
Formal Verification of CAN Bus in Cyber Physical
System

Rui Wang
Beijing Key Laboratory of Light Industrial Robot and Safety Verification

Capital Normal University
Beijing, China

Yong Guan
College of Information Engineering

Capital Normal University
Beijing, China

Xiaojuan Li
College of Information Engineering

Capital Normal University
Beijing, China

Rui Zhang
Beijing Key Laboratory of Light Industrial Robot and Safety Verification

Capital Normal University
Beijing, China

Abstract—Cyber physical system (CPS) is a multi-dimensional
complicated system integrating computing, communication and
physical environment. CPS is widely used in safety-critical
areas such as aerospace, intelligent transportation and medical
equipment. So ensuring the security and reliability of CPS is of
great significance. Formal verification is one of the useful ways.
This paper builds timed automata models for the communication
process of CAN bus used in CPS. Our research especially analyses
the gateway in the communication process, and simulates the
transmission with different rates between the external environ-
ment and internal unit. The task also takes into account the
packet transmission priority. The model checking tool Uppaal
is used to verify the functional and real-time properties. The
verification results illustrate that the established model can meet
the relevant properties, and the packet can be transmitted in an
orderly and efficient manner.

Index Terms—Formal verification; Timed automata; CPS;
CAN bus; Communication system

I. INTRODUCTION

CPS [1] integrating advanced sensing, computing, commu-

nication technologies manages the interactions of the human,

control program and physical environments. It is a complex

system requiring efficient coordination. CPS is playing an

increasingly important role in our daily lives, such as medical

robots, industrial automation and control Systems and self-

driving cars and so on. The interaction of the CPS system with

external information is executed by its communication system.

So it is of importance to ensure the safety and reliability

of the communication process. The Controller Area Network

(CAN) bus is a serial bus and widely used CPS [2]. It contains

transceivers, arbiter and gateway modules. The transceiver can

ensure the smooth reception and transmission of messages.

The arbiter can guarantee the correct format and priority of

the message. The gateway [3] is used for message transmission

in the different rates, in which the packets are repackaged and

This paper is sported by National Key R&D Program of China (Project
No. 2019YFB1309900), NSFC 61877040 and Academy for Multidisciplinary
Studies, Capital Normal University(19530012005). Corresponding author:
Yong Guan,Email: Guanyong@cnu.edu.cn

delivered. The key modules on these communication buses

ensure the transmission of the data.

The traditional verification approaches of the CAN bus

protocol include simulation and testing. Simulation uses the

software system to simulate the CAN bus operating environ-

ment, analyse the communication process and draw conclu-

sions. Lindsey et al. studied the IP radiation resistance and

solidification of the CAN bus [4]. Kim et al. used CANoe

to simulate the heavy truck communication system, which

confirmed its reliability based on CAN bus communication [5].

CANoe is a simulation software with programming function,

which can analyse the transmitted signal in real time. But it

relies too much on hardware facilities, and the number of

parameters is limited, resulting in incomplete experimental

results. The testing method is generally carried out in the final

stage of the design, which not only consumes a lot of time,

but also has low reusability, bringing about a great waste of

cost. Mansor et al. used the FMEA method to analyze the

threats and vulnerabilities of the CAN bus network, realized

the experimental setup of the communication network and

derived the security requirements of the CAN bus [6]. Using

unsupervised learning techniques, Umberto proposes a new

method for analyzing and classifying driver behavior, using

selected subsets of CAN bus signals for classifying driver

behavior in an uncontrolled environment in near real-time [7].

Jin proposes an improved algorithm to calculate the response

time of a CAN bus consisting of nodes with hardware and

software buffers, and analyze the worst response time of the

CAN bus [8]. Pan designed and validated a formal model of

the CAN bus protocol, focusing on the arbitration process, the

transmission process and the fault limiting mechanism in the

model [9].

Formal verification have played a increasing important role

in many fields in recent years, such as construction field and

medical field [10]–[12]. It includes model checking [13] and

theorem proving. In contrast, model checking [14] can auto-

matically prove the system and reduce manual intervention.

