
Recent Trends in Software Quality
Interrelationships: A Systematic Mapping Study

Michael Y. Shoga∗, Celia Chen†, Barry Boehm∗
∗Center for Systems and Software Engineering, University of Southern California, Los Angeles, USA

Email: {mshoga, boehm}@usc.edu
†Department of Computer Science, Occidental College, Los Angeles, CA

Email: {qchen2}@oxy.edu

Abstract—Despite the importance of software qualities, they
are not well understood, especially in the context of the interre-
lationships between qualities. A number of systematic mapping
studies have been conducted prior to 2015 to summarize the
literature on the topic and to identify research gaps. To provide
a better understanding of the current state of the art, we
conducted a systematic mapping study on relevant studies from
2015 to 2019 through a database search and a subsequent
snowballing approach. In total, 18 studies were selected as the
study subjects wherein we evaluated the types of software quality
interrelationships and the qualities that comprise them. Based
on our findings, we report on the progress made to address
previously identified research gaps.

Index Terms—software quality, software quality interrelation-
ships, systematic mapping study

I. INTRODUCTION

Software qualities play a critical role in the potential for

success of software systems. The realization of these qualities

and the non-functional requirements that specify them often

depend on decisions made across the system and can have

a multiplicative effect on the overall cost of the system [1].

Despite their significance, they are considered to be poorly

defined, understood, and difficult to measure [2]. A com-

pounding difficulty that arises when addressing non-functional

requirements lies in the relationships between the quality

attributes. These relationships are apparent, as making changes

to a system to address one software quality can affect one or

more other qualities. Thus one often needs to prioritize and

balance between the various software qualities depending on

the system and its stakeholders.

Various models and frameworks have been proposed to char-

acterize the relationships between qualities, and there has been

ongoing work to attempt to address conflicts between qualities

[3] [4] [5]. However, previous studies and reviews looked at

conflicts between software qualities and have identified gaps

in the literature:

1) Some studies did not provide any definitions for the

quality attributes [2] [6] [7] [8].

2) A very wide range of vocabulary was found to describe

software quality attributes [2] [6] [7] [8] [9].

This material is based upon work supported in part by the U.S. Depart-
ment of Defense through the Systems Engineering Research Center (SERC)
under Contract HQ0034-13-D-0004. SERC is a federally funded University
Affiliated Research Center managed by Stevens Institute of Technology

3) A very small amount of research provided any empiri-

cally validated results [7] [8] [9] [10].

4) There was a lack of discussion of research validity on

the approaches [9].

5) Quality trade-off approaches predominantly focused on

earlier phases of software development [9].

6) Automatic approaches are needed in quality interrela-

tionships detection [10] [11].

7) The nature of these quality interrelationships were still

not captured [7] [8].

In the interest of providing a better understanding of the

current state of the art in this field and evaluating the progress

in addressing those research gaps identified in previous works,

we have conducted a systematic mapping study in the area of

interrelationships between software qualities on studies that

were published from 2015 to 2019.

II. RELATED WORK

Various related studies and reviews were available in litera-

ture prior to 2015 which identified gaps in the software quality

interrelationship space.

Svennson et. al [11], included 18 studies in a literature

review study on quality requirements management. The author

classified the studies into the following categories: elicitation,

dependencies, metrics, cost estimations, and prioritization.

However, the authors were not able to identify which method

was most suitable to use for identification of interdependencies

among quality requirements.

In and Boehm [12], conducted a comparative analysis

through a case study on 12 projects using two exploratory

knowledge-based tools (QARCC and S-COST) for conflict

identification and resolution among stakeholders. Theoreti-

cally, QARCC could identify potential quality-conflict issues

by generating relationships of the input quality with all the

other qualities. An example given was a potential conflict

between dependability and interoperability.

García-Mireles et. al [6], conducted a review study on a

set of empirical publications reported in a mapping study [9].

The authors reported the popular methods used by software

organizations to manage interactions between quality charac-

teristics and the types of quality models used to define quality

characteristics.

264

2020 IEEE 20th International Conference on Software Quality, Reliability and Security Companion (QRS-C)

978-1-7281-8915-4/20/$31.00 ©2020 IEEE
DOI 10.1109/QRS-C51114.2020.00052

Barney et. al [9], provided an overview of software quality

trade-offs in general through a systematic mapping study of

168 publications. The study focused on the process of handling

quality trade-offs, rather than identifying their nature.

Mairiza et. al presented a series of studies on non-functional

requirements and the conflicts among them. The authors identi-

fied techniques and methods used to manage conflicts between

non-functional requirements [8], categorized non-functional

requirements into 3 different classifications: definitions; types;

and applicable domains [2], and presented potential conflicts

among these non-functional requirements [7] [13].

