

A Threat Analysis Methodology for Security Requirements
Elicitation in Machine Learning Based Systems

Carl Wilhjelm Awad A. Younis
Georgia State University Northern Kentucky University
 Atlanta, GA, USA Highland Heights, KY, USA

 cwilhjelm1@student.gsu.edu mussaa1@nku.edu

Abstract— Machine learning (ML) models are now a key
component for many applications. However, machine
learning based systems (MLBSs), those systems that
incorporate them, have proven vulnerable to various new
attacks as a result. Currently, there exists no systematic
process for eliciting security requirements for MLBSs that
incorporates the identification of adversarial machine
learning (AML) threats with those of a traditional non-
MLBS. In this research study, we explore the applicability
of traditional threat modeling and existing attack libraries
in addressing MLBS security in the requirements phase.
Using an example MLBS, we examined the applicability of
1) DFD and STRIDE in enumerating AML threats; 2)
Microsoft SDL AI/ML Bug Bar in ranking the impact of the
identified threats; and 3) the Microsoft AML attack library
in eliciting threat mitigations to MLBSs. Such a method has
the potential to assist team members, even with only domain
specific knowledge, to collaboratively mitigate MLBS
threats.

Keywords— Adversarial Machine Learning, Security Requirements
Engineering, Requirements Elicitation Using Threat Modeling, STRIDE,
Attack Libraries, Model Inference and Perturbation and Evasion Attacks.

I. INTRODUCTION
ML models are now a key component for many

applications. For example, in the field of medical diagnostics,
MLBSs rely on advancements in deep learning for image
processing. These systems, however, while vulnerable to the
same threats that plague systems without ML components (we
will refer to these as traditional systems and threats) have
additionally been shown to be vulnerable to various types of
AML threats (ex. poisoning attacks, model extraction attacks,
and evasion attacks) that also have the potential for severe
consequences [1], [2]. AML research studies the vulnerability
of ML to the designs of a malicious actor [1]. A number of
studies have investigated MLBSs’ security, identified attacks
and defenses, and proposed taxonomies for classification of
these [1, 3, 4, 2, 5, 6, 7, 8]. Yet, AML researchers typically
address their security concerns with a narrow focus on ML
models, while a holistic paradigm to address both the AML
threats and traditional security concerns of an MLBS
concurrently remains almost wholly unexplored.

Recently, research studies [9], [10], [11] [12], [13], and [14]
have investigated the applicability of traditional software
engineering techniques to MLBSs and identified some
challenges. Further studies have focused on investigating the

importance and unique challenges of applying requirements
engineering to MLBSs [15], [16]. A recent study [17] has also
attempted to integrate security into an MLBS development life
cycle (requirements analysis, design, implementation, testing,
deployment, and maintenance) using a systematic application
of knowledge, methodology, ML expertise, software
engineering, and security. However, there exists no systematic
process for eliciting security requirements for MLBSs that
incorporates the identification of adversarial machine learning
(AML) threats with those of a traditional non-MLBS.

In this research study, we explore the applicability of
traditional threat modeling and existing attack libraries in
addressing MLBS security early in system development
particularly at the requirements phase. Our main objectives in
this research are to 1) demonstrate the potential for identifying
AML threats in MLBSs using data flow diagrams (DFDs) and
STRIDE; 2) Rank the impact of MLBS threats using Microsoft
AI/ML bug bar ranking method; and 3) Elicit AML threat
mitigations using Microsoft AML attack library.

To identify threats related to MLBSs, the system under
study needs to first be modeled. There exist several strategies
to accomplish this including brainstorming, asset modeling,
attacker modeling, and software modeling [18]. Of these,
software modeling is the most focused on the software, which
developers are expected to understand [18]. This contrasts with
the others in not specifically requiring an understanding of the
business, its assets, or the potential attackers which might
otherwise require additional training. Several diagram schemes
are available to model software. DFDs are among the most used
in threat modeling due to their simplicity because they are
considered lightweight and do not require any idiomatic
knowledge of software engineering [18]. We will explore using
DFDs to model an MLBS. Once the DFD model for the MLBS
has been identified, we will focus on finding threats that are
conceptually unique to MLBSs and explore the possible
application of STRIDE.

STRIDE is a classification methodology for potential
threats based on the threat categories of Spoofing, Tampering,
Repudiation, Information Disclosure, Denial of Service, and
Elevation of Privilege [19]. STRIDE is among the most used
approaches in threat modeling due to its maturity [20].
However, mapping STRIDE to MLBS threats is not entirely
straightforward as AML threats are categorically different from
their traditional security engineering counterparts. To
overcome this challenge, we first propose exploring the AML
literature [21], [22], and [23], to develop a taxonomy to
categorize potential AML threats to a MLBS. We will then map

419

2020 IEEE 20th International Conference on Software Quality, Reliability and Security Companion (QRS-C)

978-1-7281-8915-4/20/$31.00 ©2020 IEEE
DOI 10.1109/QRS-C51114.2020.00078

AML threats, at their highest level of abstraction, to the DFD
and then to STRIDE, to bridge the conceptual gaps between
STRIDE and AML threats. After that, we will explore using
STRIDE on an example application to find the relevant AML
threats to an MLBS. It is our expectation that this mapping will
provide teams, possibly those composed of security engineers
and data scientists without large overlaps in expertise, a shared
understanding of the threats, and also how they might be
mitigated. More details about our method can be found in
section II.