Timed automata theory is one of the crucial foundations of

249

2020 IEEE 20th International Conference on Software Quality, Reliability and Security Companion (QRS-C)

978-1-7281-8915-4/20/$31.00 ©2020 IEEE
DOI 10.1109/QRS-C51114.2020.00050

model checking technology [15], which plays a key role in

the formal verification of real-time systems. The idea is to use

the form of timed automata to build the target system model,

then search and traverse all states of the model, finally verify

whether the system can satisfy the required properties. The

process of model checking can be divided into three steps:

firstly the properties needs to be met in the target system

will be expressed with some logical formulas, such as CTL

formula and LTL formula; secondly, people will abstract the

target system reasonably and build a model for it, in which

timed automata, Kripe structure and transfer structure can be

employed in the modeling process; finally, the model checking

tool is used to verify these properties. If the verification

result is valid, we will realize the established model satisfies

the requirement; otherwise a counterexample will be given.

Under the circumstances, it is essential to check the model

by the counter-example. If there is no problem in the model

establishment, it is necessary to consider whether the system

does not fit the bill.

The main contribution of this paper is analysing CAN bus

communication system and establishing the time automaton

model for each part in the message transmission process. In

particular, we model and verify the gateway to ensure the

message transmitted normally at high speed and low speed.

Farther more, the properties of CPS that need to be satisfied

in the actual operation are abstracted and formally described

by the computational tree logic(CTL) formula, and the model

checking tools are used to verify these properties so that we

can ensure that the correct and timely data transmission when

it meet the emergency situation.

This paper is organized as follows. Section II describes

the formal syntax and semantics of timed automata. Section

III analyses the principle of CAN bus. In section IV, the

models of each communication module are established and

the process of message transmission in the whole system is

explained. In section V, the key properties that must be met

in the communication system are abstractly explained, and

the properties are formulated by CTL formula. Finally, the

research is summarized in section VI, and future work of this

research are proposed.

II. TIMED AUTOMATA

Timed automata [16] are finite automata with extension of

time variables. Let V be a finite set of variables including

clock variables C and data variables X , V = C ∪ X and

C ∩ X = ∅. ψ(V) expresses invariant and guard formulas.

We have ψ ::= e | ψ ∧ ψ, e has the form of c ∼ n or

x ∼ n, c ∈ C, x ∈ X , ∼∈ {≤,≥,=, <,> } and n ∈ N. v :=
expression defines the assignment operation, where v ∈ V .

Let Q denote all the assignment formulas.

Definition 1 Timed automaton is a tuple A(L, l0, A, V, I, T)
• L: a finite set of locations

• l0: initial locations

• A: a finite set of actions

• V : a finite set of variables

• I : L � ψ(V) a location constraint function

• T : a finite set of transitions

E ⊆ L×ψ(V)×T×Q×L. Each edge has a source location

l, a target location l1. When guard g ∈ ψ is satisfied, the

transition happens and a subset of variables in V are updated

by formula q ∈ Q. A transition t〈l, g, t, q, l′〉 can be written

as l
g,t,q−→ l′.

At first all clocks are set to 0. The automaton starts at

the initial state l0 With time passing by, the clock variables

increase at the same rate satisfying the invariant constraints

I(l0). The system can remain still in this location or transit

to l1 if the variables satisfy the guard g. With the transition,

action a is taken and variables are updated by formula q.

Definition 2 The semantics of a timed automaton

A(L, l0, A, V, I, T) is defined as a labeled transition system

S(A) = 〈S, s0,�〉. S ⊆ L×mathbbR is a set of states, s0 is

the initial state, �⊆ S × (U ∪ A)× S is the set of relations,

divided into the following two cases.

• Elapses of time transitions: for d ∈ R
+, (l, u)

d−→ (l, u+
d), if for ∀d′ ≤ d, u and u+ d′ satisfy I(l), and

• Location switch transitions: (l, u)
a−→ (l′, u′),

if ∃e (l, a, g, r, l′) ∈ E, u′ = r(u), u satisfies guard g,

r ∈ U and u′ satisfies I(l′).
Usually the system is build using timed automata networks

A = A1 ‖ ... ‖ An.

III. CAN BUS IN CPS

A. CAN protocol introduction

The CAN bus [17] has strong real-time performance and

high reliability, and is easy to develop and expand. Therefore,

it is also widely used in the automotive field, rail transit,

marine and navigation.

