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Abstract— Machine learning (ML) models are now a key 
component for many applications. However, machine 
learning based systems (MLBSs), those systems that 
incorporate them, have proven vulnerable to various new 
attacks as a result. Currently, there exists no systematic 
process for eliciting security requirements for MLBSs that 
incorporates the identification of adversarial machine 
learning (AML) threats with those of a traditional non-
MLBS. In this research study, we explore the applicability 
of traditional threat modeling and existing attack libraries 
in addressing MLBS security in the requirements phase. 
Using an example MLBS, we examined the applicability of 
1) DFD and STRIDE in enumerating AML threats; 2) 
Microsoft SDL AI/ML Bug Bar in ranking the impact of the 
identified threats; and 3) the Microsoft AML attack library 
in eliciting threat mitigations to MLBSs. Such a method has 
the potential to assist team members, even with only domain 
specific knowledge, to collaboratively mitigate MLBS 
threats.    

Keywords— Adversarial Machine Learning, Security Requirements 
Engineering, Requirements Elicitation Using Threat Modeling, STRIDE, 
Attack Libraries, Model Inference and Perturbation and Evasion Attacks. 

I. INTRODUCTION 
ML models are now a key component for many 

applications. For example, in the field of medical diagnostics, 
MLBSs rely on advancements in deep learning for image 
processing. These systems, however, while vulnerable to the 
same threats that plague systems without ML components (we 
will refer to these as traditional systems and threats) have 
additionally been shown to be vulnerable to various types of 
AML threats (ex. poisoning attacks, model extraction attacks, 
and evasion attacks) that also have the potential for severe 
consequences [1], [2]. AML research studies the vulnerability 
of ML to the designs of a malicious actor [1]. A number of 
studies have investigated MLBSs’ security, identified attacks 
and defenses, and proposed taxonomies for classification of 
these [1, 3, 4, 2, 5, 6, 7, 8]. Yet, AML researchers typically 
address their security concerns with a narrow focus on ML 
models, while a holistic paradigm to address both the AML 
threats and traditional security concerns of an MLBS 
concurrently remains almost wholly unexplored. 

Recently, research studies [9], [10], [11] [12], [13], and [14] 
have investigated the applicability of traditional software 
engineering techniques to MLBSs and identified some 
challenges. Further studies have focused on investigating the 

importance and unique challenges of applying requirements 
engineering to MLBSs [15], [16]. A recent study [17] has also 
attempted to integrate security into an MLBS development life 
cycle (requirements analysis, design, implementation, testing, 
deployment, and maintenance) using a systematic application 
of knowledge, methodology, ML expertise, software 
engineering, and security. However, there exists no systematic 
process for eliciting security requirements for MLBSs that 
incorporates the identification of adversarial machine learning 
(AML) threats with those of a traditional non-MLBS.  

In this research study, we explore the applicability of 
traditional threat modeling and existing attack libraries in 
addressing MLBS security early in system development 
particularly at the requirements phase. Our main objectives in 
this research are to 1) demonstrate the potential for identifying 
AML threats in MLBSs using data flow diagrams (DFDs) and 
STRIDE; 2) Rank the impact of MLBS threats using Microsoft 
AI/ML bug bar ranking method; and 3) Elicit AML threat 
mitigations using Microsoft AML attack library. 

To identify threats related to MLBSs, the system under 
study needs to first be modeled. There exist several strategies 
to accomplish this including brainstorming, asset modeling, 
attacker modeling, and software modeling [18]. Of these, 
software modeling is the most focused on the software, which 
developers are expected to understand [18]. This contrasts with 
the others in not specifically requiring an understanding of the 
business, its assets, or the potential attackers which might 
otherwise require additional training. Several diagram schemes 
are available to model software. DFDs are among the most used 
in threat modeling due to their simplicity because they are 
considered lightweight and do not require any idiomatic 
knowledge of software engineering [18]. We will explore using 
DFDs to model an MLBS. Once the DFD model for the MLBS 
has been identified, we will focus on finding threats that are 
conceptually unique to MLBSs and explore the possible 
application of STRIDE.   

