
A simple, lightweight framework for testing
RESTful services with TTCN-3

Theofanis Vassiliou-Gioles
Technische Universität Berlin

Weizenbaum Institut
Berlin, Germany

Email: vassiliou-gioles@tu-berlin.de

0000-0002-6990-242X

Abstract—Micro-service architecture has become a standard
software architecture style, with loosely coupled, specified, and
implemented services, owned by small teams and independently
deployable. TTCN-3, as test specification and implementation
language, allows an easy and efficient description of complex
distributed test behavior and seems to be a natural fit to test
micro-services. TTCN-3 is independent of the underlying com-
munication and data technology, which is strength and weakness
at the same time. While tools and frameworks are supporting
micro-service developers to abstract from the underlying data,
implementation, and communication technology, this support has
to be modeled in a TTCN-3 based test system, manually. This
paper discusses the concepts of a TTCN-3 framework on the four
different levels of the Richardson-Maturity Model, introducing
support for testing hypermedia controls, HATEOAS, proposes a
TTCN-3 framework and open-source implementation to realize
them and demonstrates its application by a concrete example.

Index Terms—TTCN-3, Software testing, test automation, mi-
cro service, RESTful API, web service

I. INTRODUCTION

Cloud computing, the availability of various computing

resources over the internet, has become a standard way of

using IT resources. In the same way, web services, i.e.,

services that provide machine-readable documents via the

internet, primarily over HTTP [1], have gained attraction and

are the dominating components in the software application

space. This paper proposes a TTCN-3 framework for testing

RESTful web services to support testers, and quality assurance

engineers to develop test strategies beyond functional testing.

The World Wide Web Consortium (W3C) defines web

services as “[...] a software system designed to support in-

teroperable machine-to-machine interaction over a network. It

has an interface described in a machine-processable format

(specifically WSDL). Other systems interact with the Web

service in a manner prescribed by its description using SOAP

messages, typically conveyed using HTTP with an XML

serialization in conjunction with other Web-related standards.“

[2]

While the W3C emphasizes on WSDL (Web Services

Description Language) [3] and SOAP (Simple Object Access

Protocol)) [4] technologies modern interpretations relax the

interface description (or description protocols) beyond WSDL,

for example, to the usage of OpenAPI Specification (OAS) [5],

the successor of Swagger [6]1

This machine-to-machine interaction over the network has

led to extensive web-service infrastructures, and in more

recent times, to the emerging of micro-service based software

architecture, with REST (Representational state transfer) [7]

being one of its prominent software architecture paradigms.2

“We can identify two major classes of Web services:

• REST-compliant Web services, in which the primary pur-

pose of the service is to manipulate XML representations

of Web resources using a uniform set of ”stateless”

operations; and

• arbitrary Web services, in which the service may expose

an arbitrary set of operations.“ [2]

RESTful services use a variety of different data represen-

tations with XML and JSON [8] being the most prominent

representatives.

Various mappings for data definition languages like ASN.1

[9], XML [10] or JSON [11] have been defined and stan-

dardized for TTCN-3 [12]. While these mappings define the

data structures, we propose on how to map the functional

specifics of RESTful web services to TTCN-3 and propose

a framework. While the terms REST and RESTful are widely

used for mainly any kind of HTTP based Application Pro-

gramming Interface (API), it becomes apparent that there are

different understandings of what a RESTful API is. REST, just

like web-services it not a technique but an architectural style.

The Richardson Maturity Model (RMM) evaluates a REST-

API with respect to its quality. It defines four levels, starting

from level 0, using HTTP as the transport model, only but no

other (standardized) web mechanism. The highest level, level

3, adds hypermedia controls, or HATEOAS (Hypertext As The

Engine Of Application State) as introduced by [7].

The four different levels of RMM are defined as follows:

• level 0 - Using HTTP as transport protocol only. At this

level, HTTP is being used to transport data (formatted as

XML documents, JSON encoded, or in any other format)

1The OpenAPI Initiative has adopted the Swagger 2.0 specification. Today’s
version is v.3.0.3.