1) Structure of CAN bus: The CAN bus is a two-wire struc-

ture twisted avoiding external radiation and electromagnetic

interference. Each control unit connected to the CAN bus can

send data and be able to selectively read the data . When one of

the control unit fails, it will not affect others. CAN bus enables

transmission at different rates, the high speed bus is used in the

crucial system, and the low speed bus is used in the auxiliary

system. For different speeds, it is essential to ”translate” the

bus connection gateways with different rates. The gateway

is usually an independent control module or borrows other

control modules. The CAN bus structure is shown in Figure

1:

Fig. 1. Structure of CAN bus

250

2) Message format of CAN bus: The CAN protocol divides

the message into four types: data frame, remote frame, error

frame and overload frame. Each type has its fixed format. The

frame format of the CAN protocol is divided into standard and

extended formats. The identifier of standard format is 11 bits

and the extended format is 29 bits. In this paper the model

uses standard format. The data in the message is composed of

the dominant bit (0) and the recessive bit (1). The dominant bit

has a higher priority and the recessive bit has a lower priority.

3) Arbitration mechanism of CAN bus: The CAN bus

uses non-destructive arbitration techniques. Among them, non-

destructive means that the data and time are not lost, which

is determined by the ID of bitwise arbitration. If the bus is

idle when sending a task, any data frame can occupy the bus.

After receiving the data, the unit receiving the message will

send a feedback message to the sending unit, indicates that the

task is completed, otherwise the message will be resent; When

two or more units of different IDs transmit data at the same

time, a collision occurs. At this time, the arbitrator needs to

arbitrate, that is, the identifier of the packet is compared bit by

bit, and the packet with the highest priority is directly sent,

and the packet with the lower priority will be returned and

wait to be sent again when the bus is idle. Therefore, there

is no loss in the transmission time of the message with the

highest priority. The priority is determined by the ID of the

packet. The smaller the ID, the higher the priority.

B. CPS based on CAN bus communication

In the process of communication, the transmission pro-

cess of data and commands is carried out by means of the

automobile bus system. Generally, CAN bus is suitable for

real-time systems, and its advantages are: few wire harnesses

and light weight. A wealth of features can be implemented.

At present, the most widely used bus in CPS is still the

CAN bus [18]. The CPS is equipped with a wide range of

sensors, such as cameras, infrared sensors and lidar sensors,

which together form the CPS sensor system [19]. In the

communication process, the carrier of the transmission of the

message is a CAN bus system. It contains modules such as

transceiver [20], arbitrator [21] and gateway. The key modules

on these communication buses can ensure the correctness of

the transmission process. Figure 2 shows the process of CPS

communication system [22]:

IV. FORMAL MODELINGS

A. UPPAAL: a symbolic model detection tool

UPPAAL is a graphical automated model checking toolbox

developed by Uppsala University and Aalborg University that

uses clock variables to characterize changes of continuous

time. It provides a method for deadlocks detection, uses

clock variables to accurately describe the conditions of the

real-time performance in the target system [23]. This study

establishes a timed automata model for each key module in

CAN-based communication system and imitates the entire

process, which exhaustively search all possible conditions to

verify the correctness of its properties.

Fig. 2. Framework of communication system in CPS

TABLE I
PATH FORMULA IN UPPAAL

Path formula Expression meaning
A <> p p will inevitable become true.
A [] p p holds invariantly.

E <> p it is possible to reach a state in which p is satisfied.
E [] p p is potentially always true.

P imply q if p satisfies, then q also satisfies.

UPPAAL consists of concurrent processes [24], and each

process is established as a corresponding timed automata.

For each time automaton, it contains a series of locations

to represent its different states and transitions to indicate the

conditions and parameters required to change state. UPPAAL

can simulate a real-time system with concurrent time us-

ing a timed automata model network with bounded integer

variables. Each process can be described by a parameter

control structure, a clock variable, and a channel between

processes. Among them, the role of the channel is to achieve

synchronous communication between processes. For example,

if a is used to represent a channel, then a! indicates that

a synchronization signal is sent to other processes, and a?
indicates that a synchronization signal from another process

has been received. In this tool, asynchronous communication is

also possible through shared variables. It uses the Backus-Naur

Form grammar to describe the properties of the target system.