The following review and mapping studies were conducted

after 2015; however, they do not fully address software quality

interrelationships as described in the following ways.

Aldekhail et. al [10], explored approaches of conflict anal-

ysis identification through a comparative study including 20

studies dated from 2001 to 2014. The authors classified these

studies into 4 classifications, the type of requirements and

the type, scope, and representation of the approaches. This

comparative study only provided an overview on functional

and non-functional requirement conflicts identification, rather

than the nature of conflicts themselves.

Me et. al [14], performed a systematic literature review

on interactions between architectural patterns and quality

attributes. They identified several ways to characterize these

interactions; however, they note that most of their 99 se-

lected primary studies provided insufficient information to be

classified. They also identified a need to further validate the

consistency of interactions when the pattern is implemented

on its own or in combination with other patterns. While

most frequently occurring quality attributes are identified,

interrelationships between them are not considered.

Ijaz et. al [5], conducted a systematic literature review

on non-functional requirement prioritization techniques which

included 30 studies from 2008 onward. They identified 25

prioritization techniques as well as common limitations in the

approaches. These limitations include a lack of scalability for

larger data sets and a lack of validation for some approaches.

While interdependencies between functional and nonfunctional

requirements are mentioned as a challenge, these interdepen-

dencies are not within the scope of the study.

García-Mireles et. al [15] investigated the relationships

between software product quality characteristics and green in

software sustainability (producing more sustainable software

products). Based on the primary studies, the authors identified

several potential positive and negative interactions between

product qualities from ISO/IEC 25010 and sustainability as-

pects. While this mapping study addresses relationships be-

tween quality characteristics and sustainability, it does not

speak to the more general interrelationships between the

quality characteristics themselves.

III. RESEARCH METHODOLOGY

This section presents a detailed description of the research

methodology of this systematic mapping study.

With the goal of minimizing research bias while maxi-

mizing the relevant work to be included, we developed a

structured approach guided by the updated guidelines provided

by Petersen et. al [16]. Our approach consisted of a set of

research questions, a search strategy with selection criteria,

data extraction, and data analysis.

A. Research Questions

Motivated by the findings from previous systematic studies,

we look to assess the trends in software quality interrelation-

ships. Specifically, we answer the following research questions

related to the gaps introduced in Section I:

• RQ1: Are software qualities defined and are they consis-

tent in their definitions?

This research question looks to address gaps 1 and 2.

To answer this research question we investigated the

software qualities being mentioned in software quality

interrelationships to see whether definitions for quality at-

tributes continue to be omitted in the literature. We further

look at the top 5 most commonly considered qualities to

examine whether the highly investigated qualities in this

area have changed and if the bases for their definitions

are consistent across the studies.

• RQ2: How are software quality interrelationships studies

being evaluated?

This research question looks to address gaps 3 and 4.

We first classified each study as to whether they were

reporting a relationship or whether they were proposing

a method to identify or manage quality interrelationships.

We then mapped the studies based on whether they

reported an empirical study, a case study, or no evalu-

ation with regards to their methods or interrelationship

reporting.

• RQ3: What approaches are being used in quality interre-

lationship studies?

This research question looks to address gaps 5 and 6.

Previous work had focused on addressing software quality

interrelationships at earlier stages of software develop-

ment [9], and it was noted that automatic approaches

are needed in requirement conflict detection [10]. In

our study, we mapped each study as "early" if their

methods or interrelationships were applied to process,

architecture, or requirements. Approaches were classified

as automatic if some tool was used to analyze and detect

requirement conflicts as in [10]; we similarly evaluated

whether the studies involved use of a tool to address

quality interrelationships.

• RQ4: What are the characteristics of software quality

interrelationships?

This research question looks to address gap 7. Prior work

noted that conflict identification techniques were limited

to only a high level [8], thus we look to see if this

holds for other quality interrelationships. To answer this

RQ, we evaluated the types of interrelationships being

reported in the studies, as well as whether the studies

mentioned a type of metric used to evaluate the strength

265

of the interrelationship. For this study, interrelationship

strength is defined as any description beyond the presence

or absence of a quality interrelationship.

B. Database Search
With the goal of obtaining a list of candidate studies, we

performed a thorough database search.
1) Search Terms: Taking PICOC (Population, Intervention,

Comparison, Outcomes, and Context), [17] into consideration,

we derived a set of keywords for our research questions (as

shown in Table I). Quotes are used for key phrases and

wildcards(*) for keywords whose endings transform when

pluralized. Since previous work indicated that many studies

were not empirically validated [7] [8] [9] [10], we excluded

"Outcome" to ensure all relevant studies were considered.
Related terms within population and intervention were iden-

tified from ISO/IEC 24765 (Systems and Software Engineer-

ing - Vocabulary) [18] and the Software Engineering Book of

Knowledge [19]. To construct the final query, intra-set terms

were connected with boolean ORs, and sets were combined

with boolean ANDs.
2) Database Sources: IEEEXplore, ACM Digital Library,

and Scopus were selected based on the recommendation of

the systematic mapping study guidelines to ensure a thorough

sampling [16]. The following query was used for title, abstract,

and keywords:
(("software engineering") AND ("nonfunctional

requirement"OR "quality requirement"OR
"design constraint"OR "software qualit* ") AND
(relationship OR dependenc* OR conflict OR synerg* OR
tradeoff OR interaction)) 1