STRIDE is a classification methodology for potential 
threats based on the threat categories of Spoofing, Tampering, 
Repudiation, Information Disclosure, Denial of Service, and 
Elevation of Privilege [19]. STRIDE is among the most used 
approaches in threat modeling due to its maturity [20]. 
However, mapping STRIDE to MLBS threats is not entirely 
straightforward as AML threats are categorically different from 
their traditional security engineering counterparts. To 
overcome this challenge, we first propose exploring the AML 
literature [21], [22], and [23], to develop a taxonomy to 
categorize potential AML threats to a MLBS. We will then map 
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AML threats, at their highest level of abstraction, to the DFD 
and then to STRIDE, to bridge the conceptual gaps between 
STRIDE and AML threats. After that, we will explore using 
STRIDE on an example application to find the relevant AML 
threats to an MLBS. It is our expectation that this mapping will 
provide teams, possibly those composed of security engineers 
and data scientists without large overlaps in expertise, a shared 
understanding of the threats, and also how they might be 
mitigated. More details about our method can be found in 
section II. 

Threat ranking techniques are used to prioritize which 
threats need to be mitigated first, if at all. There currently exist 
a number of threat ranking techniques among them the 
Common Vulnerability Scoring System (CVSS) [24], DREAD 
[25], and Bug Bars [18]. However, because the bug bar 
specifically is a very lightweight technique that is accessible to 
someone without domain specific knowledge, we will explore 
this option for our ranking technique. We will specifically 
investigate using Microsoft Bug Bar to rank AML threats 
related to MLBSs [22]. It ranks AML threat severity on a scale 
between critical, important, moderate, and low [26]. 

Attack Libraries are commonly used with threat modeling 
to identify specific threats and their mitigations in traditional 
security engineering [18]. They are constructed to track and 
organize threats. They have been found to increase developers’ 
knowledge of the ways attackers work and especially those 
without expertise in cybersecurity [27], [28], [29], [30]. They 
can be either organization specific or use the ones published by 
the security community such as Common Attack Pattern 
Enumeration and Classification (CAPEC) [31]. CAPEC is a 
publicly available community-developed list of common attack 
patterns that provides comprehensive schema, classification 
taxonomy, and threat defenses or mitigations. As of the time 
this paper was written, CAPEC does not provide AML threat 
related attacks. However, we have found that Microsoft has 
built a publicly available attack library specifically for MLBS 
using AML literature [22]. This library describes how an 
adversary can attack a vulnerable MLBS and provides 
techniques to mitigate those threats. 

The rest of the paper is organized as follows. Section II 
describes the proposed method based on threat modeling and 
attack libraries. Section III illustrates the proposed method with 
a case study. Section IV presents comments along with the 
issues that need further research. 

II. PROPOSED METHOD  
Our effort attempts to apply preexisting techniques in the 

field of software security engineering to elicit security 
requirements for MLBSs. We are particularly interested in 
exploring traditional threat modeling and existing attack 
libraries to elicit security requirements for AML threats in 
MLBSs. Threats and attack libraries help identify security 
requirements (a threat that is impossible to mitigate implies 
non- requirements) [18]. To provide an understanding of the 
security requirements elicitation for MLBSs, we provide an 
overview of a possible approach based on DFD and STRIDE, 
Microsoft AI/ML Bug Bar’s threat ranking approach, and 
Microsoft’s AML attack library. The overall view of our 
method is summarized in the following steps: 

● Identify threats related to MLBSs using DFDs and 
STRIDE: 
o Develop a software model (an architectural model) 

for MLBSs using a DFD 
o Develop an AML threat taxonomy based on 

existing literature 
o Map the AML threat taxonomy to the DFD 
o Bridge the conceptual gaps between AML threats 

and STRIDE 
o Use STRIDE to identify AML threats related to 

MLBSs 
● Rank AML threat impacts using Microsoft AI/ML Bug 

Bar’s threat ranking approach. 
● Elicit AML threat mitigations using Microsoft AI/ML 

attack library.  
In the following subsections, we will illustrate our 

approach. 

A. HOW THREATS RELATED TO MLBSs COULD BE 
IDENTIFIED USING DFDs and STRIDE? 

The most important step in eliciting security requirements is the 
identification of potential threats. This could be accomplished 
using many strategies, for example, brainstorming, asset 
modeling, attacker modeling, or software modeling [18]. Of 
these, however, software modeling is the most focused on the 
software itself, which developers understand better than the 
business and its assets or the motivation and ability of possible 
attackers [18]. It describes how an adversary can attack a 
vulnerable MLBS and provides techniques to mitigate those 

threats. There are some diagram schemes used to better 
understand the software and its potential threats including 
DFDs and UML 

1) DFD: DFDs are among the most used in threat 
modeling due to their simplicity [18]. They are lightweight and 
do not require any idiomatic knowledge of software 
engineering. In contrast to UML diagrams, which require 
experience in object oriented programming, we expect DFDs to 
make modeling MLBSs readily understood even by a pure data 
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scientist. To identify potential threats related to MLBSs, we 
will use a DFD to illustrate a possible architecture and should 
not expect any issues stemming from a lack of domain specific 
knowledge here. Fig. 1 shows an example. 

