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Abstract—It is still challenging to efficiently construct semantic
map with a monocular camera. In this paper, deep learning is
introduced to combined with SLAM to realize semantic map
production. We replace depth estimation module of SLAM with
FCN which effectively solves the contradiction of triangulation.
The Fc layers of FCN are modified to convolutional layers.
Redundant calculation of Fc layers is avoided after optimization,
and images can be input in any size. Besides, Faster RCNN,
namely, a two-stage object detection network is utilized to obtain
semantic information. We fine-tune RPN and Fc layers by
transfer learning. The two algorithms are evaluated on official
dataset. Results show that the average relative error of depth
estimation is reduced by 12.6%, the accuracy of object detection
is improved by 10.9%. The feasibility of the combination of deep
learning and SLAM is verified.

Index Terms—monocular depth estimation, indoor object de-
tection, deep learning, ORB-SLAM2

I. INTRODUCTION

Semantic information is essential for intelligent machines

to understand the world, e.g. intelligent scene analysis and

reasonable route planning for sweeping robots. Although

geometric information is acquired to solve the problem of

”Where am I?” and ”What is around me?” through SLAM

technology, the function of ” Pick something up around here”

cannot be realized. Recently, deep learning has performed well

at acquisition of semantic information [1-6]. Therefore, we

introduce convolutional neural network to combine with ORB-

SLAM2 making full use of the complementarity of geometric

information and semantic information.

ORB-SLAM2 provides three sensor interfaces: monocular,

binocular and RGB-D. The monocular interface uses a single

camera to capture images for local mapping. It is not limited to

the weight and volume of the sensor unit. It has the advantages

of low cost and extensive application scenarios. The binocular

interface obtains the parallax from two cameras to estimate

the depth of each pixel, which needs huge calculation [7-

10]. RGB-D cameras can directly get depth information, but

the price is extremely expensive and the measured distance is

limited. The navigation and three-dimensional reconstruction

in indoor scenes should reduce costs as much as possible under

the premise of ensuring accuracy so that customers’ consump-

tion needs can be pretty met. Thus, we choose monocular

camera.
Monocular ORB-SLAM2 via triangulation to complete

depth estimation which must ensure translational camera mo-

tion, otherwise the epipolar constraint cannot be satisfied.

Triangulation is not available when the camera is only rotating.

Nevertheless, triangulation contradiction is caused despite the

existence of translation, i.e. failed matching will be caused

by increasing translation. If the translation is too small, the

accuracy becomes worse. For the above problems, FCN is

adopted in this paper to automatically learn features layer by

layer. Depth information can be given directly from a single

image.
Generally, there are two ways to obtain semantic informa-

tion: semantic segmentation and object detection. Much of pa-

pers [4,5,6,11] propose semantic segmentation methods based

on deep learning to collect semantic information. However,

this method is considerably complicated because the robot

needs to focus on the semantic information of each pixel

during the motion. Moreover, the robot equipment cannot meet

the calculation speed when performing pixel-level semantic

classification [12]. Therefore, we select object detection which

satisfy the requirements without extra calculation.
In this work, we make monocular camera move in an

unknown indoor environment acquiring continuous images se-

quences. Depth estimation and object detection is respectively

implemented through FCN and Faster RCNN. Finally, the

three-dimensional semantic map is completed with the help

of point cloud tools. In this paper, we lay emphasis on the

research of monocular depth estimation and indoor object

detection in ORB-SLAM2 rather than paying attention to the

pose estimation, loop closing and local mapping. In a word,

our main contributions are:

• FCN is adopted to replace ORB-SLAM2 depth estimation

module to solve the contradiction of triangulation and

overcome the difficulty that depth estimation cannot be

realized during pure rotational motion.

• We adjust the parameters of Faster RCNN during training.

And a better learning rate of indoor object detection is

given. The detection accuracy is improved by 10.9%.
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• NYU depth V2 dataset is 16 times bigger than original

dataset with data enhancement, effectively improving the

model generalization capability. According to what I

know, the previous work [10-11] directly used the official

images for training.

II. RELATED WORK

In this section, we first narrate triangulation and monocular

depth estimation, and then introduce semantic information

acquisition based on deep learning.