This grammar simplifies the CTL formula, including path

formulas and state formulas. The path formula is a description

of the path or trajectory in the model. The state formula is

in the model. The status is described. Table I shows several

common path formulas:

B. Establishment of communication system model

The communication process of the CPS can be described

as the following steps: (1)the sensor system transmits the

collected data to the transceiver in the CAN bus, and waits

for arbitration; (2)the arbiter arbitrates the data in each frame

of the message bit by bit and send them to the transceiver ac-

cording to the priority; (3)the gateway determines whether the

message requires transmitting at a variable speed, and sends

the signal to the transceiver after the speed is consistent; (4)af-

ter receiving the feedback message, the transceiver transmits

251

the message to the controller of the system; (5)the controller

sends the command to each sub-control module via the bus

system after analyzing the content of the message; (6)each

actuator module performs its own operations and performs

corresponding operations after receiving the message; (7)after

the execution, each actuator will send feedback information to

the sensor system. By this end of the communication process,

a new round of transmission can be started.
In accordance with the whole procedure of CPS communi-

cation from data acquisition to processing, our research makes

a reasonable abstraction of the CPS communication system

as shown in Figure 3, paying attention to the communication

process of the vehicle and ignoring other unrelated factors.

The system is divided into sensor system, controller, actuator

and CAN bus system, wherein the CAN bus system can be

divided into four parts: bus, transceiver, arbiter and gateway.

The formal modeling and analysis of these parts can further

clarify the relationship between the key modules of the com-

munication process, ensuring the accuracy and reliability of

the model.

Fig. 3. Framework of abstract model

According to the definition of the CAN bus, there are mul-

tiple control units in CPS that are connected to the CAN bus,

such as sensors and actuators. For the refinement of modeling,

only one model is built for each sensor and actuator, and if

necessary, it is instantiated into multiple models on the basis of

the template in UPPAAL. Therefore, in the sensor model, the

characteristics of multiple sensors are collected. And whether

each sensor is collected the data is set to a Boolean variable.

When the sensor sends data, the Boolean variable is updated

to true, otherwise it is false; the characteristics of multiple

executors are aggregated in the actuator, and each executor

receives a command as a Boolean variable. When the executor

is triggered, the Boolean variable is updated to true; otherwise,

it is false.
1) Sensor model: The sensor system is an indispensable

section of the communication process. Its function is to collect

data of external things using different sensors and detect its

own properties, while transmitting data to the controller of

the CPS in time. The critical states in sensor system includes

idle state, ready state, arbitration state, sending state, receiving

state and finish state.

First sensor system is at the initial state, and the variable

begin is set to 1 at the beginning of each transfer. After a

communication cycle, begin is set to 0, and it is initialized to

1 at the head of the next cycle. When the message starts to

transmit, the sensor system prepares to send the received data

and a synchronization signal start data! to the transceiver. If

the CAN bus system is not occupied, it enters the ready state

for transmission. At this time, the transceiver will receive the

signal and use the function writing data() to write each packet,

where the packet includes the message ID, type, identifier,

and transmission speed. In the case of successful arbitration,

the packet will be migrated to the sending state. Once the

sensor system captures an emergency during transmission, the

corresponding variable is set to 1, and the transmission of

one cycle will come to an end. In addition, after receiving the

synchronization signal interrupted? send by the actuator when

processing is complete, the feedback information is accepted,

and the operation of each actuator will be executed, at the

same time the corresponding Boolean variable is updated to

true. It means that CPS has made corresponding response and

reaction to the emergency situation. The model of the sensor

is shown in Figure 4:

Fig. 4. Sensor model

2) Controller model: The controller undertakes the central

work in the communication system. It is the intermediate

module associating the sensor system and the actuator. The

message data firstly is analyzed and processed, and the

commands are distributed to the various actuator modules.

So it is an integral part of the communication system. The

critical states in controller include idle state, arbitration state,

sending state, receiving state and finish state. After receiving

the synchronization signal start data? and the message from

the sensor system, the controller starts processing and sends

a command to each actuator module and writes the command

packet, which will be transmitted via the transceiver after

arbitration. The model of the controller is appeared in Figure

5:

3) Actuator model: Each actuator module in CPS assumes

different tasks, which have been analyzed above. The crit-

ical states in controller includes idle state, receiving state,

execute state, sending state and finish state. The executor

starts executing the command after receiving the message. In

this process, the execution time is limited in 3 time units.