C. Study selection
This section describes the selection process of the candidate

studies in depth. Figure 1 illustrates the overall process.
1) Selection Criteria: To answer our research questions,

we developed a set of inclusion and exclusion criteria to find

relevant works.
Inclusion Criteria:
• Relevance: Papers should address interrelationships be-

tween software product qualities in software engineering.

• Language: Papers should be included only if they were

available in English.

• Time period: Papers should be included if they were from

the time span of January 2015 to December 2019.

Exclusion Criteria:
• Unrelated Software Qualities: For example, software

quality can include process quality, which was considered

out of scope.

• Clarity of relationship: Papers should be removed if their

relevance or subject matter were not clear from the full

paper reading.

• Availability: Papers should be removed if they were not

available in full-text from available databases.

1Since ACM Digital Library does not take wild cards into consideration
with phrases and does not have a field for keywords, qualit* was substituted
with "quality OR software qualities"and search was done for title and abstract.

2) Identification of the start set: The start set can be

identified by using the search query described in Section III-B1

to query the online databases mentioned in Section III-B2.
Figure 1 illustrates the overall selection process of our

systematic mapping study. Out of 1710 papers from an initial

database search, the results were refined by year, 2015-2019,

and duplicates were removed to yield 465 papers.
Two rounds of review were conducted on these papers, with

consensus meetings held after each round. In the first round,

the papers were independently evaluated based on the titles

and abstracts. Papers that were deemed relevant by at least one

author were passed to continue into the next round, yielding 62

papers. In the second round, the papers were read in full and

detailed discussions were followed up. Extended and revised

journal versions of conference papers were retained and the

conference versions removed from the set.
At the end of this process, we identified 12 relevant papers,

which were included in the start set.

D. Snowballing Search
For each paper in the start set, we conducted a backward

snowballing search on its references and a forward snow-

balling search on its citations, following the guidelines in [20].
1) Backward Snowballing: We first refined the year of each

referenced paper to exclude any papers that were published

before 2015. Then the titles and abstracts were reviewed

to determine which to pass into the next round. Next, the

inclusion and exclusion criteria were applied based on a full-

text reading. Papers that were identified as relevant were added

to the start set, and this process was repeated until no new

papers were identified. As a result, 530 papers were extracted

and 4 papers were added to the start set. At the end of this

process, there were 16 papers in the start set.
2) Forward Snowballing: The citations of each paper in

the start set were identified from their host site (IEEEXplore,

Springer Link, etc.). The same review process was conducted

in this search. Relevant papers were added to the starting

set, and this process was repeated until no new papers were

identified. As a result, 50 papers were examined and 2 papers

were added to the start set.
At the end of the forward snowballing search, we obtained

18 relevant papers as the final set for our study.

E. Data Extraction and Synthesis
Table II lists the bibliographic and research question data

that was extracted from the 18 selected papers and compiled

for further analysis.
There were in total 9 conference papers, 6 workshop papers

and 3 journal papers included in this study. The year with

the most number of publications was 2016 with 5 papers

published. While none of the journal or conferences made

up a majority of the publication venues, the International

Conference on Software Quality, Reliability, and Security

(QRS) [21] [22], the International Conference on Software

Engineering (ICSE) [23] [24], and the International Require-

ments Engineering Conference (RE) [25] [26] each had 2

publications within our study set.

266

TABLE I: PICOC Criteria to Define the Search String for Database Search

Population Intervention Comparison Outcome Context
software quality quality interrelationships

not applicable excluded
software
engineering

Keywords

"nonfunctional requirement",
"quality requirement",
"design constraint"
"software qualit*"

relationship,
dependenc*, conflict,
synerg*, tradeoff, interaction

Fig. 1: The Overall Process of Study Selection

F. Validity Evaluation

In this section, the threats to validity in this study are dis-

cussed. We consider the following types of validity described

in [16]:

1) Descriptive Validity: In this mapping study, this threat

can be considered from two perspectives. One is the potential

for incorrect assessment of the research publications. As

reviewers, we are limited to interpret the intentions of authors.

This is also related to the second threat source, the quality of

self-reporting of the research publications.

Some of the studies did not have clear objectives, contri-

butions and research methodology. This made the selection

process difficult, thus increasing the possibility of inaccurate

selection of relevant studies. Moreover, some of the studies

used different terminology to describe the same concepts,

which could potentially lead to misunderstanding.