Threat ranking techniques are used to prioritize which
threats need to be mitigated first, if at all. There currently exist
a number of threat ranking techniques among them the
Common Vulnerability Scoring System (CVSS) [24], DREAD
[25], and Bug Bars [18]. However, because the bug bar
specifically is a very lightweight technique that is accessible to
someone without domain specific knowledge, we will explore
this option for our ranking technique. We will specifically
investigate using Microsoft Bug Bar to rank AML threats
related to MLBSs [22]. It ranks AML threat severity on a scale
between critical, important, moderate, and low [26].

Attack Libraries are commonly used with threat modeling
to identify specific threats and their mitigations in traditional
security engineering [18]. They are constructed to track and
organize threats. They have been found to increase developers’
knowledge of the ways attackers work and especially those
without expertise in cybersecurity [27], [28], [29], [30]. They
can be either organization specific or use the ones published by
the security community such as Common Attack Pattern
Enumeration and Classification (CAPEC) [31]. CAPEC is a
publicly available community-developed list of common attack
patterns that provides comprehensive schema, classification
taxonomy, and threat defenses or mitigations. As of the time
this paper was written, CAPEC does not provide AML threat
related attacks. However, we have found that Microsoft has
built a publicly available attack library specifically for MLBS
using AML literature [22]. This library describes how an
adversary can attack a vulnerable MLBS and provides
techniques to mitigate those threats.

The rest of the paper is organized as follows. Section II
describes the proposed method based on threat modeling and
attack libraries. Section III illustrates the proposed method with
a case study. Section IV presents comments along with the
issues that need further research.

II. PROPOSED METHOD
Our effort attempts to apply preexisting techniques in the

field of software security engineering to elicit security
requirements for MLBSs. We are particularly interested in
exploring traditional threat modeling and existing attack
libraries to elicit security requirements for AML threats in
MLBSs. Threats and attack libraries help identify security
requirements (a threat that is impossible to mitigate implies
non- requirements) [18]. To provide an understanding of the
security requirements elicitation for MLBSs, we provide an
overview of a possible approach based on DFD and STRIDE,
Microsoft AI/ML Bug Bar’s threat ranking approach, and
Microsoft’s AML attack library. The overall view of our
method is summarized in the following steps:

● Identify threats related to MLBSs using DFDs and
STRIDE:
o Develop a software model (an architectural model)

for MLBSs using a DFD
o Develop an AML threat taxonomy based on

existing literature
o Map the AML threat taxonomy to the DFD
o Bridge the conceptual gaps between AML threats

and STRIDE
o Use STRIDE to identify AML threats related to

MLBSs
● Rank AML threat impacts using Microsoft AI/ML Bug

Bar’s threat ranking approach.
● Elicit AML threat mitigations using Microsoft AI/ML

attack library.
In the following subsections, we will illustrate our

approach.

A. HOW THREATS RELATED TO MLBSs COULD BE
IDENTIFIED USING DFDs and STRIDE?

The most important step in eliciting security requirements is the
identification of potential threats. This could be accomplished
using many strategies, for example, brainstorming, asset
modeling, attacker modeling, or software modeling [18]. Of
these, however, software modeling is the most focused on the
software itself, which developers understand better than the
business and its assets or the motivation and ability of possible
attackers [18]. It describes how an adversary can attack a
vulnerable MLBS and provides techniques to mitigate those

threats. There are some diagram schemes used to better
understand the software and its potential threats including
DFDs and UML

1) DFD: DFDs are among the most used in threat
modeling due to their simplicity [18]. They are lightweight and
do not require any idiomatic knowledge of software
engineering. In contrast to UML diagrams, which require
experience in object oriented programming, we expect DFDs to
make modeling MLBSs readily understood even by a pure data

420

scientist. To identify potential threats related to MLBSs, we
will use a DFD to illustrate a possible architecture and should
not expect any issues stemming from a lack of domain specific
knowledge here. Fig. 1 shows an example.

2) STRIDE: Once a DFD model for MLBS has been
identified, we will need a way to identify the threats implicit in
it. STRIDE an acronym that stands for Spoofing, Tampering,
Repudiation, Information Disclosure, Denial of Service, and
Elevation of Privilege [19] [20]. This framework and
mnemonic were designed to help software developers identify
the types of attacks that traditional software tends to experience.

Here, we recognize that the specific threats articulated in the
current literature on AML often do not immediately lend
themselves to STRIDE or indeed to any traditional security
requirements engineering techniques. Some have argued that
this is because MLBSs are categorically different from their
traditional counterparts [17]. MLBSs may, for example, contain
sensitive information that if extracted could be used to execute
other attacks and they are increasingly being used to implement
security features e.g. facial recognition for biometric
authentication. It is our conjecture that the complexity and
specificity of the literature is the primary source of the idea that
such an attempt is not likely to succeed.

