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Abstract—In recent years, robots have been widely used in
people’s daily lives. While bringing convenience to us, there
are also potential threats. To ensure the correctness of the
robot’s behavior, scientists have conducted extensive research
on generating security controllers for robots. In this paper, we
propose a method that divides the robot controllers into task
controller and security controller, this method greatly reduces
the time required for controller generation. We use the Robot
Operating System (ROS) as our experimental platform. Due
to the poor security of ROS, robots are vulnerable to cyber-
attacks. Therefore, we summarized several types of cyber-attacks
against ROS and generate security controllers for robots. Then
we simulate the generated controllers in Gazebo. Experimental
results show that our method can reduce the impact of cyber
attacks on robots and ensure the successful completion of the
task.

Index Terms—robot operating system, controller synthesis,
cyber attack, linear temporal logic

I. INTRODUCTION

Since the advent of the first robot in 1958, the research

of robot technology has developed rapidly. Robots are widely

used in human life, bringing a lot of convenience to people.

The robots are employed in industrial areas such as ware-

housing, logistics, and manufacturing, and they also employed

in non-industrial areas such as hospitals, farms, and home

services. At the same time, the widespread use of robots

has brought corresponding risks, especially in some critical

application areas. In May 2015, due to malware on the

robotic platform, the assembly robot behaved abnormally and

killed a worker in a car factory. U.S. military base in April

2016, a robot mortar gun killed nine soldiers during military

training because the malware in the system caused the robot

to malfunction [1].

Therefore, in the development of robotic technology, how

to protect robots from cyber attacks has become a key field

of research. Scientists have conducted extensive research on

the cybersecurity of robots. Martin et al. [2] presented a

survey of attack prediction methods used in cybersecurity.

They summarized some cases of prediction in cybersecurity

and categorized these methods by theoretical background. In

addition to predicting cyber attacks, scientists also studied

the automatic generation of security controllers for robots.

Hadas et al. [3] use Linear Temporal Logic (LTL) [4] as the

specification of robots to ensure their behavior.
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In our previous work, a framework was proposed to au-

tomatically generate correct-by-construction controllers for

multi-robot systems (MRS) [5]. And then these controllers

were integrated into ROS and control the robots to perform

certain tasks in Gazebo. This work makes it easier for users to

experiment with real robots. There are still many deficiencies

in this work: 1) For some complex task scenarios, there are

many states of the robot, so the synthesis of the controller takes

a long time and sometimes it even cannot be synthesized. 2)

ROS has no built-in security, therefore it’s an easy target for

cyber attackers.

In this paper, we introduced a method that can greatly

reduce the time required for controller synthesis. Then we

summarized the security problems in ROS, discussed two

types of security problems, and proposed corresponding pro-

tective measures for them respectively. In order to prove the

effectiveness of the proposed methods, we conducted two

experiments and simulated one of them in Gazebo.

The rest part of this paper is structured as follows: Section

II summarizes the theoretical basis of this paper; In section III,

we elaborate on the framework of controller synthesis for the

robot; Then we present two examples in section IV, which

briefly introduce the method we proposed can effectively

protect the robot; We conclude this paper in section V.

II. PRELIMINARIES

A. Linear Temporal Logic

Linear Temporal Logic (LTL) [4] is a modal temporal logic

which has been widely used to model the change of a reactive

system over time.

LTL Syntax. Let AP be a set of atomic propostions with

temporal logic X (next) and U (until), where p ∈ AP is a

Boolean variable. LTL formulas are defined according to the

follwing grammar:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | Xϕ | ϕ Uϕ

LTL Semantics. Semantics of an LTL formula ϕ are defined

on an infinite sequence π = π1π2 · · · of truth assignment to

the atomic propostions p ∈ AP , where π(i) denotes the i-th
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element of π and π(i) ∈ 2AP . The satisfaction relationship |=
between π, i and a LTL formula ϕ is defined as follows:

π, i |= p iff p ∈ π(i)

π, i |= ¬ϕ iff π, i � ϕ

π, i |= ϕ1 ∨ ϕ2 iff π, i |= ϕ1 or π, i |= ϕ2

π, i |= Xϕ iff π, i+ 1 |= ϕ

π, i |= ϕ1 Uϕ2 iff ∃k � i with π, k |= ϕ2 and

∀i � j < k with π, j |= ϕ1)

The formula Xϕ means that ϕ is true in the next position of

the sequence. ϕ1 Uϕ2 indicates that ϕ2 will be true somewhere

in the future, and ϕ1 must be maintained as true until ϕ2 is

true.