To mitigate these threats, we developed a research protocol,

which involved independent evaluation of studies and consen-

sus meetings to verify the assessments.

2) Theoretical Validity: The studies collected through the

database search may not have adequately covered the literature

in the targeted research area due to insufficiency in the search

query. To mitigate this threat, we conducted a backward

and forward snowballing approach to capture relevant studies

which would have been initially missed.

3) Generalizability: Our results may not apply to qualities

in other domains that are not within the context of software

engineering. The study focuses on software product quality,

rather than other types of software quality such as process

quality and service quality. Thus, the findings may not apply

beyond product quality.

TABLE II: Data Extraction Form

Data
Bibliographic Reference Number, Year, Venue Type
RQ 1 Qualities, Quality Basis
RQ 2 Study Purpose, Evaluation
RQ 3 Software Development Stage, Automated
RQ 4 Interrelationships, Interrelationship Strength

IV. RESULTS

This section presents the mapping results and answers the

research questions. Table III lists the characteristics of the

selected studies in detail.

A. RQ1

Overall, 71 distinct qualities were extracted from the se-

lected studies. Figure 2 illustrates the number of qualities

extracted per study, including repeated qualities. The most

frequently mentioned qualities and the bases for their defini-

tions are compiled in Table IV.

According to Mairiza et. al [2], the most commonly con-

sidered non-functional requirements were performance, reli-

ability, usability, security, and maintainability. The top five

most commonly considered quality attributes extracted from

our study were usability, maintainability, security, portability

and reliability.

1) Quality definitions: Most of the selected studies men-

tioned some sort of quality attributes, whether in the format

of product quality or non-functional requirements. Out of 18

studies, 7 studies provided clear definitions on the specific

qualities mentioned in their research. Moreover, 8 studies gave

partial definitions of the quality attributes. These definitions

267

TABLE III: The Characteristics of the Selected Studies

Study
ID

Paper
References

RQ 2-1: Study
Purpose RQ 2-2: Evaluation RQ 3: Software

Development Stage
RQ 4: Interrelationship

Strength

Method Reporting Empirical
Study

Case
Study

No
Evaluation Early Others Metric

Reported
No Metric
Reported

S1 [21] X X X X
S2 [27] X X X X
S3 [23] X X X X
S4 [28] X X X X
S5 [29] X X X X
S6 [30] X X X X
S7 [31] X X X X
S8 [32] X X X X
S9 [24] X X X X
S10 [33] X X X X
S11 [34] X X X X
S12 [35] X X X X
S13 [1] X X X X
S14 [36] X X X X
S15 [37] X X X X
S16 [25] X X X X
S17 [22] X X X X
S18 [26] X X X X

TABLE IV: Most Frequent Qualities in Selected Studies

Quality
Attribute Definition Basis Study

ID

Usability

No definition S6, S14

ISO/IEC 25010
S2, S7, S11,
S15, S18

SQuaRE series S3
ISO/IEC 9126 S10
Self-defined S16

Maintainability

No definition S14

ISO/IEC 25010
S2, S7,
S11, S15

SQuaRE series S3
ISO/IEC 9126 S10
Self-defined S17
The System Qualities Ontology,
Tradespace, and Affordability
(SQOTA) ontology

S9, S13

Security

No definition S14

ISO/IEC 25010
S2, S4, S7,
S11, S15, S18

SQuaRE series S3
Self-defined S16

Portability

ISO/IEC 25010 S7, S11, S15
SQuaRE series S3
ISO/IEC 9126 S10
The System Qualities Ontology,
Tradespace, and Affordability
(SQOTA) ontology

S9

Self-defined S8, S17

Reliability
ISO/IEC 25010

S2, S7, S11,
S15, S18

SQuaRE series S3, S5
ISO/IEC 9126 S10

were either extracted from standards, explained in previous

works, or derived from concrete examples of how other sub-

characteristics contribute to the particular quality attribute.

Only the following 2 selected studies failed to provide any

definitions on the mentioned quality attributes.

In S6, the authors identified challenges within the trade-

off of various qualities and demonstrated the possibility of

Fig. 2: Distribution of the Number of Qualities

achieving a balance of trade-offs between high computational

efficiency and other software quality attributes such as usabil-

ity. However, the definitions for such quality attributes were

not explicitly defined. In S14, the authors defined sustainability

in two aspects. However, the quality attributes that contribute

to the different dimensions of sustainability were not explicitly

defined.

2) Consistency Among Definitions: The selected studies

tended to use standards for defining the software qualities.