With this in mind, we will begin by offering the following
threat taxonomy based on the contributions of [21], [22], and
[23], in order to abstract a schema for the categorization of
AML threats, from which the applicability of traditional
methods might be more clearly drawn. To this end, we
generalize ML models into three components common to all
functions: input, processing, and output. Respectively the AML
threats can be classified based on their vector of attack, as
follows:

● Flawed Data – A situation where bad data as a starting
point, or deliberate provision of false data by a hostile
party, results in one or more of the following:

o Biased data or small sample size.

o Incorrect, corrupted, or poisoned data.

● Model Extraction – Reverse-engineering the model
from the system’s behavior or outputs:

o Through normal observation or access to a
significant sample of sympathetic data through
normal channels.

o Through deliberately feeding specially tailored
data to the model i.e. perturbation attack, without
meaningful controls.

● Data Extraction – Threat actor obtains the training data
used for the model from manipulating the system’s
behavior or inputs:

o Sensitive data or personal data leaked.

o Training data obtained, allowing reversing of
model or inferences about algorithms.

We would expect each threat discussed above to be addressed
across the following DFD trust boundaries:

● Flawed data - between the data source, database, and
data engineering

● Model Extraction - between the external user and the
API, as well as the external provider and the model.

● Data Extraction - between the database and external user
via the ML model and API.

An approach to threat enumeration that might follow
logically at this point would be to offer an addendum to
STRIDE that simply includes the above threats (detailed
justification for each point follows below), as seen in Table I.

TABLE I:
STRIDE PLUS ML-THREATSa IN ADDENDUM

DFD Element S T R I D E FD ME DE

Data Flows x x x

Data Stores x x x x

Processes x x x x x x x x x

External Entity x x x x

a S: Spoofing; T: Tampering; R: Repudiation; I: Information Disclosure; D: Denial of Service; E:
Elevation of Privilege; FD: Flawed Data; ME: Model Extraction; DE: Data Extraction

 However, this approach has two problems built into it: 1) it
has a great deal of redundancy, and 2) it continues to rely on
AML domain specific knowledge for threat enumeration. We
will show that using STRIDE to directly enumerate MLBS
threats, is adequate to express the same points. Thus, we will
use the above taxonomy to bridge the conceptual gaps between
STRIDE and AML threats. Table II shows how STRIDE will
be mapped to the AML threat taxonomy above.

Mapping Flawed Data (FD) to STRIDE

● Spoofing (External Entity) - In MLBSs, the threat of
spoofing is associated with those systems being used for
security, for example, if an ML model used for facial
recognition is compromised as a result of its inadequate
training data.

● Tampering (Data Store / Process) - While data poisoning
is malicious by definition and on its face an example of
tampering, data bias and small data size, are often
subjective and sometimes unrecognized problems. Yet,
if we are willing to consider that these latter issues also
violate the property of integrity, i.e. the data is
“modified” relative to its ideal state, it seems plausible
to the authors that mapping even these misuse cases to
tampering may be workable, even absent malicious
intent whether inherent in data or the process of data
engineering. While it might make sense to further
expand this concern to data flows, wherein data might
be tampered with in transit for the purposes of data
poisoning, we will resign these concerns to the
traditional domain.

● Repudiation (Process / External Entity) - Similarly with
the issue of spoofing, AML threats can make
repudiation difficult if the models are relied on for
example for identity authentication.

421

● Information Disclosure - Data engineering techniques
that fail to adequately address privacy may be the source
of information disclosures, particularly internally. These
may further propagate up to data being extracted from
the model. However, the issues related to information
disclosure from data itself are already addressed by
traditional threat modeling.

● Denial of Service (Data Store / Process) - Considered in
depth, any misclassification might lead to a denial of
service, for example if someone should have been
approved for something but was denied based on data
bias.

● Elevation of Privilege (Process) - Particularly in a
security related system, elevation of privilege may occur
as a result of an information disclosure or authentication
failure. It is also possible that data poisoning could
compromise the entire model.

Mapping Model Extraction (ME) to STRIDE

● Spoofing (Process / External Entity) - Spoofing attacks
may lead to the extraction of data necessary for these
attacks, for example faking credentials to get the output
of an ML model through its API, however this is an issue
already being covered by traditional concerns. More
importantly, successful model extraction may ultimately
lead to further spoofing attacks in security related
MLBS.

● Tampering (Process) - Possibly the most interesting
category to consider in model extraction in a sense
similar to the one described under flawed data.
Frequently, the ultimate goal of model extraction attacks
is the ability to predict the output of a model such that
an input can be crafted to obtain it. Yet, the input itself
is not being tampered with per se and nor is the model.
Thus, we consider this as tampering with the ideal
output of the model, i.e. an evasion attack.

● Repudiation (Process) - It is again conceivable that in a
security related MLBS this might be a concern, as
understanding the model may be the first step toward an
attack on the mechanism of authentication.

● Information Disclosure (Process) - The most
straightforward threat, information disclosure can
describe how the training data is obtained for the
attacker’s model.

● Denial of Service (Process) - While examples in the
literature are not widespread, it is conceivable that a
model input may if not properly handled result in a
denial of service attack. For example, unconstrained size
where input is expected to be a certain size.