2) STRIDE: Once a DFD model for MLBS has been 
identified, we will need a way to identify the threats implicit in 
it. STRIDE an acronym that stands for Spoofing, Tampering, 
Repudiation, Information Disclosure, Denial of Service, and 
Elevation of Privilege [19] [20]. This framework and 
mnemonic were designed to help software developers identify 
the types of attacks that traditional software tends to experience.  

Here, we recognize that the specific threats articulated in the 
current literature on AML often do not immediately lend 
themselves to STRIDE or indeed to any traditional security 
requirements engineering techniques. Some have argued that 
this is because MLBSs are categorically different from their 
traditional counterparts [17]. MLBSs may, for example, contain 
sensitive information that if extracted could be used to execute 
other attacks and they are increasingly being used to implement 
security features e.g. facial recognition for biometric 
authentication. It is our conjecture that the complexity and 
specificity of the literature is the primary source of the idea that 
such an attempt is not likely to succeed. 

With this in mind, we will begin by offering the following 
threat taxonomy based on the contributions of [21], [22], and 
[23], in order to abstract a schema for the categorization of 
AML threats, from which the applicability of traditional 
methods might be more clearly drawn. To this end, we 
generalize ML models into three components common to all 
functions: input, processing, and output. Respectively the AML 
threats can be classified based on their vector of attack, as 
follows: 

● Flawed Data – A situation where bad data as a starting 
point, or deliberate provision of false data by a hostile 
party, results in one or more of the following: 

o Biased data or small sample size. 

o Incorrect, corrupted, or poisoned data. 

● Model Extraction – Reverse-engineering the model 
from the system’s behavior or outputs: 

o Through normal observation or access to a 
significant sample of sympathetic data through 
normal channels. 

o Through deliberately feeding specially tailored 
data to the model i.e. perturbation attack, without 
meaningful controls. 

● Data Extraction – Threat actor obtains the training data 
used for the model from manipulating the system’s 
behavior or inputs: 

o Sensitive data or personal data leaked. 

o Training data obtained, allowing reversing of 
model or inferences about algorithms. 

We would expect each threat discussed above to be addressed 
across the following DFD trust boundaries: 

● Flawed data - between the data source, database, and 
data engineering 

● Model Extraction - between the external user and the 
API, as well as the external provider and the model. 

● Data Extraction - between the database and external user 
via the ML model and API.  

An approach to threat enumeration that might follow 
logically at this point would be to offer an addendum to 
STRIDE that simply includes the above threats (detailed 
justification for each point follows below), as seen in Table I. 

TABLE I:  
STRIDE PLUS ML-THREATSa IN ADDENDUM 

DFD Element S T R I D E FD ME DE 

Data Flows  x  x x     

Data Stores  x  x x  x   

Processes x x x x x x x x x 

External Entity x  x    x x  

a S: Spoofing; T: Tampering; R: Repudiation; I: Information Disclosure; D: Denial of Service; E: 
Elevation of Privilege; FD: Flawed Data; ME: Model Extraction; DE: Data Extraction 
 

 However, this approach has two problems built into it: 1) it 
has a great deal of redundancy, and 2) it continues to rely on 
AML domain specific knowledge for threat enumeration. We 
will show that using STRIDE to directly enumerate MLBS 
threats, is adequate to express the same points. Thus, we will 
use the above taxonomy to bridge the conceptual gaps between 
STRIDE and AML threats. Table II shows how STRIDE will 
be mapped to the AML threat taxonomy above. 

Mapping Flawed Data (FD) to STRIDE 

● Spoofing (External Entity) - In MLBSs, the threat of 
spoofing is associated with those systems being used for 
security, for example, if an ML model used for facial 
recognition is compromised as a result of its inadequate 
training data. 