The most common standard found was ISO/IEC 25010. While

ISO/IEC 25010 is part of a larger standard, the SQuaRE series,

it is differentiated in this mapping study since many of the

studies specified that particular portion of the standard. Others

included additional parts of the series such as ISO/IEC 25022

and ISO/IEC 25023. Figure 3 illustrates the distribution of the

number of selected studies per each type of definition.

Accessibility was defined differently across certain studies.

In ISO/IEC 25010, accessibility is defined as the "degree to

which a product or system can be used by people with the

widest range of characteristics and capabilities to achieve a

specified goal in a specified context of use" [18]. However,

268

Fig. 3: Distribution of the Number of Selected Studies per

Definition Basis

TABLE V: Efficiency

Study ID
Efficiency S3, S8, S10, S15, S16
Energy efficiency S18
Resource efficiency S18
Computational efficiency S6
Life cycle efficiency S9
Performance efficiency S3, S11, S18

[21] [22] defined accessibility in the context of being available

and reachable, which involves whether the intended areas of a

software system can be accessed as desired. Similarly, [35]

defined accessibility in the context of provenance, treating

provenance as a resource, that can be accessed by the user.

In ISO/IEC 9126, efficiency was defined as "A set of

attributes that bear on the relationship between the level of

performance of the software and the amount of resources used,

under stated conditions" [38]. Later, efficiency is renamed

"performance efficiency" in ISO/IEC 25010. We found that

when people addressed efficiency in the selected studies, they

tended to mention the specific kinds of efficiency. Table V

shows the types of efficiency extracted from the selected

studies.

Summary of RQ1. We extracted 71 distinct quality attributes

from the selected studies. There has been a shift in the

top qualities being considered within the context of quality

interrelationships. The percentage of studies which do not

provide definitions for the quality attributes has decreased

within our selected set. While people are utilizing standardized

definitions for software qualities, it suggested in S9 to consider

the diversity of definitions across domains as the major weak-

nesses of the current software quality practices. There is also

a rise in studies investigating one specific quality to provide a

deeper understanding on the key activities and contributors

associated with it. These qualities included maintainability

[1] [22], sustainability [36] [37] [26], reliability [29], and

provenance [35]. By doing so, these more complex qualities

can become less ambiguous, so considering the various aspects

individually may be a more productive approach.

B. RQ2

1) Study Purpose: Shown in Table III, of the selected

studies, 12 reported on the actual quality interrelationships

that were found through case studies, surveys, interviews, and

literature (including standards, frameworks, and ontology).

S14 presents a multiple case study which looks to apply

a sustainability model from their prior work. This model

related software sustainability to quality requirements based

on ISO/IEC 25010 using a web-based survey of researchers

and practitioners. In their study, software sustainability is de-

composed into technical, social, economic, and environmental

dimensions; they identified quality attributes with dependency

relationships with the different dimensions. Some quality

attributes had dependencies on multiple dimensions such as

modifiability which contributes to the economic, technical, and

environmental dimensions.

In contrast, the remaining 6 studies reported on methods

or frameworks for identifying or managing quality interrela-

tionships. Both S4 and S16 proposed some frameworks to

assist quality interrelationship identification. In S4, authors

developed a process to support identifications for quality

interactions. In S16, authors proposed an ontological approach

to predict trade-offs between security and usability.

2) Evaluation: Shown in Table III, 7 papers did not present

an evaluation of either the proposed method or the quality

interrelationships being reported. The majority of the evalu-

ations were based on case studies, including usage scenarios

and applications of methods to example systems. Notably, S3

not only evaluated their approach for managing quality using

an empirical study on 21 products, but they also performed

a correlation analysis to evaluate the strength of the quality

interrelationships. In S17, authors performed a large empirical

study on identifying maintainability concerns from issue sum-

maries and using the dependency relationship between issue

summaries to identify the interrelationships among the quality

attributes.

Summary of RQ2. There does not appear to be a strong

preference for methods or relationship reporting studies. Case

studies appear to be the preferred method of evaluation;

however, overall, evaluation remains an issue for studies in

this area.

C. RQ3

1) Software Development Stage: Shown in Table III, of the

selected studies, 8 were applied at the earlier development

stages, while 10 were from other stages. For example, the

approach in S10 addressed software quality interrelationships

for software components. Such components would be evalu-

ated post development. Another example was found in S1 and

S17, where the authors utilized bug reports, which are mostly

generated during the maintenance phase, to illustrate the

potential software quality interrelationships displayed through

the "Block"/"Depends on" relationships among bug reports.

2) Automated Approaches: Of the selected studies, none

extensively used tool support to identify quality interrelation-

ships. The selected studies largely depended on expert ratings

269

TABLE VI: Classification of Interrelationships

Relationship Types Study ID

Conflict S2, S3, S4, S6,
S7, S8, S16, S18

Synergy S3, S8, S18

Means-End S3, S5, S9, S10, S11,
S12, S13, S14, S15, S18

Unknown S1, S17

and judgement as input or to verify quality interrelationships.