● Elevation of Privilege (Process) - When trusted for
authentication, elevation of privilege is an obvious
analogy to model extraction. The potential for models to
be compromised to the point of being unusable in
addition to unhandled errors makes this category also
worth considering.

Mapping Data Extraction (DE) to STRIDE

● Spoofing - While this may be involved in executing the
attack, or a consequence if sensitive information is
extracted from such an attack, it is not necessary to
consider specifically under our definition of data
extraction.

● Tampering - Tampering as discussed under model
extraction may be involved in this attack but it is not its
object.

● Repudiation - We may consider repudiation again in the
traditional sense.

● Information Disclosure (Processes) - This is the ultimate
goal of a data extraction attack. The vulnerability that
makes the attack possible exists between the database
and the external user. Data engineering is only one
possible solution depending on the model being used.

● Denial of Service - There does not seem to exist any
literature suggesting this as a possible category under
these attacks.

● Elevation of Privilege - While it is possible for an
elevation of privilege attack to occur as a result of data
extraction where sensitive information used for
authentication is exposed, this is more accurately
addressed under information disclosure.

TABLE II:
MAPPING STRIDE TO ML-THREATSb

STRIDE-Threats\
ML-Threats

S T R I D E

Flawed Data EE DS/P P/EE DS/P P

Model Extraction P/EE P P P P P

Data Extraction P

b DF: Data Flow; DS: Data Store; P: Process; EE: External Entity

In Table 3, we show all threats relevant to MLBSs:
Traditional, Flawed Data, Model Extraction, and Data
Extraction under their STRIDE categorizations (Spoofing,
Tampering, Repudiation, Information Disclosure, Denial of
Service, and Elevation of Privilege). Thus, providing a unified
expression of all potential threats to an MLBS.

TABLE III
ML-THREATSc IN STRIDE

Element S T R I D E

Data Flows T T T

Data Stores FD T FD

Processes ME FD/ME FD/ME ME/DE FD/ME FD/ME

External
Entity

FD/ME FD

cFD: Flawed Data; ME: Model Extraction; DE: Data Extraction. T: Traditional Threats

422

B. HOW THE IMPACT OF AML THREATS COULD BE
RANKED?
After threats have been identified, which threat to address

first can be decided by using established threat ranking
techniques such as DREAD [25], CVSS [24], or a bug bar.
Ultimately, there is a high degree of subjectivity in the
consideration of severity and individuals or organizations may
consider rank them differently. As the field of AML is still
evolving, we propose using a bug bar as the ranking technique
and leave examining DREAD, CVSS or other ranking
techniques to future work. In bug bar, bugs are given a severity
based on a shared understanding of their impact. In this paper,
we will use directly the rankings from the Microsoft AI/ML
Bug Bar to rank AML threats to our system, which is available
online [22].

C. HOW AML THREAT MITIGATIONS COULD BE
IDENTIFIED
In traditional security engineering, attack libraries are

commonly used with threat modeling to increase a developer’s
knowledge of possible attacks and provide ways to address
them [18]. Attack libraries are constructed to track and organize
threats and are either self-developed or published by the
security community, i.e. Common Attack Pattern Enumeration
and Classification (CAPEC) [31]. CAPEC is a publicly
available community-developed list of common attack patterns
that provides a comprehensive dictionary and classification
taxonomy for threats and describes defenses or mitigations for
them, but it does not currently address AML related threats.

Microsoft has built a publicly available attack library
specifically for MLBS which describes how an adversary may
attack a vulnerable MLBS and provides techniques to tackle
these threats using available AML literature [20]. Critically,
however, this attack library requires specialized knowledge in
ML and does not lend itself to understanding by traditional
security requirements engineers. Although the available attack
libraries for MLBS still need improvement, in our case study
we found using Microsoft’s resources sufficient to identify
significant threats and mitigation techniques. We will only
include select details therefrom, as they are quite extensive, but
will refer back to their source for further reading when
appropriate.

III. EVALUATION AND RESULTS
Our approach in eliciting security requirements for MLBSs

is based on the sequential steps discussed in section II. To
implement our approach, we will first introduce a selected case
study, then demonstrate the method and explore some partial
results. Further exploration of its effectiveness will be
discussed in section IV.

A. Case Study
Currently, machine learning is being applied to two areas of

particular importance to the insurance industry, loss prediction
and fraud detection. Loss prediction seeks to predict the amount
an insurance company will lose on a given policy, e.g. if the
insured driver is a young male, they are statistically more likely
to incur a loss. Fraud detection typically tries to determine if a
specific claim is fraudulent, e.g. if a claim occurs within a
month of the policy being opened, this is a red flag for fraud

and indeed is highly correlated to real fraud. The latter is where
we will ground our case study.

Insurance companies often operate through brokers,
individuals or companies that may offer insurance policies from
multiple companies to potential clients, for a commission. At
times, these same brokers are responsible for filing claims with
the company and dispensing funds to customers. In fact,
depending on the arrangement a great deal of responsibility is
put on the broker for the successful operation of the insurance
industry [32]. Thus, it is conceivable that a broker might be
privy to enough data to infer models that the insurance company
is using, making it vulnerable to the following implementation
of a model inference attack. Such systems currently proliferate
the industry in uncounted variations and are potentially subject
to such attacks [33].