● Tampering (Data Store / Process) - While data poisoning 
is malicious by definition and on its face an example of 
tampering, data bias and small data size, are often 
subjective and sometimes unrecognized problems. Yet, 
if we are willing to consider that these latter issues also 
violate the property of integrity, i.e. the data is 
“modified” relative to its ideal state, it seems plausible 
to the authors that mapping even these misuse cases to 
tampering may be workable, even absent malicious 
intent whether inherent in data or the process of data 
engineering. While it might make sense to further 
expand this concern to data flows, wherein data might 
be tampered with in transit for the purposes of data 
poisoning, we will resign these concerns to the 
traditional domain. 

● Repudiation (Process / External Entity) - Similarly with 
the issue of spoofing, AML threats can make 
repudiation difficult if the models are relied on for 
example for identity authentication. 
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● Information Disclosure - Data engineering techniques 
that fail to adequately address privacy may be the source 
of information disclosures, particularly internally. These 
may further propagate up to data being extracted from 
the model. However, the issues related to information 
disclosure from data itself are already addressed by 
traditional threat modeling. 

● Denial of Service (Data Store / Process) - Considered in 
depth, any misclassification might lead to a denial of 
service, for example if someone should have been 
approved for something but was denied based on data 
bias. 

● Elevation of Privilege (Process) - Particularly in a 
security related system, elevation of privilege may occur 
as a result of an information disclosure or authentication 
failure. It is also possible that data poisoning could 
compromise the entire model. 

Mapping Model Extraction (ME) to STRIDE  

● Spoofing (Process / External Entity) - Spoofing attacks 
may lead to the extraction of data necessary for these 
attacks, for example faking credentials to get the output 
of an ML model through its API, however this is an issue 
already being covered by traditional concerns. More 
importantly, successful model extraction may ultimately 
lead to further spoofing attacks in security related 
MLBS. 

● Tampering (Process) - Possibly the most interesting 
category to consider in model extraction in a sense 
similar to the one described under flawed data. 
Frequently, the ultimate goal of model extraction attacks 
is the ability to predict the output of a model such that 
an input can be crafted to obtain it. Yet, the input itself 
is not being tampered with per se and nor is the model. 
Thus, we consider this as tampering with the ideal 
output of the model, i.e. an evasion attack. 

● Repudiation (Process) - It is again conceivable that in a 
security related MLBS this might be a concern, as 
understanding the model may be the first step toward an 
attack on the mechanism of authentication. 

● Information Disclosure (Process) - The most 
straightforward threat, information disclosure can 
describe how the training data is obtained for the 
attacker’s model. 

● Denial of Service (Process) - While examples in the 
literature are not widespread, it is conceivable that a 
model input may if not properly handled result in a 
denial of service attack. For example, unconstrained size 
where input is expected to be a certain size. 

● Elevation of Privilege (Process) - When trusted for 
authentication, elevation of privilege is an obvious 
analogy to model extraction. The potential for models to 
be compromised to the point of being unusable in 
addition to unhandled errors makes this category also 
worth considering. 

Mapping Data Extraction (DE) to STRIDE  

● Spoofing - While this may be involved in executing the 
attack, or a consequence if sensitive information is 
extracted from such an attack, it is not necessary to 
consider specifically under our definition of data 
extraction. 

● Tampering - Tampering as discussed under model 
extraction may be involved in this attack but it is not its 
object. 

● Repudiation - We may consider repudiation again in the 
traditional sense. 

● Information Disclosure (Processes) - This is the ultimate 
goal of a data extraction attack. The vulnerability that 
makes the attack possible exists between the database 
and the external user. Data engineering is only one 
possible solution depending on the model being used. 

● Denial of Service - There does not seem to exist any 
literature suggesting this as a possible category under 
these attacks. 

● Elevation of Privilege - While it is possible for an 
elevation of privilege attack to occur as a result of data 
extraction where sensitive information used for 
authentication is exposed, this is more accurately 
addressed under information disclosure. 

TABLE II:  
MAPPING STRIDE TO ML-THREATSb 

STRIDE-Threats\ 
ML-Threats 

S T R I D E 

Flawed Data EE DS/P P/EE  DS/P P 

Model Extraction P/EE P P P P P 

Data Extraction    P   

b DF: Data Flow; DS: Data Store; P: Process; EE: External Entity 
 

In Table 3, we show all threats relevant to MLBSs: 
Traditional, Flawed Data, Model Extraction, and Data 
Extraction under their STRIDE categorizations (Spoofing, 
Tampering, Repudiation, Information Disclosure, Denial of 
Service, and Elevation of Privilege). Thus, providing a unified 
expression of all potential threats to an MLBS.  