For example, studies S2 and S5 require experts to evaluate

and perform pair-wise comparisons of qualities. Surveys,

interviews, and questionnaires are also commonly used for

eliciting expert and user opinions on qualities [26] [28] [32]

[36] [37]. S10 reported on sub-characteristics based on various

models and quality experts using Delphi method. Other studies

developed or referenced ontologies and literature in their

approaches [1] [24] [25] [33] [34] [35]. S1 used a classifier to

identify software qualities expressed in issue summaries; the

study relies upon "Block"/"Depends on" relationships being

identified and reported with the issues. S3 mentions use of

static analysis tools to measure quality sub-characteristics of

maintainability, but these did not identify the relationships.

Summary of RQ3. These results could indicate a shift in

focus from addressing software quality interrelationships at

earlier stages of development to approaches that can be used

at differing stages, with roughly equivalent numbers of studies

being applicable to different stages of development. While

it is considered beneficial to address conflicts earlier in the

development life-cycle, two areas which may benefit from

this change are in the handling of new quality requirements

introduced during the development, operation, and mainte-

nance stages as well as for dealing with conflicts in iterative

development processes such as Agile. Automated, tool-assisted

approaches were largely absent from our selected studies, and

there remains a reliance on experts for addressing quality

interrelationships.

D. RQ4

1) Types of Relationships: We identified the interrelation-

ships between software qualities described in each study and

classified the following types of interrelationships.

• Conflicts: increasing one quality decreases another

• Synergies: increasing one quality increases another

• Means-ends: breaking down higher level qualities into

sub-quality attributes

• Unknown: the interrelationship could be any of the above

As shown in Table VI, means-end interrelationships have

the most number of occurrences, followed by conflict in-

terrelationships. Less than half of the studies that presented

conflicts also reported synergy type interrelationships. None

of the selected studies reported solely the synergy type.

S1 and S17 proposed an approach that determines quality

interrelationships based on dependencies between bug reports.

The qualities are related to each other by the bug report

dependencies, so the interrelationship described might fit into

any of conflict, synergy, or means-end. Thus we separated the

studies into an "unknown" category.

We have identified 35 distinct synergy interrelationships and

54 conflict interrelationships. The most frequently mentioned

synergy interrelationship is security and reliability (S2, S15

and S18). The most frequently mentioned conflict interrela-

tionship is functional suitability and usability (S3 and S18).

Interestingly, we found that 4 interrelationships appeared in

both synergy and conflict pairs. In S15, security and usability,

usability and reliability are listed as synergies; however they

appear as conflicts in S2. Similarly maintainability and relia-

bility, portability and usability are listed as conflicts in S15;

however they appear as synergies in S2 and S3 respectively.

2) Interrelationship Strength: Shown in Table III, of the

selected studies, 7 considered some measurements of the

strength of the interrelationships, which varied across studies.

Studies S2 and S4 considered interrelationship strength based

on relative impact: whether there is a positive, negative, or

no impact between qualities. S5 used relative importance

of qualities as defined by practitioners as part of their ap-

proach. Interrelationship strength was determined based on the

Spearman’s Rank correlation in S3 and S15. S18 additionally

built regression models relating software qualities to different

aspects of environmental sustainability.

Summary of RQ4. While the studies did not tend to use the

language of examining synergies in their approaches, while

attempting to address and evaluate conflicts, they identified

synergies nonetheless. Quality attributes may relate differently

in various contexts; some quality pairs identified in S15, which

focuses on the sustainability domain, were opposite of S2 and

S3. However, we did not see this occur for S6 or S11 which

deal with the domains of high performance computing and

Internet of Things respectively. Further work should be done

to compare how much of an effect domain has on the types

of quality interrelationships. In addition, almost half of the

studies considered some type of measurement for the degree

of inter-relatedness; however, there did not appear to be a

predominant approach for measurement.

V. CONCLUSION

In this paper, we have reported a systematic mapping study

of 18 carefully selected studies after 2015 to explore the

new trends on the topic of software quality interrelationships.

First, we have identified a set of research gaps gathered from

previous reviews. We then proposed a number of research

questions related to how software qualities are defined, the

study purposes and evaluation, types of approaches, and the

interrelationships these selected studies mentioned. We have

sought to answer these questions and provided a systematic un-

derstanding of the selected studies, which have been discussed

in depth against the research gaps. The overall conclusion that

stems from our review results is that there have been improve-

ments in the area of software quality interrelationships, yet a

number of gaps still need to be filled.

In conclusion, we believe that our review is timely and im-

portant, as it reports on the results of recent trends in software

270

quality interrelationships. More significantly, by comparing

our findings to a set of research gaps identified from reviews

prior to 2015, we gained understanding on what has been done

and what still needs to be addressed.