The sequence π satisfies formula ϕ if π, 0 |= ϕ. The

temporal operators of LTL G(always), F(eventually):

• Fϕ ≡ trueUϕ;

• Gϕ ≡ ¬F¬ϕ;

Where Gϕ with always and Fϕ with eventually express the

property that ϕ will always hold true in every position of the

sequence and ϕ will be true at some position of the sequence

in the future respectively. Further, GFϕ indicates that ϕ is true

infinitely often.

B. General Reactivity(GR(1))

LTL formulas are particularly suited to model the evolu-

tion of a reactive system where atomic propositions can be

divided into two parts: system input (environment) and output

(system). However, the realizability of LTL is 2-EXPTIME-

complete, which increases computational overhead.

To reduce the computational complexity into an acceptable

range, we consider a special class of temporal logic formulas

[6]. The GR(1) fragment of LTL specification consists of

environment assumptions and system guarantees. A GR(1)

synthesis problem is defined as a game between a system

player and an environment player. We expect the system

wins the game. In other words, we can always synthesize

controllers that generate behavior strategies satisfying given

specifications. A GR(1) game structure is organized as follows:

• X is the set of input variables controlled by environment,

X ′ is the value of X in the next state;

• Y is the set of output variables controlled by system, Y ′

is the value of Y in the next state;

• θe is an assertion over X characterizing the initial states

of the environment;

• θs characterizes an assertion over X ∪ Y characterizing

the initial states of the system;

• ρe characterizes transition relation of the environment

over X ∪ Y ∪ X ′;
• ρs characterizes transition relation of the system over X∪
Y ∪ X ′ ∪ Y ′;

• J e
i∈1..m is a set of justice requirements of the environ-

ment;

• J s
j∈1..n is a set of justice requirements of the system;

The acceptance condition is finally defined as:

(θe ∧ Gρe ∧ GFJ e)→ (θs ∧ Gρs ∧ GFJ s)

where Gρe and Gρs are safety conditions over the environment

and the system while GFJ e and GFJ s are liveness properties

over the environment and the system.

C. Robot Operating System (ROS)

ROS [7] is a framework for robotics research and develop-

ment. The core of ROS is communication mechanism. ROS is

a peer-to-peer network of nodes that communicate with each

other using custom ROS messages that are based on TCP/IP.

(1) Topic: For real-time and periodic messages, the topic is

the best choice. The node that subscribes to messages

from a topic is called the topic’s subscriber, while the

node that publishes messages to a topic is called the

topic’s publisher.

(2) Service: Service communication is two-way. It can send

messages and return feedback. The service consists of

two parts: the requester (Client) and the responder/service

provider (Server). The client sends a request, waits for

the server to process it and returns a reply. The entire

service communication is completed through a ”request-

response” mechanism.

(3) Actionlib: Actionlib is used to execute a long-term com-

munication process. The actionlib communication process

can be viewed at any time, and the request can be

terminated. Actionlib works in client-server mode and is

a two-way communication mode.

The ROS ecosystem includes some tools to analyze and

simulate robot behavior. Gazebo [8] is a three-dimensional

physics simulation platform with a powerful physics engine,

high-quality graphics rendering, convenient programming, and

graphical interfaces. Gazebo can add the physical properties

of the robot and the surrounding environment to the model,

such as mass, coefficient of friction, coefficient of elasticity,

etc. Therefore, we can simulate physical phenomena in the real

world and show them as much as possible in this simulation

environment.

III. CONTROLLER SYNTHESIS AND SEPARATION

Temporal Logic Synthesis Format (TLSF) [9] is a high-level

format for the specification of synthesis problems. Compared

with LTL, it is more readable. Therefore, users can easily write

and read expressive specifications. Another advantage of TLSF

is that it’s easy to support by synthesis tools. After writing

the specification, the Synthesis Format Conversion Tool
(SyFCo) can compile TLSF specifications into LTL specifica-

tions. Therefore we use TLSF as the specification of robots.