TABLE III 
ML-THREATSc IN STRIDE 

Element S T R I D E 

Data Flows  T  T T  

Data Stores  FD  T FD  

Processes ME FD/ME FD/ME ME/DE FD/ME FD/ME 

External 
Entity 

FD/ME  FD    

cFD: Flawed Data; ME: Model Extraction; DE: Data Extraction. T: Traditional Threats 
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B. HOW THE IMPACT OF AML THREATS COULD BE 
RANKED? 
After threats have been identified, which threat to address 

first can be decided by using established threat ranking 
techniques such as DREAD [25], CVSS [24], or a bug bar. 
Ultimately, there is a high degree of subjectivity in the 
consideration of severity and individuals or organizations may 
consider rank them differently. As the field of AML is still 
evolving, we propose using a bug bar as the ranking technique 
and leave examining DREAD, CVSS or other ranking 
techniques to future work. In bug bar, bugs are given a severity 
based on a shared understanding of their impact. In this paper, 
we will use directly the rankings from the Microsoft AI/ML 
Bug Bar to rank AML threats to our system, which is available 
online [22].       

C. HOW AML THREAT MITIGATIONS COULD BE 
IDENTIFIED 
In traditional security engineering, attack libraries are 

commonly used with threat modeling to increase a developer’s 
knowledge of possible attacks and provide ways to address 
them [18]. Attack libraries are constructed to track and organize 
threats and are either self-developed or published by the 
security community, i.e. Common Attack Pattern Enumeration 
and Classification (CAPEC) [31]. CAPEC is a publicly 
available community-developed list of common attack patterns 
that provides a comprehensive dictionary and classification 
taxonomy for threats and describes defenses or mitigations for 
them, but it does not currently address AML related threats.  

Microsoft has built a publicly available attack library 
specifically for MLBS which describes how an adversary may 
attack a vulnerable MLBS and provides techniques to tackle 
these threats using available AML literature [20]. Critically, 
however, this attack library requires specialized knowledge in 
ML and does not lend itself to understanding by traditional 
security requirements engineers. Although the available attack 
libraries for MLBS still need improvement, in our case study 
we found using Microsoft’s resources sufficient to identify 
significant threats and mitigation techniques. We will only 
include select details therefrom, as they are quite extensive, but 
will refer back to their source for further reading when 
appropriate. 

III. EVALUATION AND RESULTS 
Our approach in eliciting security requirements for MLBSs 

is based on the sequential steps discussed in section II. To 
implement our approach, we will first introduce a selected case 
study, then demonstrate the method and explore some partial 
results. Further exploration of its effectiveness will be 
discussed in section IV. 

A. Case Study  
Currently, machine learning is being applied to two areas of 

particular importance to the insurance industry, loss prediction 
and fraud detection. Loss prediction seeks to predict the amount 
an insurance company will lose on a given policy, e.g. if the 
insured driver is a young male, they are statistically more likely 
to incur a loss. Fraud detection typically tries to determine if a 
specific claim is fraudulent, e.g. if a claim occurs within a 
month of the policy being opened, this is a red flag for fraud 

and indeed is highly correlated to real fraud. The latter is where 
we will ground our case study. 

Insurance companies often operate through brokers, 
individuals or companies that may offer insurance policies from 
multiple companies to potential clients, for a commission. At 
times, these same brokers are responsible for filing claims with 
the company and dispensing funds to customers. In fact, 
depending on the arrangement a great deal of responsibility is 
put on the broker for the successful operation of the insurance 
industry [32]. Thus, it is conceivable that a broker might be 
privy to enough data to infer models that the insurance company 
is using, making it vulnerable to the following implementation 
of a model inference attack. Such systems currently proliferate 
the industry in uncounted variations and are potentially subject 
to such attacks [33]. 

Consider a hypothetical fraud detection model that takes a 
claim, submitted by a broker through a company’s API, and 
provides the company with a likelihood of fraud on a scale from 
0-9 inclusive. If the likelihood is less than 10%, the company 
automatically approves the claim with no human being ever 
looking at it. Otherwise, the company takes some days to 
process or investigate the claim relative to the likelihood of 
fraud. Then as soon as any investigations into the claim are 
completed, the API responds immediately to the broker. Given 
a moderately sophisticated actor, it is conceivable that they 
would be able to deduce that a significant subset of claims were 
being processed automatically, hereafter referred to as zero day 
approvals.  