A. Monocular Depth Estimation

The monocular interface of ORB-SLAM2 estimates depth

value of map points through triangulation [13]. The principle

of triangulation is shown in Fig. 1.

O1 and O2 are the optical centers of the camera, point P
corresponds to the position of a 3D point in the scene, p1 and

p2 are the feature points of P point on the image I1 and I2.

Straight line O1p1 and straight line O2p2 intersect at a point P
in the scene. Due to the influence of noise, these two straight

lines usually cannot intersect. Least square method is generally

used to solve the above problem in ORB-SLAM2. According

to the epipolar geometry, let x1 and x2 be the normalized

coordinate of the two feature points, satisfying:

s1x1 = s2Rx2 + t (1)

s1 and s2 are the depth value of the two images to be solved.

The rotation matrix R and translation matrix t are obtained

from the camera pose estimation. Simultaneously pre-multiply

x1
∧ on both sides in (1), it can be obtained:

s1x1
∧x1 = s2x1

∧Rx2 + x1
∧t (2)

The left side in (2) is zero and the right side is an equation of

s2 which can be solved by the least square method. Similarly,

s1 can be obtained.

It can be seen that the triangulation is obtained by the

camera translation. When the camera rotates merely, the

epipolar constraint will always be satisfied. Thus, triangulation

is invalid. Even if the translation motion exists, it is liable to

cause the contradiction of triangulation. The uncertainty of

triangulation is shown in Fig. 2. When the feature point is

shifted by t, the visual angle changes by δθ , and the measured

depth value changes by δd. When t is small, the change of δd
is not obvious, uncertainty of depth is large, and accuracy of

measurement will be bad. When t is large, the change of δd
is more obvious, uncertainty of depth is small, match will be

easy to failure.

Fig. 1. Triangulation in ORB-SLAM2.

Fig. 2. Uncertainty of triangulation2.

Compared with binocular and RGB-D, monocular has the

lowest cost. However, it is most difficult to obtain depth values

due to the lack of visual point information. Early researches

for depth estimation are based on traditional methods. Saxena

et al. [14] proposed the Make3D algorithm. The idea of the

algorithm is as follows. Firstly, the image is processed by super

pixel segmentation, afterwards the multi-scale local features

and the global features of images are extracted from the super

pixel block for training the Markov random field. Finally,

simulate and establish the depth value of each point in the

scene and give the relative depth relationship between points.

The algorithm relies on horizontal alignment of images lacking

flexibility. Javier [15] proposed a pixel classifier to jointly

predict semantic labels and depth information, proving that the

information from depth estimation and semantic segmentation

can be shared and promoted each other. Liu et al. [16] used

super pixels to model the image area and proposed the discrete

continuous optimization for depth estimation. [16] is improved

by adjusting middle-level area and global scene layout [17].

Nevertheless, this type of method adopts artificial features. The

characteristics of these features directly affect the accuracy of

the estimation.

Later researches put more and more attention on the con-

volutional neural network to directly regress 3D depth values

from 2D pixel values through a single image. Compared with

traditional algorithms, it can achieve depth estimation more

excellent. Eigen et al. [18] proposed CNN for monocular

depth estimation for the first time. Two scale networks are

utilized to directly predict depth value by adjusting image

global information and local detail information separately. The

disadvantage is that the network parameters are large and the

rate of convergence is slow during training. Li et al. Reference

[19] improved the transmission of feature information between

various scale networks in [18]. The convergence of the network

is accelerated by introducing jump layers fused with interme-

diate layer of each scale network. It also introduces the relative

depth limitation of pixels to improve the accuracy of the depth

map. Still, FC layers require a fixed input image size, and the

image resolution is low. Liu et al. Reference [20] proposed

a joint frame called DCNF, which combined CNN and CRF

into a unitive frame, and used FCSP to greatly optimize the

processing speed of the frame. Considering the continuity

of depth values, Xu et al. Reference [29] proposed a deep

convolutional neural field model combined with continuous

CRF which was used to improve depth estimation. The optimal

solution of the log-likelihood can be obtained by analyzing
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and calculating the partition function in the probability density

function. Accuracy is effectively improved at the edges and

outlines. But the way to gain depth is no longer an end-to-end

neural network.