Then these specifications were synthesized into controllers by

a GR(1) game-based reactive synthesis algorithm in [6]. The

process of synthesis is shown in figure 1.
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Fig. 1: Controller generation

A. Controller Synthesis

To more intuitively explain the process of synthesizing

specification into controller, the following briefly introduces

the synthesis algorithm in [6]. As mentioned before, the

synthesis algorithm was used to solve the game between the

robot and the environment. Consider a game structure G:

〈X ,Y, θe, θs, ρe, ρs,J e,J s〉, the initial state of robot and

environment is sX∪Y where sX∪Y |= θe ∧ θs. Then from

the initial state, both the robot and the environment make

decisions that determine their next states, the environment

choose an input sX ′ such that (s, sX ′) |= ρe and the system

choose an output sY′ such that (s, sX ′ , sY′) |= ρs. The

winning condition for the game is given as a GR(1) formula

φ = (GFJ e → GFJ s), the implication between justice goals

Je of the environment and Js of the robot. In other words, no

matter what the environment does, the robot can always find

a way to proceed and satisfy the GR(1) formula φ, we say

that the robot is winning and the controller can be synthesized

from the specification. Otherwise, we say that the environment

is winning and the specification is unrealizable. Once the task

specification of the robot is realizable, the synthesis algorithm

is to find a winning strategy that the robot should follow to

complete the desired task.

The strategy synthesised by the algorithm can be viewd as

an automaton A = (X ,Y,Q, Q0, γ, δ):

• X is the set of input (environment) propositions,

• Y is the set of output (robot) propositions,

• Q is the set of states,

• Q0 ⊂ Q is the set of initial states,

• γ : Q → 2X∪Y is the state labeling function where γ(q)
is the set of robot propositions and input propositions that

are true in state q, i.e., states hold the environment inputs.

• δ : Q → 2Q is the transition relation. If current state is

q and at next point environment inputs is sX , then q′ is

the successor state of q if and only if sX |= γ(q′).

A run of a strategy is sequence s = s0X , s0Y , s
1
X , s1Y , · · · , s.t.

∀i : ((qi, siX , qi+1) |= δ
) ∧ (

siY = γ(qi)
) ∧ (

si+1
Y = γ(qi+1)

)
.

Based on this sequence, the discrete path of the robot can be

acquired which guides the robot to choose a region to go or

activate/deactivate the different robot actions.

B. Controller Separation

When the robot performs some complex tasks, it needs to

do many actions in different areas, so it takes a long time

to synthesize the corresponding controllers. In extreme cases,

the controller cannot be synthesized. To solve this problem,

we divide the robot controller into two parts, namely the task

controller and the security controller, and these two types of

controllers are loosely coupled. The task controller is used

to control the robot to complete the specified task, and the

security controller is used to ensure the safety of the robot’s

behavior.

The form of the controller we synthesized is actually a finite

state machine (FSM), each state of the FSM includes input and

output. For the task controller, the input is the environment

changes perceived by the robot and the output is the action that

should be performed by the robot. For the security controller,

the input is the properties of the robot, such as the current

position coordinates, battery power, memory, and other critical

information that we care about, and the output is what the

robot should do in response to different cyber attacks. Once

the system detects that a certain safety property of the robot

is violated, the security controller will immediately start and

control the robot to perform the correct behavior.

IV. ROS-BASED SECURITY CONTROLLER

Although ROS is the most popular robot system in recent

decades, its application is limited to research laboratories and

has not been widely used in the industry. The reason is that

there are many security issues in ROS. In this section, we intro-

duced two kinds of safety issues and generated corresponding

security controllers for them.

A. False Information

As mentioned in section II, robots can communicate with

each other through master in ROS. However, a node can

publish data for arbitrary topics without pre-authentication.

This means that when the attacker and the robot are connected

to the same network, the attacker can exploit this vulnerability

and send wrong instructions to the robot, causing the robot

to perform unexpected actions or move to dangerous areas.

To prevent these accidents, we use TLSF as the specification

of robots and synthesize controllers to control the robot’s

behavior. An example is illustrated here:

Taking the delivery robot in the hospital as an example,

this robot works in a workspace as shown in figure 2. It

has two tasks, one is to deliver food to each ward during

mealtime, and the other is to deliver medicine to these four

wards according to different needs. When the robot performs

its task, the attacker can send false messages to the robot,

such as controlling the speed of the robot or moving it to a

dangerous place. Based on security considerations, we abstract

the security behavior of the robot into specifications and

automatically synthesize the controller. In addition to writing

security specifications for the robot, the task specifications

should be written according to the tasks performed by the

robot. The task specification of the robot is shown in figure 3,

474



HALLWAY

STOREROOM WARD3 WARD1 DISPENSARY

STAIRCASE WARD4 NURSE
STATIONWARD2

Robot

Fig. 2: Workspace of delivery robot

and the security specification of the robot is shown in figure

4.