Consider a hypothetical fraud detection model that takes a
claim, submitted by a broker through a company’s API, and
provides the company with a likelihood of fraud on a scale from
0-9 inclusive. If the likelihood is less than 10%, the company
automatically approves the claim with no human being ever
looking at it. Otherwise, the company takes some days to
process or investigate the claim relative to the likelihood of
fraud. Then as soon as any investigations into the claim are
completed, the API responds immediately to the broker. Given
a moderately sophisticated actor, it is conceivable that they
would be able to deduce that a significant subset of claims were
being processed automatically, hereafter referred to as zero day
approvals.

The goal then of the attacker is to produce a scheme
whereby fraudulent claims could be crafted in such a way as to
garner a zero day approval, and to do this the attacker would
attempt to recreate the model from the output of its API. In this
context, a Model Inference Attack, if successful, would allow a
malicious broker to test possible permutations of claims against
their simulated model such that they could confidently submit
a fraudulent claim without a human being ever looking at it.
Thereby executing a successful Evasion Attack.

Our simulation will seek to emulate a modern insurance
company which has developed a machine learning model based
on their own internal data, that outputs a probability of fraud in
a given claim, and initiates an investigation process which takes
a proportionately related number of days to investigate said
claim. Inspired by a blog using the same data, to predict fraud
which can be found at [34]. It seems to take its data from a
GitHub repository the original source of which could not
immediately be found [35]. In an actual attack, the malicious
broker’s own database of API submissions and response times
would provide the data to train an inferred model with which
they could confidently launch an evasion attack, providing zero
day approvals to fraudulent claims.

1) Source Data and Engineered Data
The target of our original data was a binary value for fraud

detected. It contained columns such as: months as customer,
age, insured sex, insured education level, insured hobbies,
incident type, number of vehicles involved, property damage,
bodily injuries, witnesses, police report available, total claim
amount, injury claim, and property claim. While it had the
serious disadvantage of only having 1000 elements, due to a

423

lack of preferable alternatives, we moved forward with this
dataset, as it was possible to engineer into an acceptable
scheme.

In the case of logistic regression, fraud will be predicted in
any instance where the likelihood of fraud is greater than the
likelihood of not fraud. After creating a model to predict fraud
that had a mean accuracy of 80%, we took the output of the
probability of fraud for each element and parsed that into a
range from 0-9 inclusive. While this simulation does not
directly address whether or not payment was issued, these
values replaced the fraud reported column entirely under a new
column, days in processing nullsec, meaning the ground truth
for days processed, with no threat mitigation.

2) The Attack: Extracting the Model
Given the hypothetical situation as outlined above, we can

assume that any attacker would have a meager output sample
relative to the size of the training data. However, due to the
limitations of our dataset it was necessary not only to reuse the
same rows that were used to train the model but to use a
statistically significant subset of those, in our case 10%. We
also assumed for the sake of the black-box simulation that the
features that would be used for the actual model would not be
known to the attacker and therefore removed different columns
from consideration.

The object of this model, however, is not to distinguish
between varying levels of likelihood of a claim being
fraudulent, but to evade the detection of fraud. So, from this
subset of the data we further narrowed the data used in the
attacker’s model down to only those rows representing the zero
day approvals and the label 1 approvals, representing fraud
predicted somewhere between 10% and 19%. The idea being
that this would provide even greater precision to the attacker in
being able to determine whether or not the given entry would
trigger human handling at any level.

We then set up another logistic regression, as this is a
common approach to such problems, and trained it on our
binary scheme. To evaluate the effectiveness, we then tested
this model on a binary evaluation for every row in the original
data, with the result being a model that is 96% accurate. Of
course, it is logical to assume that this result is largely due to
the limitations of the data, but it is nonetheless representative
of what we might expect to find in this scenario.

Thus, with a small sample of output, and some basic
machine learning knowledge, the attacker is able to create a
model with which to test possible perturbations of claims such
that even if fraudulent they will garner a zero day approval.
Thereby successfully implementing a model inference attack,
and opening the door to successful evasion attacks.

B. Implementation
As described in subsection A of section III, the attack vector

in our simulation is entirely dependent on the output of the
insurance company’s API, the willingness or desire of the
insurance company to output the results of its fraud
investigations as soon as they are completed, and we assume
the system is otherwise secure. Therefore, we will illustrate our
method’s ability to identify the threat at this point in the system

and employ the mitigation strategy proposed in the Microsoft
Bug Bar. We will first need to model the system.

1) Identify AML threats to MLBSs using DFD and
STRIDE

In practice, our methodology calls for a collaboration of
teammates working on potentially complex systems and
identifying AML threats concurrently with traditional ones. For
demonstration purposes we will simplify this process and make
some assumptions to focus on the results as they concern AML
threats to our simulation specifically. While production level
systems will certainly require a case specific DFD we will use
the example presented in Fig. 1 with the exception that we
assume that both the model and data are internally created. We
therefore will ignore the data source, data acquisition, and
model source elements. Further, our ML model is not a security
component and we therefore will ignore threats to external
entities (as justified in Subsection A of Section II), as we are
concerning ourselves only with AML threats. We will also
ignore the possibility of biased data, as the limitations our
training data prohibits this possibility.