In this paper, an end-to-end network FCN is selected to

achieve depth estimation. Unlike [18], FCN no longer contains

FC layers. images of any size can be input. It is not necessary

that each training image and test image has the same size.

Furthermore, the network avoids the problem of repeated

memory and redundant calculation caused by dividing the

image into many small image blocks for training the network.

Data processing is more efficient.

B. Semantic Information Acquisition

Image segmentation can be used to gain pixel-level semantic

information. Some researches add a decoding network based

on the convolutional neural network to implement semantic

segmentation. Efficiency models appear successively, such as

SegNet, ENet, PSPNet and SPNet [1,2,3]. Afterwards, some

papers [4,5,6] transformed the 2D semantic information to 3D

semantic information that make he classification judgment of

3D points of the target in the map is realized. The obtained

semantic information through semantic segmentation is more

fit for complex outdoor environments, such as autonomous

driving. In this paper, we hopes that robots can pick up

the certain object, which does not need to infer the label

of each pixel. There is no need to infer the label of each

pixel. Therefore, we choose object detection to obtain indoor

semantic information.

Girshick et al. [21] proposed RCNN for the first time in-

troducing convolutional neural network into the field of object

detection, and then improved and proposed Fast RCNN [22]

which feature extraction of CNN is performed only once for

the entire image. The repeated calculation of features in RCNN

is reduced. Also, classification and regression are unified to

improve the speed and accuracy of detection. In addition,

[22] proposed a multi-task model that shared parameters

between the classification layers and position regression layers

to promote each other. However, it is time-consuming for Fast

RCNN to find all candidate boxes with selective search. In

order to solve the above problem, Ren et al. Reference [23]

proposed Faster RCNN abandoning the traditional method of

candidate box extraction. RPN is adopted to extract candidate

boxes greatly improved the speed during training. The above

algorithm is the two-stage object detection algorithm which

performs almost perfect at accuracy. The emergence of the

one-stage object detection algorithm make speed perform well.

Redmon et al. Reference [24] proposed the YOLO algorithm

no longer extracting candidate boxes. Image classification and

object positioning was integrated into one network through

Fc layers. The speed has been extremely improved while the

accuracy is lower than Faster RCNN. Liu et al. proposed the

SSD algorithm via appending multiple convolution layers of

different scales [25]. It not only faster than YOLO but also

guarantee the accuracy of Faster RCNN.

We hope to obtain more precise semantic information so

that robots can better complete tasks like obstacle avoidance.

Obviously, Faster RCNN is more suitable. According to the

character of indoor objects, we modify the training parameters

and fine-tune the RPN and Fc layers by transfer learning, a

better learning rate for our datasets is given.

III. MONOCULAR SEMANTIC SLAM

A. System Overview

The overview of our indoor monocular semantic SLAM

system is shown in Fig. 3. The input is a series of monocular

images, and the output is a 3D semantic map with data

association. The ORB-SLAM2 framework tracks the thread

to locate the camera and chooses whether to add key frames.

Next, extraction and matching for ORB feature, pose estima-

tion, nonlinear optimization, and local mapping is performed.

Meanwhile, FCN for monocular depth estimation is employed

to obtain depth values. According to the results from FCN, the

RGB-D interface of ORB-SLAM2 completes pose estimation

and subsequent functions through 3D-2D, which no longer

requires a cumbersome initialization process. Faster RCNN

for object detection is applied to obtain semantic information.

We select common indoor objects and complete detection

of five kinds of object. Referring to the results from Faster

RCNN, data association correspond 2D semantic points to 3D

geometric points. Each key frame connects to one or more 2D

objects and each 3D map point connects to one object. 3D

map points are indirectly connected to one or more objects

through key frames, thereby realizing the conversion from 2D

semantic points to 3D semantic points. In the end, the point

cloud tool is used to generate visualize monocular semantic

map. In this paper, the main work is to complete monocular

depth estimation based on FCN and indoor object detection

based on Faster RCNN.

B. Depth Estimation

FCN is a semantic segmentation network proposed by Long

et al. [26] which can output the classification of each pixel.

Monocular depth estimation also needs to process each pixel,

while the output is the depth regression value of each pixel.