The goal then of the attacker is to produce a scheme 
whereby fraudulent claims could be crafted in such a way as to 
garner a zero day approval, and to do this the attacker would 
attempt to recreate the model from the output of its API. In this 
context, a Model Inference Attack, if successful, would allow a 
malicious broker to test possible permutations of claims against 
their simulated model such that they could confidently submit 
a fraudulent claim without a human being ever looking at it. 
Thereby executing a successful Evasion Attack. 

Our simulation will seek to emulate a modern insurance 
company which has developed a machine learning model based 
on their own internal data, that outputs a probability of fraud in 
a given claim, and initiates an investigation process which takes 
a proportionately related number of days to investigate said 
claim. Inspired by a blog using the same data, to predict fraud 
which can be found at [34]. It seems to take its data from a 
GitHub repository the original source of which could not 
immediately be found [35]. In an actual attack, the malicious 
broker’s own database of API submissions and response times 
would provide the data to train an inferred model with which 
they could confidently launch an evasion attack, providing zero 
day approvals to fraudulent claims.  

1) Source Data and Engineered Data 
The target of our original data was a binary value for fraud 

detected. It contained columns such as: months as customer, 
age, insured sex, insured education level, insured hobbies, 
incident type, number of vehicles involved, property damage, 
bodily injuries, witnesses, police report available, total claim 
amount, injury claim, and property claim. While it had the 
serious disadvantage of only having 1000 elements, due to a 
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lack of preferable alternatives, we moved forward with this 
dataset, as it was possible to engineer into an acceptable 
scheme.  

In the case of logistic regression, fraud will be predicted in 
any instance where the likelihood of fraud is greater than the 
likelihood of not fraud. After creating a model to predict fraud 
that had a mean accuracy of 80%, we took the output of the 
probability of fraud for each element and parsed that into a 
range from 0-9 inclusive. While this simulation does not 
directly address whether or not payment was issued, these 
values replaced the fraud reported column entirely under a new 
column, days in processing nullsec, meaning the ground truth 
for days processed, with no threat mitigation. 

2) The Attack: Extracting the Model 
Given the hypothetical situation as outlined above, we can 

assume that any attacker would have a meager output sample 
relative to the size of the training data. However, due to the 
limitations of our dataset it was necessary not only to reuse the 
same rows that were used to train the model but to use a 
statistically significant subset of those, in our case 10%. We 
also assumed for the sake of the black-box simulation that the 
features that would be used for the actual model would not be 
known to the attacker and therefore removed different columns 
from consideration. 

The object of this model, however, is not to distinguish 
between varying levels of likelihood of a claim being 
fraudulent, but to evade the detection of fraud. So, from this 
subset of the data we further narrowed the data used in the 
attacker’s model down to only those rows representing the zero 
day approvals and the label 1 approvals, representing fraud 
predicted somewhere between 10% and 19%. The idea being 
that this would provide even greater precision to the attacker in 
being able to determine whether or not the given entry would 
trigger human handling at any level. 

We then set up another logistic regression, as this is a 
common approach to such problems, and trained it on our 
binary scheme. To evaluate the effectiveness, we then tested 
this model on a binary evaluation for every row in the original 
data, with the result being a model that is 96% accurate. Of 
course, it is logical to assume that this result is largely due to 
the limitations of the data, but it is nonetheless representative 
of what we might expect to find in this scenario. 

Thus, with a small sample of output, and some basic 
machine learning knowledge, the attacker is able to create a 
model with which to test possible perturbations of claims such 
that even if fraudulent they will garner a zero day approval. 
Thereby successfully implementing a model inference attack, 
and opening the door to successful evasion attacks. 

B. Implementation    
As described in subsection A of section III, the attack vector 

in our simulation is entirely dependent on the output of the 
insurance company’s API, the willingness or desire of the 
insurance company to output the results of its fraud 
investigations as soon as they are completed, and we assume 
the system is otherwise secure. Therefore, we will illustrate our 
method’s ability to identify the threat at this point in the system 

and employ the mitigation strategy proposed in the Microsoft 
Bug Bar. We will first need to model the system.   

