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Abstract—Vision is the primary way to perceive the envi-
ronment during driving. However, due to its low spatial and
temporal resolution, a driver may fail to perceive agents on the
road, which may lead to collisions. Modern vehicles are equipped
with sensors that can better perceive the driving environment,
as well as ADAS to provide driving assist. However, ADAS
does not consider the driver’s perception, which may result in
unnecessary warnings or actions against the driver’s will. These
false-positives may cause distractions and confusions in complex
driving scenarios, which pose safety threat. In this project, we
proposed a driving assist system which can reduce the number
of unnecessary warnings by taking into account the driver’s
perception of the driving environment. The driver’s perception
model combines estimation of driving environment update and
driver’s observation. The driver’s observation is obtained from
gaze tracking and the driving environment update is estimated
based on the last observation. In this paper, we formulated
inference problem on the driver’s perception, and developed a
virtual driving simulator to evaluate the feasibility of the system.

Index Terms—Gaze Tracking, Perception Model, State Estima-
tion

I. INTRODUCTION

Driving is a social activity that involves extensive inter-

actions with other agents on the road. Human driver uses

vision as the primary source of perception, which cannot fully

capture and track all the agents in complex driving scenarios.

Failing to correctly perceive other agents is a primary cause of

traffic accidents, and can cause serious injuries or death due

to collision [1], [2].

Modern vehicles are equipped with sensors like Lidar that

have better spatial and temporal perception resolution than

human vision. With the development of Advanced Driver-

Assistance Systems (ADAS), vehicles perceive the driving

environment based on these sensor data, identify imminent

collision threats, warn the driver or even perform preemptive

actions (i.e. braking) to avoid dangerous situations. i.e. the

blind-spot monitoring system warns the driver when the driver

change lane with another vehicle in the blind spot of the

target lane. However, the ADAS and the driver are working

independently in most driving scenarios. The ADAS may

provide unnecessary warnings and/or perform actions that may

”surprise” the driver in complex driving scenarios. i.e. the

blind-spot monitoring system warns the driver when the driver

decides to change lane, while the driver knows the lane change

can be performed safely with the awareness of another vehicle

in the blind spot. These false positives cause distractions and

confusion to the driver, which result in mental fatigue and may

raise additional safety concern [3], [4].

These false-positives exist because the ADAS does not

know how the driver perceives the driving environment. If the

ADAS can infer the driver’s perception, the ADAS can provide

more precise warning by comparing the driver’s perception

with its own perception. i.e. the ADAS can warn the driver

when an agent poses imminent collision threat only if the agent

is not perceived by the driver.

Cognitive models of the driver performing driving tasks

have been extensively studied [4], [5]. However, these cog-

nitive models are not integrated into the ADAS for real-time

driving assistance. Gaze tracking has been used in various

research studies to infer the driver’s attention level during

driving [6]. However, gaze tracking has not been used to infer

driver’s perception of the driving environment.

In this project, we infer driver’s perception using gaze

tracking, and propose a driving assist system based on driver’s

perception model. The driver’s perception model represents

how the driver perceive the current driving environment,

which combines information from observations as well as

predictions. The driver’s observation of the driving environ-

ment is captured by tracking the driver’s gaze on the road

using a gaze tracking device. The system also mimics the

driver’s prediction of the unobservable agents in the driving

environment based on historical observations. The system then

compares the driver’s perception model with the car’s percep-

tion model, which has better observation with less uncertainty.

The system only warns the driver if an agent on the road

poses imminent collision threat and is not perceived by the

driver. The system can effectively reduce the false-positives

and unnecessary warnings generated by the ADAS, which

can reduce the mental load of the driver in complex driving

scenarios, and improves coordination between the driver and

the vehicle. In this paper, we formulated inference problem

on the driver’s perception, and developed a virtual driving

simulator to evaluate the feasibility of the system.

II. PROBLEM FORMULATION

A. Perception Basics

Ground truth
Let’s denote the position of car as p which could be a 2D or

3D coordinate and the speed as v. And the state of car can be
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Fig. 1. How ground truth change affects observation (purple areas) and estimation uncertainty (red cicles) of the car and the driver.

represented as c = 〈p, v〉. The ground truth is defined as the

combination of the cars around the ego vehicle c:

Gc = {c, c0, c1, ..., cn}
Entity

An entity (i.e. a person or a vehicle) has the ability to making

observation and estimation, which can be defined as:

E = 〈S,A〉
S is a set of sensors. A represents the available actions this

entity can perform. The strategy means the probability of

taking action a at a specific situation. The action can be in

forms of a ∈ {φ, slide left, slide right, accelerate, slow down,

maintain speed} in highway driving [7]. i.e. Ec = 〈S, φ〉. This

represents a traditional car with sensors S equipped on it.