In the mean while, the communication system is required

252

Fig. 5. Controller model

to provide sound, lighting, visual and video prompts in the

event of an emergency to assist the driver in making the

correct response. After the execution is completed, a feedback

message is sent to the sensor system indicating that the next

round of transmission can be started. And the state of the bus

is changed from busy to idle. The model of the actuator is

shown in Figure 6:

Fig. 6. Actuator model

4) Transceiver model: The transceiver first determines the

state of the CAN bus. If the bus is at a busy state, that is

data active is 0, then the message enters a waiting state; if the

bus is idle, that is data active is 1, then the message enters the

arbiter for priority judgment. When the message is successfully

arbitrated, data transmission will begin; but if the arbitration

fails, the above steps are repeated. The model of the transceiver

is shown in Figure 7:

Fig. 7. Transceiver model

5) Arbiter model: After the synchronization signal ready-
Data arb? sent by the transceiver is received, the arbitration

operation is started. The content of the message is calculated

bit by bit, that is, whether the value of the current data bit

matches the obtained bus, if not match indicates that the

message transmission failed. The packet will exit from the

arbitration, and the automaton migrated to the state where

the request failed; if the two match, but the identifier has

not been compared, then the next bit will be arbitrated; if

the two match and the identifier has been completed, the

message transmission is successful and the arbitration work

is completed. The model of the arbiter is shown in Figure 8:

Fig. 8. Arbiter model

6) Gateway model: After arbitration the message enters the

gateway. The speed at which the message is sent is declared in

the data packet. If its speed is the same as the next message,

we infer that no speed change is required; if it is different,

the speed of the message needs to be performed. The change

of speed is required in 3 time units. The working principle of

the gateway is shown in Figure 9:

Fig. 9. Gateway model

7) CAN bus model: The CAN bus has two states in the

model: idle state and busy state. When the message is deliv-

ered, the required number of buses data account is greater

than 0, data active will be set to 1 and become busy. After

sending the message, data active is restored to 0. The bus

also returns to the idle state. The CAN bus model is shown in

Figure 10:

Fig. 10. CAN bus model

V. FORMAL DESCRIPTION AND VERIFICATION OF

PROPERTIES

A. Deadlock free
Before verifying other properties, first make sure that no

deadlock occurs throughout the communication process.

A[] not deadlock

253

B. The correctness of the communication system

A feedback is always received after sending message, in-

dicating that the message was successfully transmitted during

this time and the actuator performed the corresponding oper-

ation.

A<> (Sensor.sending imply Sensor.finish)

C. Arbitration time

UPPAAL expresses time with time units. We set the time

to spend a communication cycle SendPeriod to 16 time units,

then the more time-consuming part of this is the arbitration

time and the judgement time of gateway, thus considering the

real-time nature of the system, the arbitration time is required

to be no more than 3 time units.

A<> t darb≤3

D. Priority judgment

According to the arbitration mechanism of the CAN bus,

high-priority messages are required to be sent earlier than low-

priority messages.

A<> data packet[a].is send==true imply

data packet[a+1].is send==true

E. Gateway judgment time

Same as the arbitration time, the shift time of the gateway

is required to be no more than 3 time units.

A<> dgw t≤3

F. Anti-collision warning

Before the dangerous collision occurs, an alarm signal is

issued in time to remind the user. Currently widely used

CPS, such as: UAV is equipped with ultrasonic sensors, when

the distance from the physical environment is lower than the

minimum safe distance during operation, the sensor transmits

data to the controller, which will trigger the alarm system to

sound to the user and other forms of early warning. Here we

require that the execution process be no more than 5 time units,

which ensures that the system is able to handle the sudden

situations in a short time of the communication cycle.