The security specification means that when the robot is

empty, it can move quickly (0.8m/s − 1.5m/s), but when

the robot is delivering food or medicine, its maximum speed

should not exceed 0.5m/s. In any case, it must stop when it

senses someone within one meter. Attackers may send false

coordinates information to the robot and move the robot to

a dangerous area. Therefore in this example, if it is detected

that the robot enters the staircase, the security controller should

immediately control the robot to leave the staircase and return

to the storeroom. Because the robot is in danger of falling

down the stairs in the staircase.

main R1{
env {

notification;
medicine_1;
medicine_2;
medicine_3;
medicine_4;}

sys {
stop;
low_speed;
fast_speed;
go_to_nurses_station;
carry_item;
receive_notification;}

asm {
! notification;
! medicine_1;
! medicine_2;
! medicine_3;
! medicine_4;}

gar {
G (notification -> receive_notification);
GF (carry_item ->s.r1);
GF (carry_item ->s.r2);
GF (carry_item ->s.r3);
GF (carry_item ->s.r4);
GF (medicine_1 -> s.r1);
GF (medicine_2 -> s.r2);
GF (medicine_3 -> s.r3);
GF (medicine_4 -> s.r4);
G (notification -> next(go_to_nurses_station));
G ((s.nurses_station & receive_notification) ->

next(carry_item );}}

Fig. 3: Task specification of delivery robot

main R1{
env {

person;
low_battery;}

sys {
stop;
low_speed;
fast_spee;
carry_item;
go_to_nurses_station;}

asm {
!person;
!low_battery;
GF !person;}

gar {
!carry_item;&
fast_speed;
!low_speed;
!stop;
!s.staircase;
G (s.staircase -> next(s.storeroom));
G (low_battery -> next(s.storeroom));
G (person -> stop);
G (carry_item -> low_speed);
G (! carry_item -> fast_speed;}}

Fig. 4: Security specification of delivery robot

In our previous work, we generally wrote the robot’s se-

curity specification and task specification together and au-

tomatically synthesized the controller. Therefore, it takes a

long time to synthesize a controller with many propositions.

As we introduced in section III, we divide the specifications

of the robot into two parts and synthesize the corresponding

controller respectively. TABLE I is a comparison of the

synthesis time of different controllers. It can be seen that the

second method has higher efficiency.

TABLE I: Time of controller synthsis

Controllers Time
Global controller 50.594 seconds

Task controller 2.844 seconds

Security controller 0.033 seconds

B. Denial of Service Attack

Denial of service (DOS) [10] attack can trigger crash in

a computer or network by flooding them with traffic, this

attack is to use other hijacked computers on the network to

launch an intensive ”denial of service” attack on a specific

target computer. This will consume the network and system

resources of the target computer, making it impossible to

provide services for normal users. All nodes in the network

can publish data to topics subscribed by a certain target node

in ROS, and these nodes can publish arbitrary content, so

attackers can conduct DOS attack against this target node.

Because there are many types of DOS attacks, to determine

whether the robot is under DOS attack, we monitor the

following indicators.

• CPU usage: The CPU usage of the robot.

• CPU temperature: The CPU temperature of the robot.

• RAM: Memory usage of the robot.
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• Number of messages: Number of messages received by

each node per period.

• Battery consumption: Power consumption per period.

We normally record data for these indicators and set thresh-

olds for each indicator. When the robot performs a task, if it

detects an anomaly in the above indicator, it can be determined

that the robot is under DOS attack. Then we generate security

controllers for robots based on the specific tasks they perform.

Most researchers focus on how to protect robots from cyber

attacks. But in the worst case, when the robot is attacked and

loses function, to complete the task first, there should be other

robots as standby robots. Therefore, we introduce a task-first

method, which is suitable for robots that perform critical tasks.

When the robot performs a task, it records its state changes

and sends the log file to the control center in real-time. When

other robots or control centers find that a robot is attacked

and loses its function, for example, it does not reach the

designated location or make appropriate actions as planned.