REFERENCES

[1] B. Boehm, C. Chen, K. Srisopha, and L. Shi, “The key roles of main-
tainability in an ontology for system qualities,” in INCOSE International
Symposium, vol. 26, no. 1. Wiley Online Library, 2016, pp. 2026–2040.

[2] D. Mairiza, D. Zowghi, and N. Nurmuliani, “An investigation into the
notion of non-functional requirements,” in Proceedings of the 2010 ACM
Symposium on Applied Computing. ACM, 2010, pp. 311–317.

[3] D. Samadhiya, S.-H. Wang, and D. Chen, “Quality models: Role and
value in software engineering,” in 2010 2nd International Conference on
Software Technology and Engineering, vol. 1. IEEE, 2010, pp. V1–320.

[4] L. Chung, B. A. Nixon, E. Yu, and J. Mylopoulos, Non-Functional
Requirements in Software Engineering. Boston, MA: Springer US,
2000.

[5] K. B. Ijaz, I. Inayat, and F. A. Bukhsh, “Non-functional requirements
prioritization: A systematic literature review,” in 2019 45th Euromi-
cro Conference on Software Engineering and Advanced Applications
(SEAA). IEEE, 2019, pp. 379–386.

[6] G. A. García-Mireles, M. Á. M. De La Rubia, F. García, and M. Piattini,
“Methods for supporting management of interactions between quality
characteristics,” in 2014 9th International Conference on Evaluation of
Novel Approaches to Software Engineering (ENASE). IEEE, 2014, pp.
1–8.

[7] D. Mairiza, D. Zowghi, and V. Gervasi, “Conflict characterization and
analysis of non functional requirements: An experimental approach,”
in 2013 IEEE 12th International Conference on Intelligent Software
Methodologies, Tools and Techniques (SoMeT). IEEE, 2013, pp. 83–91.

[8] D. Mairiza, D. Zowghi, and N. Nurmuliani, “Managing conflicts among
non-functional requirements,” in Australian Workshop on Requirements
Engineering. University of Technology, Sydney, 2009, pp. 11–19.

[9] S. Barney, K. Petersen, M. Svahnberg, A. Aurum, and H. Barney, “Soft-
ware quality trade-offs: A systematic map,” Information and software
technology, vol. 54, no. 7, pp. 651–662, 2012.

[10] M. Aldekhail, A. Chikh, and D. Ziani, “Software requirements conflict
identification: review and recommendations,” Int J Adv Comput Sci Appl
(IJACSA), vol. 7, no. 10, p. 326, 2016.

[11] R. B. Svensson, M. Host, and B. Regnell, “Managing quality require-
ments: A systematic review,” in 2010 36th EUROMICRO Conference
on Software Engineering and Advanced Applications. IEEE, 2010, pp.
261–268.

[12] H. In and B. W. Boehm, “Using winwin quality requirements manage-
ment tools: a case study,” Annals of Software Engineering, vol. 11, no. 1,
pp. 141–174, 2001.

[13] D. Mairiza, D. Zowghi, and N. Nurmuliani, “Towards a catalogue of
conflicts among non-functional requirements.” ENASE, vol. 2010, pp.
20–29, 2010.

[14] G. Me, C. Calero, and P. Lago, “A long way to quality-driven pattern-
based architecting,” in European Conference on Software Architecture.
Springer, 2016, pp. 39–54.

[15] G. A. García-Mireles, M. Á. Moraga, F. García, C. Calero, and
M. Piattini, “Interactions between environmental sustainability goals and
software product quality: A mapping study,” Information and Software
Technology, vol. 95, pp. 108–129, 2018.

[16] K. Petersen, S. Vakkalanka, and L. Kuzniarz, “Guidelines for conduct-
ing systematic mapping studies in software engineering: An update,”
Information and Software Technology, vol. 64, pp. 1–18, 2015.

[17] B. Kitchenham and S. Charters, “Guidelines for performing system-
atic literature reviews in software engineering,” Keele University and
Durham University Joint Report, Tech. Rep. EBSE 2007-001, 2007.

[18] “Iso/iec/ieee international standard - systems and software engineering–
vocabulary,” ISO/IEC/IEEE 24765:2017(E), pp. 1–541, Aug 2017.

[19] P. Bourque, R. E. Fairley, and I. C. Society, Guide to the Software
Engineering Body of Knowledge (SWEBOK(R)): Version 3.0, 3rd ed.
Washington, DC, USA: IEEE Computer Society Press, 2014.

[20] C. Wohlin, “Guidelines for snowballing in systematic literature studies
and a replication in software engineering,” in Proceedings of the 18th
international conference on evaluation and assessment in software
engineering, 2014, pp. 1–10.