A<> Range sensor==1 imply (AWS system==1 and

sound warning==1 and AWS reflect==true and

actuator.t execute≤5)

G. Electricity warning

CPS has a monitoring mechanism for its own power. We

require that when the power is less than 10

A<> battery≤1 imply (sound warning==1 and

battery reflect==true and actuator.t execute≤3)

TABLE II
VERIFICATION CONCLUSION

Property name Total
time(s)

Peak
resident
memory

us-
age(KB)

Peak
virtual

memory
us-

age(KB)

Results

Deadlock free 0.020 8964 29988 Satisfy
Correctness 0.016 8408 28852 Satisfy

Arbitration time 0.001 8968 29992 Satisfy
Priority judgment 0.010 8724 30004 Violate

Gateway judge time 0.020 8976 30016 Satisfy
Anti-collision warning 0.011 8984 29453 Satisfy

Electricity warning 0.015 8425 30454 Satisfy

H. Verification results

The computer environment in which UPPAAL software runs

in this article is: 3.60GHz eight-core CPU with a memory

environment of 8.00GB. Table II shows the verification re-

sults of the above conditions in this environment. The total

verification time is shorter and all below the second level;

the peak usage of resident memory and virtual memory is

also within a reasonable range acceptable. The verification

results demonstrate that the CPS communication system based

on CAN bus can smoothly transmit data and respond to the

external situation in time to meet the real-time requirements.

In the above table six of the attributes are satisfied except

the priority judgment. The reason is that if there are always

other nodes sending messages with higher identifiers at the

same time, the current node may never win the arbitration

and successfully send its message. A node attempting to send

a message may never succeed because it has a lower priority.

This is why the attribute failed validation. Here we propose to

add dynamic priority judgment, the original CAN bus priority

is static priority, that is, it will not change. It may result in

never being able to send message. When the number of failed

arbitrations has reached, the dynamic priority of the node is

raised, which will ensure that low priority messages can be

sent after a certain time.

VI. CONCLUSION AND FUTURE WORK

The formal verification of CAN bus is studied in this paper.

The model is established by abstracting the communication

system of CPS modules. The model checking method can

effectively verify the logical correctness and real-time feature

of the system. Through the verification of UPPAAL, it can

ensure that the communication system sends data in time

when CPS encounters an emergency situation, and the system

responds correctly. One of the contributions of this paper is

modeling the gateway in Can bus to ensure the correctness

of the message transmission under the difference rate. The

other is modeling the priority of the packets in the arbiter.

The experimental results also reveal that the design logic of

the model provided by this study is feasible, and the method

of verifying the property is correct. The next step we may

solve the dynamic input transmission content, and also apply

the model checking method to other systems and fields.

254

REFERENCES

[1] Hongzhuan Zhao, Hang Yue, Tianlong Gu, and Wenyong Li. Cps-based
reliability enhancement mechanism for vehicular emergency warning
system. International Journal of Intelligent Transportation Systems
Research, 17(3):232–241, 2019.

[2] Chunjie Yang and Ji Yao. The design of distributed control system
based on can bus. In Proceedings of 2011 International Conference
on Electronic & Mechanical Engineering and Information Technology,
volume 8, pages 3956–3958. IEEE, 2011.

[3] Johji Suzuki and Tomoki Saito. Communication system, gateway device
and gateway program, September 18 2003. US Patent App. 10/385,534.

[4] Lakshmanarao Battula and P Vamsikrishna Raja. Power efficient gath-
ering in sensor information systems protocol using k-means clustering
algorithm. International Journal of Science, Engineering and Computer
Technology, 6(4):133, 2016.

[5] Jung-Yup Kim, Ill-Woo Park, Jungho Lee, Min-Su Kim, Baek-Kyu Cho,
and Jun-Ho Oh. System design and dynamic walking of humanoid robot
khr-2. In Proceedings of the 2005 IEEE international conference on
robotics and automation, pages 1431–1436. IEEE, 2005.

[6] Hafizah Mansor, Konstantinos Markantonakis, and Keith Mayes. Can
bus risk analysis revisit. In IFIP International Workshop on Information
Security Theory and Practice, pages 170–179. Springer, 2014.

[7] Umberto Fugiglando, Emanuele Massaro, Paolo Santi, Sebastiano Mi-
lardo, Kacem Abida, Rainer Stahlmann, Florian Netter, and Carlo Ratti.
Driving behavior analysis through can bus data in an uncontrolled
environment. IEEE Transactions on Intelligent Transportation Systems,
20(2):737–748, 2018.