Due to the high priority of the task, the standby robot should

be dispatched immediately to reach the designated state. Then

the standby robot copies the controller strategy of the attacked

robot and cooperates with other robots to complete the task.

For further explanation, we introduced an example of an

MRS that performs security tasks at a private airport. As shown

in figure 5, There are four robots performing tasks here. Robot

1 is mainly responsible for the patrol of the area. Robot 2 is

the maintenance robot for the airport runway, robot 3 is the fire

extinguishing robot, and robot 4 is the guard robot in general,

but when an emergency occurs, It can be used as a standby

robot to succeed other robots to complete tasks.

Fig. 5: Multi-robot workspace

During the patrol process of robot 1, when it detects

abnormalities in the airport runway, such as cracks or holes

on the ground, which may endanger the take-off and landing

of the aircraft, it will set up danger signs on the spot and send

the corresponding coordinates to robot 2. When the robot 2

receives the message, it will proceed to maintenance. When

the robot 1 detects a fire, it will immediately notify the robot

3, which will open the fire hydrant and start extinguishing

the fire. When it is detected that robot 1 is under DOS

attacks, to prevent it from making dangerous actions, it should

immediately turn off the power and stop at the same place for

checking by the maintenance personnel. At the same time, to

ensure the completion of the task, the standby robot 4 should

be enabled to complete the task instead. The task specification

and security specification of this MRS are written in figure 6.

Keywords env (environment), sys (system) are set of input

variables and output variables respectively and keywords asm

(assumption), gar (guarantee) characterize initial conditions,

transition relations, and justice requirements for environment

and system respectively.

main R1{
env {

hole;
fire;
msg_number;
RAM;
CPU_temperature;
battery_consumption;
CPU_usage;}

sys {
inform_r2;
inform_r3;
inform_r4;
DOS_attack;
shut_down;}

asm {
!hole;
!fire;
!msg_number;
!CPU_usage;
!CPU_temperature;
!RAM;
!battery_consumption;}

gar {
! inform_r2;
! inform_r3;
! inform_r4;
! DOS_attack;
! shut_down;
G(hole -> inform_r2);
G(fire -> inform_r3);
G((msg_number & CPU_usage & CPU_temperature & RAM
& battery_consumption) -> DOS_attack);
G(DOS_attack -> inform_r4);
G(inform_r4 -> X (shut_down);}}

main R2{
env {

receive_r1;}
sys {

maintenance;}
asm {

!receive_r1;}
gar {

!maintenance;
GF(receive_r1 -> maintenance;}}

main R3{
env {

receive_r1;}
sys {

extinguishment;}
asm {

!receive_r1;}
gar {

!extinguishment;
GF(receive_r1 -> extinguishment;}}

main R4{
env {

receive_r1;}
sys {

replace_r1;}
asm {

!receive_r1;}
gar {

!replace_r1 &
GF(receive_r1 -> replace_r1;}}

Fig. 6: Specification for airport patrol robots
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(a) Road patrol (b) Hole detected (c) Road maintenance

(d) Fire detected (e) DOS attack detected (f) Check and replace

Fig. 7: Experimental run of the airport patrol robots scenario

In this example, we use ROS as the system to control the

movement of the robot and simulate the entire task process

in gazebo. The simulation environment should be configured

first, according to the design diagram in Figure 5, we build

the world model in gazebo. As the name indicates, the world

model is to simulate a real physical world. For the tasks to be

completed by the robots, the user could build a corresponding

world model using Gazebo’s building editor. After establishing

the world model, we control the robot to move in the world

and use laser radar or depth camera to generate laser data

and convert it into the map. Then the robots could perform

navigation and localization according to the known map. The

simulation process is shown in figure 7.

V. CONCLUSION AND FUTURE WORK

In this paper, to ensure the safety of the robot when

performing tasks, we automatically synthesize a controller for

the robot to constrain the robot’s behavior. A highly efficient

method is proposed to reduce the controller synthesis time.

Also, we summarized some of the security problems in ROS

and put forward protective measures against false information

induction and DOS attacks. In particular, we used Gazebo as

a simulation environment to conduct experiments to protect

robots against DOS attacks.

In future work, we plan to pay more attention to improve

the security of ROS, classify the possible attacks on ROS, and

propose corresponding protective measures. At the same time,

we will use real robots to conduct experiments and test the

practicability of the method we presented.
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