As in subsection A of section II under DFD, we consider the
trust boundaries associated with our data flows, data stores,
processes, and external entities. We extract their AML threats
from the STRIDE classifications in Table III based on element
type, consider the relevant threats based on our own
architecture (in bold), and reference the attacks we categorized
from the Microsoft Bug Bar in subsection B of section II. The
identified threats for the fraud detection system are shown in
table IV.

TABLE IV:
IDENTIFIED ML-THREATSd FOR THE FRAUD DETECTION SYSTEM.

Threat
ID

Threate Element S T R I D E

T1 Data
Poisoning

Database FD FD

T2 Data
Poisoning

Data Eng. ME FD/
ME

FD/
ME

ME/
DE

FD/
ME

FD/
ME

T3 Membershi
p Inference

Data Eng. ME FD/
ME

FD/
ME

ME/
DE

FD/
ME

FD/
ME

T4 Adversarial
Perturbation

API

ME FD/
ME

FD/
ME

ME/
DE

FD/
ME

FD/
ME

T5 Model
Stealing

API ME FD/
ME

FD/
ME

ME/
DE

FD/
ME

FD/
ME

T6 Membership
Inference

API

ME FD/
ME

FD/
ME

ME/
DE

FD/
ME

FD/
ME

dFD: Flawed Data; ME: Model Extraction; DE: Data Extraction, eSee Microsoft Bug Bar [26]

2) Rank MLBS threat impacts using Microsoft AI/ML

Bug Bar threats ranking approach.
From here, we will focus on threats to the API to limit the

scope of our discussion. We can ignore membership inference

424

attacks because our training data contains no sensitive
information. After parsing Adversarial Perturbation into its
specific threats: Targeted Misclassification, Source/Target
Misclassification, Random Misclassification, and Confidence
Reduction, we refer to the severity of these threats as provided
by the Microsoft Bug Bar, shown in Table V.

TABLE V:

LIST OF THREATS AND THEIR MICROSOFT AI/ML BUG BAR
SEVERITY VALUE.

Threat ID Threate Severityf

T4A Targeted Misclassification Critical

T4B Source/Target Misclassification Critical

T4C Random Misclassification Important

T4D Confidence Reduction Important

T5 Model Stealing Important

fSee Microsoft Bug Bar [26]

3) Elicit MLBS threats mitigations using Microsoft AML
Attack Library.

We further narrow our focus to “targeted misclassification”
and “model stealing” which we rank as critical and important
respectively. It is important to note here specifically that in our
attack we are in effect stealing the model through our Model
Inference Attack to inform our targeted misclassification i.e.
our Evasion Attack, and therefore we will only require a
mitigation of the latter to succeed in the former. Because we are
working in the absence of sufficiently accessible attack
libraries, which according to our method should list these
attacks under Elevation of Privilege, we will work from the
AML threat classification to our threat enumeration, where
otherwise we could approach from the direction of its STRIDE
classification. We reference the mitigation from the Microsoft
Bug Bar listed under SR3 in Table VI, an appropriate
corroboration of the threat of information disclosure [22].

TABLE VI:
LIST OF ELICITED SECURITY REQUIREMENTS FOR EVERY THREAT.

Threat
ID

Security
Requirements ID

MLBS Security Requirementsg

T4A SR1 Highly Confident Near Neighbor (HCNN), a
framework that combines confidence
information and nearest neighbor search, to
reinforce adversarial robustness of a base
model.

T4A SR2 Adversarial inputs are not robust in attribution
space. Masking a few features with high
attribution leads to change indecision of the
machine learning model on the adversarial
examples whereas natural inputs are robust in
attribution space.

T5 SR3 Minimize or obfuscate the details returned in
prediction APIs while still maintaining their
usefulness to “honest” applications.

 gSee Microsoft Bug Bar [26]

For our mitigation we will employ SR3 through an API
Hardening technique wherein the true output of the model is
obfuscated to prevent the attacker from recreating it. In our case
it is useful to consider the length of the investigations. The

inclination of the company is to provide the result of an
investigation as soon as it is completed. As such, the API’s
response time corresponds proportionally with the confidence
of the model that fraud is taking place.

In our implementation we considered targets representing
increments of 10% confidence. We can hypothesize therefore
that if this system were changed to represent every 5% interval
of confidence, i.e. a scale of 0 to 19, the ability to infer the
model would be even greater on the part of the attacker.
Intuitively, the opposite is also true. Clustering intervals of
confidence in groups of maximum 50% likelihood (exclusive)
of fraud, and minimum 50% likelihood of fraud, would provide
the least confidence on the part of the attacker (that is still
testable). This is the basis for the mitigation we will propose.

Given an API that groups the processing scales of 0-4 and
5-9 together, e.g. even a zero day approval would not be
processed, through the API, until a delay equal to that of a
minimum 40% likelihood, nor a five on the scale approved prior
to a delay equal to that of a minimum 90% likelihood, the ability
of the attacker to infer the model would logically be crippled,
and we can confirm this result in our simulation.

