, pattern-based and planning-based. Most of deep 
learning-based methods and GAN-based methods are 
pattern-based, while deep reinforcement learning-based 
methods are planning-based [153-168], shown in Table VI. 

B. Vehcile behavior modeling and decision making: Vehicle 
behaviour prediction models are categorized to physics-
based, manoeuvre-based, and interaction-aware models. 
Roughly these methods are calssified based on the model 
types as CNN, RNN (LSTM, GRU), GAN, GNN and 
Deep RL/IRL [169-194], shown in Table VII. 

VII. END-TO-END SYSTEM 
Besides of modular autonomous driving systems, there are 

some platform working in an end-to-end manner, like a control 
process [196]. They are either the entire loop from perception 
to control, loop from planning to control (without perception), 
or loop from perception to planning (without control) [197-
203].  

VIII. SIMULATION 
Deep learning applications for simulation for autonomous 

driving mostly fall into sensor modelling, such as radar 
modelling, LiDAR model and image/video synthesis [204-
208]. 

IX. SAFETY 
McAllister et al. [209] investigate three under-explored 

themes for autonomous driving (AV) research: safety, 
interpretability, and compliance. A principled approach to 
modelling uncertainty is Bayesian probability theory, so they 
propose to use Bayesian deep learning for uncertainty 
distribution. 

VerifAI [210] is a software toolkit from UC Berkeley, for 
formal design and analysis of systems that include AI and 
machine learning components. It seeks to address challenges in 
the presence of environment uncertainty. VerifAI provides 
users with SCENIC, a probabilistic programming language for 
modelling environments.  

X. OPEN DATASETS 
There  are a number of open data sources (i.e. sensor data, 

including cameras, LiDAR, radar, GPS/IMU, wheel encoder 
and so on) in autonomous driving communities, like Kitti [215], 
Udacity [219], NuScenes [218], Waymo [221], Lyft Level5 
[222], BaiduScope [217], BDD (Berkeley) [216], ArgoVerse 
[220] and PandaSet [224] etc. Some datasets are open for 
trajectory-based autonomous driving research, like NGSim 
[225], HighD [226] and INTERACTION [227]. 

 

XI. CONCLUSION 
We have investigated state-of-art deep learning methods 

applied for autonomous driving in several major areas. It is seen 
the marriage of them has made impressive and promising 
accomplishments. However, there are still some challenges in 
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this field, due to either the autonomous diving task itself or the 
deep learning shortcomings [211-212], listed as follows. 

� Perception The “long tail” effect is obvious and there are 
corner cases to find. To train a deep learning model still 
requires a lot of data, while model overfitting and 
sensitivity of image changes are still bother us. In sensor 
fusion (including V2X as well), modelling of each 
sensor’s capacity and limitation is not well defined. 

� Prediction The vehicle or pedestrian trajectory 
prediction needs more data to train the model. More clues 
are required, extracted from the perception, like human’s 
gaze and pose, drivers’ emotion and hand gesture, and 
vehicles’ turn light signal etc. 

� Planning and control Behavior planning and motion 
planning are unmatured in deep learning’s application, 
especially real time implementation in crowded and 
highly dynamic traffic situations. Collaborative planning 
based on V2X is still a complicated problem. 

� Safety Uncertainty of deep learning for autonomous 
driving is still an open problem. Based on GAN’s 
application work [213-214], it is seen some adversarial 
cases are not easily handled. Fault detection for each 
module is critical, for fail-safe and fail-operational. 

� Computing platform It is not clear how the computation 
power request for autonomous driving is calculated out, 
especially for planning and control, though there are not 
a few companies developing stronger SoCs and 
accelerators. 
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