Enlightened by image segmentation, FCN-8 shown in Fig. 4(a)

is adopted to achieve monocular depth estimation.

The backbone network of FCN is VGG16, including 13

Conv layers, 5 Pool layers and 3 Fc layers. The last three Fc

layers respectively correspond to one-dimensional vectors with

dimensions 4096, 4096, 1000, where 1000 is the classification

number. In fact, the Fc layers and the Conv layers can be

converted to each other because the function form of neurons

is the dot product. Undoubtedly, any Fc layer can be converted

into a Conv layer, e.g. the dimension of a Fc layer is K, let the

input be m×n×n, where m is the number of channels, and n
is the size of the feature map, this Fc layer can be equivalent

to a convolutional layer of a n×n filter with dimension of K,

where Pad = 0 and Stride = 1 , the output is K×1×1. That

is to say, the size of the filter is consistent with the size of the

input feature map. The conversion of the Fc layers is shown
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Fig. 3. Overview of our system.

in Fig. 4(b). The three Fc layers of 4096×1×1, 4096×1×1,

1000 × 1 × 1 are transformed to 1 × 1 Conv layers of 4096,

4096, 1000 which no longer require the input size. Although

this process does not reduce the network parameters, it can

receive input images of any size. All the 13 Conv layers use

3× 3 kernel of stride = 1, pad = 1 . The pooling method is

2×2 maximum pooling of stride = 2. ReLU as an activation

function is applied after each convolution layer. According to

the calculation formula of the output size of the feature map:

o = (i+ 2p− k)/s+ 1 (3)

According to (3) the output resolution is 1/32 of the input

during the forward propagation of the network, i.e. the output

is 7 × 9 when the input is 228 × 304. If using interpolation

to directly restore the original size, inevitable image distortion

will be caused. Obviously it is not allowed to ORB-SLAM2.

The upsample layer can avoid image distortion as much as

possible through keeping on learning in network training. The

essence of upsample is transposed convolution, as shown in

Fig. 4(c). Relationship between input and output is satisfied:

o = s× (i− 1) + k − 2p (4)

The essence of upsample is still a type of convolution

calculation comparing (2) and (3), but the output size is larger

than the input size. FCN-32 directly expands the output by

32 times through bilinear interpolation, which is particularly

rough. FCN-16 increases pool5 by 2 times through upsample

layers and adds it to pool4 result. FCN-8 is shown in Fig. 4(a)

including feature messages of three layers of pool3, pool4, and

pool5. The layer fusions make the output more detailed. All

the upsample layers are trained in the network like conv layers,

while bilinear interpolation in the last step does not participate

in the training process.

The Huber function is chosen as the loss function, expressed

as:

L(x) =

{ |x|, |x| ≤ c
x2+c2

2c , |x| > c
(5)

Where L(x) is the target value of the loss function, x = ỹ−y,

ỹ is the predicted value in the network, y is the true value.

The parameter c is calculated by c = 1
5maxi(|ỹi− yi|). When

x is between −c and c, L(x) is L1 norm. When x is outside

this range, L(x) is the L2 norm. L(x) is continuous at point

c. For each gradient descent, the value of c is calculated first,

then the value of L(x) is solved.

C. Object Detection
The network structure of Faster RCNN is shown in Fig.

5, which is composed of five modules: backbone network,

RPN, ROI Pooling layer, softmax classifier, NMS. VGG16

is adopted as the backbone network for preliminary feature

extraction, RPN extracts candidate regions, ROI Pooling layer

further extracts features from the candidate regions, the classi-

fication result is given by softmax classifier, position result is

given by NMS. RPN is employed to complete object detection

in two-stage. Although the extra calculation is introduced, the

accuracy is better compared with the one-stage network. This

is exactly what we expect.
The loss function of RPN in Faster RCNN is given as:

L({pi} , {ti}) = 1

Ncls

∑
i

Lcls(pi, p
∗
i )+λ

1

Nreg

∑
i

p∗iLreg(ti, t
∗
i )

(6)

Equation (6) is composed of classification loss function Lcls

and regression loss function Lreg, where Lreg is expressed as:

Lreg(ti, t
∗
i ) =

∑
i∈{x,y,w,h}

smoothL1(ti − t∗i )

smoothL1
(x) =

{
0.5x2, |x| ≤ 1

|x| − 0.5, otherwise

(7)

Where i represents the number of anchors. When anchor is the

target to be detected, pi = 1 otherwise pi = 0. t∗i represents

the coordinate of bounding box related with the positive

sample anchor. The selection of positive sample bounding box

is based on the IOU threshold. In this paper, IOU is set to 0.7.