Observation
An observation can be defined as a function which is related

to the sensor that makes the observation. For example, sensor

A and B may have different error while measuring the same

object at the same condition. Here we use Φ to represent

an observation andwe define an observation of entity E to

measurable value x at time t as function

ΦE,t(x) = h(xt) + vt

Here v represents uncertainty.

Estimation
An estimation is a partial or a complete prediction to the

ground truth. It’s based on some previous observation. We

use Ψ to represent an estimation. And it can be written as the

following form with noise w

ΨE,t(x) = f(x0,ΦE,x,1:t) + wt

Perception
For a specific ground truth, different perceptions will lead to

different views. For brief, it’s a combination of observations

and estimations. And we use Ω to represent a perception.

ΩE,t(x) = g(ΨE,t(x),ΦE,t(x))

The distribution P (xt|x0,ΦE,1:t(x)) can be calculated accord-

ing to Bayes’ theorem.

P (xt|x0,ΦE,1:t(x)) ∝ P (ΦE,t(x)|xt)P (xt|x0,ΦE,1:t−1(x))

It’s similar with Kalman filter. And we can use the similar

way to get the uncertainty.

Differences between perceptions
The differences between perceptions in our paper is defined as

a function contains the distribution of position and velocity at

time t. We use |ΩE0,t(x)�ΩE1,t(x)| or |ΩE0,t(x)| to represent

it. By comparing two different perception Ω0(G) and Ω1(G)
at time t, there are 2 situations.

1) |Ω0(cj)� Ω1(cj)|
This means there’s a difference at cj in perception Ω0

and perception Ω1. For example, ci in car c’s perception

ΩEc,t+1 and driver d’s perception ΩEd,t+1 in figure 1.

2) Do not exist Ω0(cj) or Ω1(cj)
We call this situation a loss of cj in Ω0 or Ω1. In figure

1, there’s a loss of ck in driver d’s perception ΩEd,t

compared with car c’s perception ΩEc,t. And for this

situation, the difference between 2 perceptions comes

from Ω0(cj) or Ω1(cj) only. It can be represented as

|Ω0(cj)| or |Ω1(cj)|.
In figure 1, we shows the driver d and the car c are the

two entities defined as Ed = 〈Sd, Ad〉 and Ec = 〈Sc, φ〉 for
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Sd = {eyes, ears, hands, ...}, Sc = {Lidar, cameras, IMU,

...}. Ground truth can be defined as

G = Gc = {c, ci, cj , ck}
Let us take car c at time t as an example. Car c’s observation

is

ΦEc,t(G) = {ΦEc,t(c),ΦEc,t(ci),ΦEc,t(cj),ΦEc,t(ck)}
And its estimation is represented as

ΨEc,t(G) = {ΨEc,t(c),ΨEc,t(ci),ΨEc,t(cj),ΨEc,t(ck)}
Thus,car c’s perception is

ΩEc,t(G) = g(ΨE,t(G),ΦE,t(G))

= {ΦEc,t(c),ΦEc,t(ci),ΦEc,t(cj),ΦEc,t(ck)}
Here, we use observation ΦE to update the estimation ΨE

based on previous observation ΦE,1:t−1. The update mostly

is not complete as we only observe a part of ground truth

with noise. For the agents we haven’t observed, we use the

estimation in perception. And the rest observed part, we use

the estimation updated by observation in perception. As figure

1 shows at time t+1, car c has no observation on car cj . So in

perception ΩEc,t+1,we have estimated cj and updated ci and

ck.

B. Inference of the Driver’s Perception from Gaze Tracking

In our example, driver d’s observation is ΦEd
(G). And at

time t,

ΦEd,t(G) = {ΦEd,t(c),ΦEd,t(ci),ΦEd,t(cj)}
When reaching time t+ 1, it turns to

ΦEd,t+1(G) = {ΦEd,t+1(c),ΦEd,t+1(ci)}
Car cj has moved out from driver d’s sight. He could only

see ci while looking forward. Therefore, driver d’s perception

at time t + 1 has updated ΨEd,t+1(ci) with ΦEd,t+1(ci) and

kept estimation on cj which is ΨEd,t+1(cj). As a result

ΩEd,t+1(G) = {ΦEd,t(c),ΦEd,t(ci),ΨEd,t(cj)}
C. Smart Collision Warning Using the Driver’s Perception

First of all, a collision will happen in T is defined as ξT .