1) Identify AML threats to MLBSs using DFD and 
STRIDE 

In practice, our methodology calls for a collaboration of 
teammates working on potentially complex systems and 
identifying AML threats concurrently with traditional ones. For 
demonstration purposes we will simplify this process and make 
some assumptions to focus on the results as they concern AML 
threats to our simulation specifically. While production level 
systems will certainly require a case specific DFD we will use 
the example presented in Fig. 1 with the exception that we 
assume that both the model and data are internally created. We 
therefore will ignore the data source, data acquisition, and 
model source elements. Further, our ML model is not a security 
component and we therefore will ignore threats to external 
entities (as justified in Subsection A of Section II), as we are 
concerning ourselves only with AML threats. We will also 
ignore the possibility of biased data, as the limitations our 
training data prohibits this possibility. 

As in subsection A of section II under DFD, we consider the 
trust boundaries associated with our data flows, data stores, 
processes, and external entities. We extract their AML threats 
from the STRIDE classifications in Table III based on element 
type, consider the relevant threats based on our own 
architecture (in bold), and reference the attacks we categorized 
from the Microsoft Bug Bar in subsection B of section II. The 
identified threats for the fraud detection system are shown in 
table IV.  

TABLE IV:  
IDENTIFIED ML-THREATSd FOR THE FRAUD DETECTION SYSTEM. 

Threat 
ID 

Threate Element S T R I D E 

T1 Data 
Poisoning 

Database  FD   FD  

T2 Data 
Poisoning 

Data Eng. ME FD/
ME 

FD/
ME 

ME/
DE 

FD/
ME 

FD/
ME 

T3 Membershi
p Inference  

Data Eng. ME FD/
ME 

FD/
ME 

ME/
DE 

FD/
ME 

FD/
ME 

T4 Adversarial 
Perturbation 

 
API 

ME FD/
ME 

FD/
ME 

ME/
DE 

FD/
ME 

FD/
ME 

T5 Model 
Stealing 

API ME FD/
ME 

FD/
ME 

ME/
DE 

FD/
ME 

FD/
ME 

T6 Membership 
Inference  

API 
 

ME FD/
ME 

FD/
ME 

ME/
DE 

FD/
ME 

FD/
ME 

dFD: Flawed Data; ME: Model Extraction; DE: Data Extraction, eSee Microsoft Bug Bar [26] 

 
2) Rank MLBS threat impacts using Microsoft AI/ML 

Bug Bar threats ranking approach.  
From here, we will focus on threats to the API to limit the 

scope of our discussion. We can ignore membership inference 
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attacks because our training data contains no sensitive 
information. After parsing Adversarial Perturbation into its 
specific threats: Targeted Misclassification, Source/Target 
Misclassification, Random Misclassification, and Confidence 
Reduction, we refer to the severity of these threats as provided 
by the Microsoft Bug Bar, shown in Table V.  

TABLE V:  

LIST OF THREATS AND THEIR MICROSOFT AI/ML BUG BAR 
SEVERITY VALUE. 

Threat ID Threate Severityf 

T4A Targeted Misclassification Critical 

T4B Source/Target Misclassification Critical 

T4C Random Misclassification Important 

T4D Confidence Reduction Important 

T5 Model Stealing Important 

fSee Microsoft Bug Bar [26] 

3) Elicit MLBS threats mitigations using Microsoft AML 
Attack Library. 

We further narrow our focus to “targeted misclassification” 
and “model stealing” which we rank as critical and important 
respectively. It is important to note here specifically that in our 
attack we are in effect stealing the model through our Model 
Inference Attack to inform our targeted misclassification i.e. 
our Evasion Attack, and therefore we will only require a 
mitigation of the latter to succeed in the former. Because we are 
working in the absence of sufficiently accessible attack 
libraries, which according to our method should list these 
attacks under Elevation of Privilege, we will work from the 
AML threat classification to our threat enumeration, where 
otherwise we could approach from the direction of its STRIDE 
classification. We reference the mitigation from the Microsoft 
Bug Bar listed under SR3 in Table VI, an appropriate 
corroboration of the threat of information disclosure [22]. 

TABLE VI:  
LIST OF ELICITED SECURITY REQUIREMENTS FOR EVERY THREAT. 

Threat  
ID 

Security 
Requirements ID 

MLBS Security Requirementsg 

T4A SR1 Highly Confident Near Neighbor (HCNN), a 
framework that combines confidence 
information and nearest neighbor search, to 
reinforce adversarial robustness of a base 
model. 