If the IOU value of the bounding box is higher than 0.7, it

is considered as a positive sample. If the IOU value of the

bounding box is less than 0.3, it is considered a negative

sample, namely the background. ti is the coordinate of the

predicted bounding box from RPN relative to the bounding

box from anchor:

tx = (x− xa)/wa, t∗y = (y − ya)/ha

tw = log(w/wa), th = log(h/ha)
(8)
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Fig. 4. FCN-8. (a) detail architecture. (b) transformation from Fc to Conv. (c) upsample process.

t∗i is the coordinate of the real object box in the original image

relative to the bounding box from anchor:

t∗x = (x∗ − xa)/wa, t∗y = (y∗ − ya)/ha

t∗w = log(w∗/wa), t∗h = log(h∗/ha)
(9)

The purpose of training is to make ti and t∗i infinitely close.

We utilize transfer learning in Faster RCNN network train-

ing process, using the parameters trained by VOC to initialize

the weights. At the beginning of the training, the parameters

of the Conv layers shared by the RPN and the Faster RCNN

are fixed, and only fine-tune the parameters of the specific

layers of RPN. Keeping the parameters of the Conv layers

shared by the RPN and Faster RCNN network as well as the

parameters of the specific layers of RPN constant, only fine-

tune the parameters of specific Fc layers in Faster RCNN.

However, the initial learning rate (lr = 2e − 4) of transfer

learning on outdoor VOC data is not apply to our indoor

objects. Therefore, we modified the hyperparameters and set

different initial learning rates for training to find out a better

learning rate for our network so that the accuracy of indoor

detection can be improved. 5 kinds of object is achieved:

Person, Monitor, Table, Chair and sofa (corresponding label:

person, tvmonitor, diningtable, chair, sofa).

Fig. 5. Structure of Faster-RCNN.

IV. EXPERIMENTS RESULTS AND ANALYSIS

In this section, we elaborate the experimental setup and

dataset of monocular depth estimation and indoor object

detection, using the official evaluation standard for verification.

The performance of algorithms in this paper is analyzed.

A. Experimental Setup

Ubuntu16.04 system, 16G RAM, CPU of i7. TensorFlow, a

kind of mainstream frameworks for deep learning is used to

build FCN and Faster RCNN in this paper. We train and test

on NVIDIA GTX 2080Ti with 12G of GPU memory.

B. Dataset

In this paper, we built our own dataset of monocular depth

estimation and indoor object detection based on the NYU

Depth V2 dataset. Original RGB images are given in Fig.

6. The second column in Fig. 6 shows the depth labels of

NYU Depth V2 dataset. NYU DepthV2 dataset is a series

of image sequences captured by Microsoft Kinect camera,

including 2898 images of 640×480 size in 464 indoor scenes.

It consists of 1449 pairs of images: 1449 RGB images (.jpg

format) and 1449 depth labels (.png format). We expand the

NYU depth V2 dataset with data enhancement:

• Scale: 3 kinds of sizes of 200×150, 400×300, 800×600.

• Rotation: 3 kinds of rotation of 180 degrees, clockwise

90 degrees, counter-clockwise 90 degrees.

• Crop: 2 kinds of sizes with random crop.

• Color: 4 kinds of RGB values with random multiplication.

• Brightness: 4 kinds of brightness with random adjust-

ment.

The training data is expanded 16 times from 1449 to 23184

(called dataset1) through the above five ways. The obtained 2D

image will contain the various forms of rotation, translation,

scale, and color because the camera will produce a variety

of gestures during the movement process in 3D space. The

model should also perform an outstanding capability in this

case. In addition, object labels are given base on 1449 RGB

images of NYU Depth V2 dataset, as shown in Fig. 6. We

finally use a total of 18574 images including the 17125 images

of PASCAL VOC2012 as the indoor object detection dataset

(called dataset2).
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Fig. 6. Our dataset based on NYU. Displayed are RGB images (the first
column), labels for depth estimation (the second column) and labels for object
detection(the third column).