[8] Wen Jin, Xi Chen, and Hui Qun Zhang. Modified worst case response
time analysis of can bus consisting of nodes with buffers. In Applied
Mechanics and Materials, volume 513, pages 3393–3396. Trans Tech
Publ, 2014.

[9] Can Pan, Jian Guo, Longfei Zhu, Jianqi Shi, Huibiao Zhu, and Xinyun
Zhou. Modeling and verification of can bus with application layer using
uppaal. Electronic Notes in Theoretical Computer Science, 309:31–49,
2014.

[10] Zhicheng Fu, Chunhui Guo, Shangping Ren, Yu Jiang, and Lui Sha.
Modeling and integrating physical environment assumptions in medical
cyber-physical system design. In Proceedings of the Conference on
Design, Automation & Test in Europe, pages 1619–1622. European
Design and Automation Association, 2017.

[11] Yu Jiang, Houbing Song, Rui Wang, Ming Gu, Jiaguang Sun, and
Lui Sha. Data-centered runtime verification of wireless medical
cyber-physical system. IEEE transactions on industrial informatics,
13(4):1900–1909, 2016.

[12] Yu Jiang, Lui Sha, Maryam Rahmaniheris, Binhua Wan, Mohammad
Hosseini, Pengliu Tan, and Richard B Berlin. Sepsis patient detection
and monitor based on auto-bn. Journal of medical systems, 40(4):111,
2016.

[13] Yonit Kesten, Oded Maler, Monica Marcus, Amir Pnueli, and Elad
Shahar. Symbolic model checking with rich assertional languages.
Theoretical Computer Science, 256(1-2):93–112, 2001.

[14] Hui-Min Lin and Wen-Hui Zhang. Model checking: Theories, techniques
and applications. Acta Electronica Sinica, 30(12A):1907–1912, 2002.

[15] Rajeev Alur and David L Dill. A theory of timed automata. Theoretical
computer science, 126(2):183–235, 1994.

[16] Johan Bengtsson and Wang Yi. Timed automata: Semantics, algorithms
and tools. In Advanced Course on Petri Nets, pages 87–124. Springer,
2003.

[17] Renjun Li, Chu Liu, and Feng Luo. A design for automotive can
bus monitoring system. In 2008 IEEE Vehicle Power and Propulsion
Conference, pages 1–5. IEEE, 2008.

[18] Dai Qiang Wang, Shiyou Gao, Yu Qing Chen, Yi Wang, and Qiao Liu.
Intelligent control system based on can-bus for car doors and windows.
In 2009 3rd International Conference on Anti-counterfeiting, Security,
and Identification in Communication, pages 242–245. IEEE, 2009.

[19] Ian F Akyildiz, Weilian Su, Yogesh Sankarasubramaniam, and Erdal
Cayirci. A survey on sensor networks. IEEE Communications magazine,
40(8):102–114, 2002.

[20] Che-Hao Chuang and Ming-Dou Ker. System-level esd protection for
automotive electronics by co-design of tvs and can transceiver chips.
IEEE Transactions on Device and Materials Reliability, 17(3):570–576,
2017.

[21] Huan-Kai Peng and Youn-Long Lin. An optimal warning-zone-length
assignment algorithm for real-time and multiple-qos on-chip bus arbi-
tration. ACM Transactions on Embedded Computing Systems (TECS),
9(4):35, 2010.

[22] Elias Bou-Harb. Passive inference of attacks on scada communication
protocols. In 2016 IEEE International Conference on Communications
(ICC), pages 1–6. IEEE, 2016.

[23] Yu Jiang, Han Liu, Houbing Song, Hui Kong, Rui Wang, Yong Guan,
and Lui Sha. Safety-assured model-driven design of the multifunction
vehicle bus controller. IEEE Transactions on Intelligent Transportation
Systems, 19(10):3320–3333, 2018.

[24] Mohammad Mahdi Jaghoori, Frank S de Boer, Tom Chothia, and Marjan
Sirjani. Schedulability of asynchronous real-time concurrent objects. The
Journal of Logic and Algebraic Programming, 78(5):402–416, 2009.

255