And eEd,a represents the event that driver d takes action a ∈
{slide left, slide right, accelerate, slow down, maintain speed}.

eG,Ω0,Ω1 represents the event that in the driving scenario with

ground truth G and perceptions Ω0,Ω1. We will give a warning

on action a in the situation below

eEd,a ∧ eG,Ω0,Ω1
→ ξT

A simple way to judge the left side of the logic expression is

to calculate the probability of the event that if driver d takes

action a leads to getting into a larger |Ω0�Ω1| > ε area. Here

ε is a threshold. In figure 1, this may means car c takes action

a = slide left. And the larger |ΩEc,t+1 � ΩEd,t+1| > ε area

is occupied by car ck which has never been seen by driver d.

Fig. 2. The virtual cockpit for system evaluation

III. RESEARCH ROADMAP

In this project, we adapt to the following principles:

• From Virtual to Real

– Virtual driving environment to real driving en-
vironment: The system is first evaluated in virtual

environment. The results obtained from virtual envi-

ronment are reproducible and more interpretable.For

safety-critical systems, the system can be evaluated

in more extreme conditions without causing real

world damage.

– Virtual driver to real driver: The ground truth of

a driver’s perception during the evaluation cannot

be determined. In this project, we construct a vir-

tual driver who uses a camera as perception input,

and make action decisions based on the perception

model. After demonstrating the effectiveness with the

virtual driver, the system can then be evaluated with

real drivers.

• From Simple to Complex: In this project, we first prove

the feasibility of our system in simple driving condi-

tions like highway driving, and gradually increase the

complexity to reflect real world driving conditions. The

complexity of the virtual driver will also be gradually

increased to mimic the behaviors of a real driver.

IV. EXPERIMENTAL SETUP

In this section, we introduce our early effort to evaluate the

feasibility of the driver assist system.

A. Virtual Driving Simulator

Driving simulators have been widely used to evaluate driv-

ing safety [8]. As shown in Fig. 2, a driving cockpit has been

set up to mimic real driving scenarios. The virtual driving

environment is constructed using the Unity game engine.

Drivers can operate the ego vehicle in the driving environment

using Logitech G29 gaming controller. Dynamic traffic is

simulated in SUMO driving simulator [9] with identical road

map as in the Unity environment. Locations of the agents

in SUMO simulator are mapped to the Unity environment

and the location of the ego vehicle is mapped to the SUMO

simulator to achieve closed-loop interactions. A gaze tracker is
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Fig. 3. Human vision regions

used to monitor the driver’s observation in the virtual driving

environment. The driving simulator can be used to collect data

on the driver’s observation of the driving environment as well

as the driver’s actions under different driving context.

B. The Virtual Driver

In the early stage of system development, a virtual driver is

developed to evaluate our system. A camera inside the ego

vehicle in the Unity environment is used to represent the

eye of the virtual driver. Agents captured within the vision

of the camera are regarded as observations of the driver. An

estimation model is developed to mimic how human driver

estimates the existence and location of unobserved agents on

the road. i.e. when an agent move out of sight, the driver still

estimates the movement of the agent using the state at the

last observation. The virtual driver’s perception combines the

estimation and the observation, and will be used to determine

the next action by a decision-tree based controller.

V. SUMMARY AND FUTURE WORK

In this project, we proposed a driving assist system which

can reduce the number of unnecessary warnings by taking into

account the driver’s perception of the driving environment. In

this paper, we formulated inference problem on the driver’s

perception, and developed a virtual driving simulator to eval-

uate the feasibility of the system.

Peripheral vision is known to have less accuracy compared

to macular vision [10]. As the next step, we will assign

different uncertainties on the peripheral vision and the macular

vision to achieve more accurate representation.

In [7], Chen et al. proposed to use driver’s behavior model to

predict driver’s actions in different driving context. However,

the driving context was assumed to be the ground truth. With

our driver’s perception model as driving context, the driver’s

behavior model can be more accurate.
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