C. Depth Estimation

The size of RGB images from dataset1 is decreased from

640×480 to 320×240 in order to reduce the calculation cost

before training in the depth estimation network. Afterwards,

RGB images with 304×228 size is obtained by random center

cropping, which is used as network input for training. The

images of depth labels are processed in the same way so that

the resolution is the same as the resolution finally predicted by

the network and performance can be evaluated. 1000 images

are randomly selected as the test data, the remaining images

are used as the training data. The FCN for depth estimation

uses SGD for training. The loss function in (5) is adopted

and the entire network is end-to-end with batch training. The

batch size is set to 4, the momentum is set to 0.9. A total

of 100K iterations is carried out, which takes about 2.5 days.

The initial learning rate is 0.0001 and it is reduced to 1/10

of the original value every 10K iterations. The loss value is

recorded every 100 iterations. Compared with CNN in [18],

the loss curve is shown in Fig. 7. It can be seen from Fig. 7(a)

that both network training loss values can quick convergence

and continuous decline with the number of iterations increases,

but the FCN is better than CNN. Fig. 7(b) gives more detailed

results of the 2K-14K iterations, showing that FCN converges

faster. Fig. 7(c) gives more detailed results of 96.4K-97.2K

iterations. It can be seen that the minimum loss of [18] reaches

about 11, while the minimum loss of FCN can reach about 5.

The loss values of FCN performed more excellently in the

final stage of training.

Table I gives the test results in this paper and compares with

algorithms of other papers. It can be seen from Table I that

the errors of Liu [16], Li [32] and Liu [20] using traditional

algorithms of feature extraction are higher than Eigen[18] and

FCN. Reference [20] used the AlexNet, δ1 is increased to

0.614 which is slightly higher than 0.611 in [18]. But other

performances in [18] are better than [20] because AlexNet

used in [20] is shallow. Comparing [18] and FCN, the rel
is decreased from 0.215 to 0.188, a difference of 0.027, an

increase of 12.6%. δ3 is extremely close, δ2 is equal to 0.891

and δ1 is equal to 0.652 in this paper, which are higher than

[18]. The overall performance of FCN is better.

TABLE I
COMPARISON RESULTS OF DIFFERENT ALGORITHMS

algorithm rel rms log10 δ1 δ2 δ3
Liu et al. [16] 0.335 1.060 0.127 – – –
Li et al. [32] 0.232 0.821 0.094 0.621 0.886 0.968

Liu et al. [20] 0.230 0.824 0.095 0.614 0.883 0.971
Eigen et al. [18] 0.215 0.907 – 0.611 0.887 0.971

Our 0.188 0.754 0.079 0.652 0.891 0.972

D. Object Detection

In dataset2, 3000 images are randomly chosen as the test

data, the remaining images are used for training. The entire

network is end-to-end. The batch size is set to 1, the momen-

tum is set to 0.9, and the weight updating method uses the

Adam gradient descent algorithm with adaptive learning rate

[31]. Manually set the initial learning rate, and use dynamic

attenuation (lr = b ∗ γ([ns ]) ,where b represents the initial

learning rate, γ represents the attenuation, s represents the

stride of decay, and n represents the number of batches

trained currently.) to decay the learning rate to gradually

make learning effect gradually converge. During RPN training,

set the IOU threshold to 0.7 and 0.3 to select whether the

bounding box is a positive sample or a negative sample. In

the NMS, the threshold of the intersection region with the

current highest box is set to 0.7. A total of 100k iterations

is set. The training of the whole network takes about 1 day.