T4A SR2 Adversarial inputs are not robust in attribution 
space. Masking a few features with high 
attribution leads to change indecision of the 
machine learning model on the adversarial 
examples whereas natural inputs are robust in 
attribution space. 

T5 SR3 Minimize or obfuscate the details returned in 
prediction APIs while still maintaining their 
usefulness to “honest” applications. 

      gSee Microsoft Bug Bar [26] 

For our mitigation we will employ SR3 through an API 
Hardening technique wherein the true output of the model is 
obfuscated to prevent the attacker from recreating it. In our case 
it is useful to consider the length of the investigations. The 

inclination of the company is to provide the result of an 
investigation as soon as it is completed. As such, the API’s 
response time corresponds proportionally with the confidence 
of the model that fraud is taking place. 

In our implementation we considered targets representing 
increments of 10% confidence. We can hypothesize therefore 
that if this system were changed to represent every 5% interval 
of confidence, i.e. a scale of 0 to 19, the ability to infer the 
model would be even greater on the part of the attacker. 
Intuitively, the opposite is also true. Clustering intervals of 
confidence in groups of maximum 50% likelihood (exclusive) 
of fraud, and minimum 50% likelihood of fraud, would provide 
the least confidence on the part of the attacker (that is still 
testable). This is the basis for the mitigation we will propose. 

Given an API that groups the processing scales of 0-4 and 
5-9 together, e.g. even a zero day approval would not be 
processed, through the API, until a delay equal to that of a 
minimum 40% likelihood, nor a five on the scale approved prior 
to a delay equal to that of a minimum 90% likelihood, the ability 
of the attacker to infer the model would logically be crippled, 
and we can confirm this result in our simulation. 

To simulate the attack on the hardened API we will again 
train our data on the subset of 100 elements. However, this time 
we will not further parse our training data as we now have a 
clustered classification system, one label representing the 0-4 
scale approvals which will all be released after the same delay, 
and another representing the 5-9 scale approvals which will all 
be released after the same delay. Note that we also cannot 
further reduce our training set as before as we have no way of 
evaluating the distinction between the model’s zero day 
approvals and minimum 10% likelihood processing times. 

When we calculate the effectiveness of this model in 
guessing the zero day approvals based only on this binary 
approach we see that it is only 40% accurate in doing so, and 
even more considerable, when we attempt to filter out only the 
top 10% most likely zero day approvals using this approach, we 
find an average success rate of 12%. Thus, granting the 
limitations of the simulation, demonstrating a complete 
mitigation of this attack vector. 

Of course, the benefit of being able to control the situation 
entirely through the fact of its being a simulation leaves much 
to be desired in terms of applicability. Unfortunately, while this 
mitigation is demonstrably effective, in practice it may not be 
feasible for practical business reasons or otherwise. 
Nonetheless, in evaluating the concept of API Hardening it is a 
useful example for how consideration for the information 
disclosure potential of maximizing the utility of the API might 
have adverse consequences for the security of the system. 

IV. CONCLUSION AND FUTURE WORK 
As MLBSs proliferate and evolve the consequences of 

ignoring threats against them will become increasingly severe. 
In this paper, we addressed two areas of concern on this subject 
1) the lack of a well established systematic approach to eliciting 
security requirements for MLBS and 2) the inaccessibility of 
the available literature to traditional security requirements 
engineers. The complex nature of developing security 
requirements for MLBSs was revealed and one possible 
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technique for developing security requirements for MLBSs was 
articulated, evaluated, and discussed.  

The proposed method was illustrated using a single case 
study, the efficacy of which needs to be further evaluated. To 
this end, further work would not only test further different more 
complex case studies, but field-test the proposed method to see 
how well the techniques provide coverage in threat models of 
real-world systems. We also plan to assess the usability of our 
method by introducing it to students in one or more of the 
following courses: machine learning, big data programming, 
software engineering, or software security engineering at the 
undergraduate and graduate levels in our organization.  

We adapted the Microsoft Attack Library and Bug Bar in 
this research, other attack libraries or self-developed ones, 
however, could also be used to widen the coverage of threats. 
We ultimately plan to develop our attack library using AML 
literature and to experiment with applying CVSS or DREAD to 
assess the severity of the MLBS threats more objectively. The 
method discussed in this research is mostly a manual process, 
but designing and implementing a tool that automates part of 
the process to make it easier for data scientists and security 
engineers to apply the proposed method in their MLBS 
development we believe would be a more practical solution 
worth working towards. 
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