To simulate the attack on the hardened API we will again
train our data on the subset of 100 elements. However, this time
we will not further parse our training data as we now have a
clustered classification system, one label representing the 0-4
scale approvals which will all be released after the same delay,
and another representing the 5-9 scale approvals which will all
be released after the same delay. Note that we also cannot
further reduce our training set as before as we have no way of
evaluating the distinction between the model’s zero day
approvals and minimum 10% likelihood processing times.

When we calculate the effectiveness of this model in
guessing the zero day approvals based only on this binary
approach we see that it is only 40% accurate in doing so, and
even more considerable, when we attempt to filter out only the
top 10% most likely zero day approvals using this approach, we
find an average success rate of 12%. Thus, granting the
limitations of the simulation, demonstrating a complete
mitigation of this attack vector.

Of course, the benefit of being able to control the situation
entirely through the fact of its being a simulation leaves much
to be desired in terms of applicability. Unfortunately, while this
mitigation is demonstrably effective, in practice it may not be
feasible for practical business reasons or otherwise.
Nonetheless, in evaluating the concept of API Hardening it is a
useful example for how consideration for the information
disclosure potential of maximizing the utility of the API might
have adverse consequences for the security of the system.

IV. CONCLUSION AND FUTURE WORK
As MLBSs proliferate and evolve the consequences of

ignoring threats against them will become increasingly severe.
In this paper, we addressed two areas of concern on this subject
1) the lack of a well established systematic approach to eliciting
security requirements for MLBS and 2) the inaccessibility of
the available literature to traditional security requirements
engineers. The complex nature of developing security
requirements for MLBSs was revealed and one possible

425

technique for developing security requirements for MLBSs was
articulated, evaluated, and discussed.

The proposed method was illustrated using a single case
study, the efficacy of which needs to be further evaluated. To
this end, further work would not only test further different more
complex case studies, but field-test the proposed method to see
how well the techniques provide coverage in threat models of
real-world systems. We also plan to assess the usability of our
method by introducing it to students in one or more of the
following courses: machine learning, big data programming,
software engineering, or software security engineering at the
undergraduate and graduate levels in our organization.

We adapted the Microsoft Attack Library and Bug Bar in
this research, other attack libraries or self-developed ones,
however, could also be used to widen the coverage of threats.
We ultimately plan to develop our attack library using AML
literature and to experiment with applying CVSS or DREAD to
assess the severity of the MLBS threats more objectively. The
method discussed in this research is mostly a manual process,
but designing and implementing a tool that automates part of
the process to make it easier for data scientists and security
engineers to apply the proposed method in their MLBS
development we believe would be a more practical solution
worth working towards.

REFERENCES
[1] L. Huang, A. D. Joseph, B. Nelson, B. I. P. Rubinstein, and J. D.

Tygar, “Adversarial machine learning,” Proceedings of the 4th
ACM workshop on Security and artificial intelligence - AISec
’11. 2011.

[2] F. Tramèr, F. Zhang, A. Juels, M. K. Reiter, and A. T.
Ristenpart, “Stealing machine learning models via prediction
apis,” presented at the In 25th Security Symposium ({USENIX}
Security 16), Austin, TX, 2016, pp. 601–618.

[3] I. Goodfellow, P. McDaniel, and N. Papernot, “Making machine
learning robust against adversarial inputs,” Communications of
the ACM, vol. 61, no. 7. pp. 56–66, 2018.

[4] N. Papernot, P. McDaniel, A. Sinha, and M. P. Wellman, “SoK:
Security and Privacy in Machine Learning,” 2018 IEEE European
Symposium on Security and Privacy (EuroS&P). 2018.

[5] F. Khalid, M. A. Hanif, S. Rehman, and M. Shafique, “Security for
Machine Learning-Based Systems: Attacks and Challenges During
Training and Inference,” 2018 International Conference on Frontiers
of Information Technology (FIT). 2018.

[6] Q. Liu, P. Li, W. Zhao, W. Cai, S. Yu, and V. C. M. Leung, “A Survey
on Security Threats and Defensive Techniques of Machine Learning:
A Data Driven View,” IEEE Access, vol. 6. pp. 12103–12117, 2018.

[7] E. Tabassi, K. J. Burns, M. Hadjimichael, A. D. Molina-Markham,
and J. T. Sexton, “A taxonomy and terminology of adversarial
machine learning.” 2019.

[8] M. Ozdag, “Adversarial Attacks and Defenses Against Deep Neural
Networks: A Survey,” Procedia Computer Science, vol. 140. pp. 152–
161, 2018.

[9] K. Patel, J. Fogarty, J. A. Landay, and B. Harrison, “Investigating
statistical machine learning as a tool for software development,”
Proceeding of the twenty-sixth annual CHI conference on Human
factors in computing systems - CHI ’08. 2008.

[10] S. Amershi et al., “Software Engineering for Machine Learning:
A Case Study,” 2019 IEEE/ACM 41st International Conference
on Software Engineering: Software Engineering in Practice
(ICSE-SEIP). 2019.

[11] F. Ishikawa and N. Yoshioka, “How Do Engineers Perceive
Difficulties in Engineering of Machine-Learning Systems? -
Questionnaire Survey,” 2019 IEEE/ACM Joint 7th International
Workshop on Conducting Empirical Studies in Industry (CESI) and
6th International Workshop on Software Engineering Research and
Industrial Practice (SER&IP). 2019.