Three levels of initial learning rate(e−3, e−4, e−5) are set for

training, the loss curve is shown in Fig. 8. Fig. 8(a) shows the

overall loss trends of the three initial learning rates. The node

whose loss value jumps sharply is the starting point of network

training. The different training parameters of the three kinds of

learning rate leads to different sudden nodes. There is no curve

where the loss value can be always kept at the lowest during

training, but the loss value of lr = 2e−3 is lower at the most

moments. More detail results of loss comparison are given in

Fig. 8(b) and Fig.8(c). It can be seen from Fig. 8(b)(c) that

the loss value of 2e−3 is always lower than 0.3 at 60K-65K

iterations, the loss value is always lower than 0.15 at 77K-80K

iterations, which works better in training process. The results

of 2e−4 and 2e−5 are similar. 2e−5 is better at 60K-65K

iterations, and 2e−4 is better at 77K-80K iterations. It can be

concluded that the initial learning rate in this paper performs

better on the level of e−3. Finally, the initial learning rate is

set to e−3 in this paper.

TABLE II
MAP RESULTS FOR EACH CLASS

learning rate person monitor table chair sofa
lr = 2e−3 0.879 0.650 0.519 0.523 0.623
lr = 2e−4 0.762 0.565 0.491 0.490 0.573
lr = 2e−5 0.691 0.576 0.383 0.518 0.550
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Fig. 7. Comparison of loss function during training between CNN and FCN. Called (a), (b) and (c) from left to right. (a) global loss value. (b) detailed value
of convergence. (c) detailed value at the end of training.

Fig. 8. Loss curves of three levels of initial learning rates. Called (a), (b) and (c) from left to right. (a) global loss value. (b) detailed value at 60K-65K
iterations. (c) detailed value at 77K-80K iterations.

TABLE III
THE OVERALL PERFORMANCE OF DIFFERENT ALGORITHMS

network mAP FPS
Faster RCNN 0.639 9

SSD 0.612 23

3000 images were tested in this paper and the comparison

results of the detection accuracy of each type under different

lr are given in Table II. It can be seen from the second rows

and third rows of Table II, 2e−4 is slightly higher than 2e−5
for the three kinds of object (person, table, and sofa), 2e−5 is

a little higher than 2e−4 for two kinds of object (monitor and

chair). Compared the fourth rows with the second and third

rows in Table II, the mAP of each class in 2e−3 is better

than 2e−4 and 2e−5 , which is improved by 10.9%. Because

the initial learning rate of this level is more suitable for the

study of indoor goals in our dataset. The missed detection rate

and the false detection rate are reduced, thereby the accuracy

is improved. Therefore, the accuracy of object detection can

be effectively improved through adjusting the appropriate

parameters according to the target characteristics. In addition,

Table III shows the overall performance comparison with the

one-stage network. It can be seen from Table III that the

mAP of SSD is 0.612, which is lower than Faster RCNN.

However, the detection speed can reach 23 frames per second,

while Faster RCNN only perform 9 frames per second. The

speed of SSD is much faster than Faster RCNN because SSD

belongs to one-stage object detection network. It can generate

candidate boxes directly via one step without extra calculation

for candidate boxes in RPN. The visualization results of object

detection are shown in Fig. 9.

V. CONCLUSIONS AND FUTURE WORK

In this work, a novel semantic map can be built benefiting

by the complementarity between deep learning and ORB-

SLAM2. Compared with the traditional method of triangu-

lation in ORB-SLAM2, the method in this paper can directly

estimate the depth value from a single image. It avoids the

clumsy initialization process in monocular SLAM and does

not requires fixed input compared to CNN. In addition, we

utilize transfer learning to fine-tune the RPN in Faster RCNN.

It shows that reasonable design of hyperparameters, especially

the initial learning rate, can effectively improve the accuracy

of object detection.

No matter what algorithm is adopted, the value of depth

prediction is difficult to reach the same as the real value. In

future work, the network needs to be improved to promote

the accuracy of depth estimation. Besides the 2D semantic

points obtained in this paper needs to be associated with 3D

geometric points. Still, an extra step is generated. Reference

[4,5,28] proposed an end-to-end deep learning network for the

3D point cloud, which researched on the 3D voxel level. The

semantic classification and 3D geometric box were given. 3D

semantic information can be obtained directly. In the future,

our research will focus on the 3D end-to-end network to

establish a more efficient 3D semantic map.
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Fig. 9. Visual display of object detection. Displayed are RGB images (the
first column), results of Faster RCNN (the second column) and results of SSD
(the third column).
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