[21] C. Chen, M. Shoga, and B. Boehm, “Exploring the dependency rela-
tionships between software qualities,” in 2019 IEEE 19th International
Conference on Software Quality, Reliability and Security Companion
(QRS-C). IEEE, July 2019, pp. 105–108.

[22] C. Chen, S. Lin, M. Shoga, Q. Wang, and B. Boehm, “How do defects
hurt qualities? an empirical study on characterizing a software maintain-
ability ontology in open source software,” in 2018 IEEE International
Conference on Software Quality, Reliability and Security (QRS). IEEE,
2018, pp. 226–237.

[23] N. Tsuda, H. Washizaki, K. Honda, H. Nakai, Y. Fukazawa, M. Azuma,
T. Komiyama, T. Nakano, H. Suzuki, S. Morita et al., “Wsqf: Compre-
hensive software quality evaluation framework and benchmark based on
square,” in 2019 IEEE/ACM 41st International Conference on Software
Engineering: Software Engineering in Practice (ICSE-SEIP). IEEE,
2019, pp. 312–321.

[24] B. Boehm, “Improving and balancing software qualities,” in Proceedings
of the 38th International Conference on Software Engineering Compan-
ion, 2016, pp. 890–891.

[25] W. Roh and S.-W. Lee, “An ontological approach to predict trade-offs
between security and usability for mobile application requirements en-
gineering,” in 2017 IEEE 25th International Requirements Engineering
Conference Workshops (REW). IEEE, 2017, pp. 69–75.

[26] S. A. Koçak, G. I. Alptekin, and A. B. Bener, “Integrating environmental
sustainability in software product quality.” in RE4SuSy@ RE, 2015, pp.
17–24.

[27] M. A. Al Imran, S. P. Lee, and M. M. Ahsan, “Measuring impact factors
to achieve conflict-free set of quality attributes,” in 2017 IEEE 8th
Control and System Graduate Research Colloquium (ICSGRC). IEEE,
2017, pp. 174–178.

[28] G. A. García-Mireles, M. Á. Moraga, F. García, and M. Piattini, “A
process support with which to identify interactions between quality
characteristics,” in International Conference on Evaluation of Novel
Approaches to Software Engineering. Springer, 2015, pp. 21–39.

[29] F. Febrero, C. Calero, and M. Á. Moraga, “Software reliability modeling
based on iso/iec square,” Information and Software Technology, vol. 70,
pp. 18–29, 2016.

[30] D. Pflüger and D. Pfander, “Computational efficiency vs. maintainability
and portability. experiences with the sparse grid code sg++,” in 2016
Fourth International Workshop on Software Engineering for High Per-
formance Computing in Computational Science and Engineering (SE-
HPCCSE). IEEE, 2016, pp. 17–25.

[31] T. Bi, P. Liang, and A. Tang, “Architecture patterns, quality attributes,
and design contexts: How developers design with them,” in 2018 25th
Asia-Pacific Software Engineering Conference (APSEC). IEEE, 2018,
pp. 49–58.

[32] M. Wahler, R. Eidenbenz, A. Monot, M. Oriol, and T. Sivanthi, “Qual-
ity attribute trade-offs in industrial software systems,” in 2017 IEEE
International Conference on Software Architecture Workshops (ICSAW).
IEEE, 2017, pp. 251–254.

[33] A. Tiwari and P. S. Chakraborty, “Software component quality char-
acteristics model for component based software engineering,” in 2015
IEEE International Conference on Computational Intelligence & Com-
munication Technology. IEEE, 2015, pp. 47–51.

[34] J. J. Tambotoh, S. M. Isa, F. L. Gaol, B. Soewito, and H. L. H. S.
Warnars, “Software quality model for internet of things governance,”
in 2016 International Conference on Data and Software Engineering
(ICoDSE). IEEE, 2016, pp. 1–6.

[35] A. L. de Castro Leal, J. L. Braga, and S. M. S. da Cruz, “Cataloguing
provenance-awareness with patterns,” in 2015 IEEE Fifth International
Workshop on Requirements Patterns (RePa). IEEE, 2015, pp. 9–16.

[36] N. Condori-Fernandez and P. Lago, “Towards a software sustainability-
quality model: Insights from a multi-case study,” in 2019 13th Inter-
national Conference on Research Challenges in Information Science
(RCIS). IEEE, 2019, pp. 1–11.

[37] S. Aljarallah and R. Lock, “An exploratory study of software sustainabil-
ity dimensions and characteristics: end user perspectives in the kingdom
of saudi arabia (ksa),” in Proceedings of the 12th ACM/IEEE Interna-
tional Symposium on Empirical Software Engineering and Measurement,
2018, pp. 1–10.

[38] “Software engineering – product quality,” International Organization for
Standardization, Standard ISO/IEC 9126-1:2001, 2001.

271