[12] Z. Wan, X. Xia, D. Lo, and G. C. Murphy, “How does Machine
Learning Change Software Development Practices?,” IEEE
Transactions on Software Engineering. pp. 1–1, 2019.

[13] C. E. Otero and A. Peter, “Research Directions for Engineering
Big Data Analytics Software,” IEEE Intelligent Systems, vol. 30,
no. 1. pp. 13–19, 2015.

[14] N. H. Madhavji, A. Miranskyy, and K. Kontogiannis, “Big
Picture of Big Data Software Engineering: With Example
Research Challenges,” 2015 IEEE/ACM 1st International
Workshop on Big Data Software Engineering. 2015.

[15] J. Horkoff, “Non-Functional Requirements for Machine
Learning: Challenges and New Directions,” 2019 IEEE 27th
International Requirements Engineering Conference (RE). 2019.

[16] V. Andreas and M. Borg, “Requirements Engineering for
Machine Learning: Perspectives from Data Scientists,” 13-Aug-
2019.

[17] Y. Liu, L. Ma, and J. Zhao, “Secure Deep Learning Engineering:
A Road Towards Quality Assurance of Intelligent Systems,”
Formal Methods and Software Engineering. pp. 3–15, 2019.

[18] A. Shostack, Threat Modeling: Designing for Security. John
Wiley & Sons, 2014.

[19] F. Swiderski and W. Snyder, Threat Modeling. Microsoft Press.,
2004.

[20] N. Shevchenko, T. A. Chick, P. O’Riordan, T. P. Scanlon, and C.
Woody, “THREAT MODELING: A SUMMARY OF
AVAILABLE METHODS,” SOFTWARE ENGINEERING
INSTITUTE | CARNEGIE MELLON UNIVERSITY, Jul. 2018.

[21] N. Dunn, “Building safer machine learning systems – A Threat
Model.” 28-Aug-2018.

[22] A. Marshall, J. Parikh, E. Kiciman, and And Ram Shankar, “Threat
Modeling AI/ML Systems and Dependencies,” Security
documentation, 10-Nov-2019. [Online]. Available:
https://docs.microsoft.com/en-us/security/threat-modeling-
aiml#aiml-specific-threats-and-their-mitigations. [Accessed: 17-
Dec-2019].

[23] A. Chakraborty, M. Alam, V. Dey, A. Chattopadhyay, and D.
Mukhopadhyay, “Adversarial Attacks and Defences: A Survey,”
Sep-2018.

[24] P. Mell, K. Scarfone, and S. Romanosky, “The common vulnerability
scoring system (CVSS) and its applicability to federal agency
systems.” 2007.

[25] M. Howard and D. LeBlanc, Writing Secure Code. Pearson
Education, 2003.

[26] “SDL Security Bug Bar (Sample),” Docs, Security, Security
Development Lifecycle, 02-Dec-2018. [Online]. Available:
https://docs.microsoft.com/en-us/security/sdl/security-bug-bar-
sample#Definition_of_Terms]. [Accessed: 17-Dec-2019].

[27] M. N. A. Mohammad, M. Nazir, and K. Mustafa, “A Systematic
Review and Analytical Evaluation of Security Requirements
Engineering Approaches,” Arabian Journal for Science and
Engineering, vol. 44, no. 11. pp. 8963–8987, 2019.

[28] M. N. Johnstone, “Modelling misuse cases as a means of
capturing security requirements,” presented at the In 9th
Australian Information Security Management Conference, 2011,
p. 140.

[29] M. T. J. Ansari, D. Pandey, and M. Alenezi, “STORE: Security
Threat Oriented Requirements Engineering Methodology,” Journal
of King Saud University - Computer and Information Sciences. 2018.

[30] X. Yuan, E. B. Nuakoh, I. Williams, and H. Yu, “Developing Abuse
Cases Based on Threat Modeling and Attack Patterns,” Journal of
Software, vol. 10, no. 4. pp. 491–498, 2015.

[31] “CAPEC: Common Attack Pattern Enumeration and Classification,”
2007-2019. [Online]. Available: retrieved from
http://capec.mitre.org/. [Accessed: 17-Dec-2019].

[32] B. Downs, “What Does An Insurance Broker Do? - Business Benefits
Group,” Business Benefits Group, 07-Nov-2016. [Online]. Available:
https://www.bbgbroker.com/what-does-an-insurance-broker-do/.
[Accessed: 21-Dec-2019].

[33] “Using data analytics, AI technology to curb benefits fraud.”
[Online]. Available: https://www.benefitscanada.com/news/using-
data-analytics-ai-technology-to-curb-benefits-fraud-120628.
[Accessed: 21-Dec-2019].

[34] A. Dommalapati, “Using a Data Pipeline to Predict Insurance
Claim Fraud,” Medium, 05-Jun-2019. [Online]. Available:
https://blog.usejournal.com/using-a-data-pipeline-to-predict-
insurance-claim-fraud-6f8e85367294. [Accessed: 21-Dec-2019].

[35] “jodb - Overview,” GitHub. [Online]. Available:
https://github.com/jodb. [Accessed: 21-Dec-2011

426