2In this paper we use web service and micro services synonoumesly

498

2020 IEEE 20th International Conference on Software Quality, Reliability and Security Companion (QRS-C)

978-1-7281-8915-4/20/$31.00 ©2020 IEEE
DOI 10.1109/QRS-C51114.2020.00089

to and from a server. No dedicated web technologies are

being used.

• level 1 - Applications on this maturity level use spe-

cific resources in the form of URIs (Uniform Resource

Identifiers) to manipulate data at or retrieve data from

servers. As a result, information is migrating from the

transported data (i.e., the message body of an HTTP

request/response) to the HTTP level.

• level 2 - Instead of using individual HTTP verbs like GET

or POST to merely transport documents, HTTP verbs are

now being used as intended by the HTTP specification

and differentiating safe data retrieval and ”unsafe” data

or resource manipulation.

• level 3 - Finally, the highest level of the RMM, introduces

hypermedia as a way to navigate through an interface and

application. [13] claims that RESTful APIs have a level 3

maturity as a precondition. However, this is often ignored

in practice, when naming APIs RESTful.

As level-3 REST APIs have far less practical applications

than level 1 or 2, we will first focus on REST APIs up to

level 2 of the RMM. Finally, we will give an outlook on how

RMM level-3 RESTful APIs can be tested for their specific

RMM-level-3 properties.

II. TESTING WEB SERVICES

In industry, two different development approaches to expose

API functionality via RESTful APIs can be identified that

require a specific web-service centric test approach.

• First, a remotization (bottom-up) approach where locally

developed functionality is made accessible remotely.

• Second, a webservice-native (top-down) approach where

resources and functionality are first designed via (re-

motely accessible) API specifications and being imple-

mented in a second step.

In both approaches, the remotely accessible APIs are being

specified and serve as the test basis. A specific web-service-

centric test approach emphasizes but does not limit, the

test functionality on the specific properties of the exposed

resources and operations. It assumes that functional testing

has been performed locally, for example, via unit testing.

A web-service-centric test approach should abstract from the

actual transport semantics and should focus on the data and

operation-specific aspects. In addition it should enable fine-

granular access to transport-related elements, if required.3

We will first introduce a TTCN-3 framework capable of

addressing the properties of an RMM-level-2 REST API by

supporting HTTP, URIs, and different HTTP operations. Build

on this, we extend the framework to support RMM-level-3

REST APIs in the following section.

As outlined earlier web-service is not a particular technol-

ogy but an architecture style that can be realized by using

various technologies.

3Examples of transport-related elements are Header-Fields or URL
query parameters.

Fig. 1: Abstract webservice architecture with three webser-

vices A-C

Fig. 1 shows a simplified web-service architecture with a

CLIENT and three web services (A, B, and C). The respective

API of each service expose their service via a RESTful API.

The presented framework focuses on web services that are

using the following web service protocol stack and technolo-

gies

• HTTP as application transport protocol at the REST API.

Other application transport protocols like FTP, SMTP, etc.

are not considered.

• JSON as messaging protocol. XML is also used fre-

quently as an alternative. While not considered in this

paper, we plan to extend the proposal also to cover XML

as messaging protocol. JSON encoded data is embedded

in the HTTP message body at a REST API.

• OpenAPI as description protocol. The description pro-

tocol defines the public API to the webservice. In this

paper, we consider web service APIs to be specified using

a description protocol. While technically not part of the

TTCN-3 framework OpenAPI based web services have

been used to design the presented TTCN-3 framework.

Other description protocols like protocol-buffer [14] have

influenced the design.

With the selection of HTTP as the transport protocol, HTTP

elements play an essential role in the service description.

• HTTP method or verb:

• URL: describing the endpoint and parameters of a web

service function

• HTTP Header-Fields: HTTP-header fields are identified

by their name and can transport additional information for

the usage, such as authentication or data format selection

as a header value

• HTTP-message body data format: As web services

are targeted for machine-to-machine-communication,

machine-processable data formats are transported. While

not limited to widely accepted formats are JSON or XML.

Fig. 2a and Fig. 2b display the anatomy and essential

elements of a HTTP message for a hypothetical webservice

that is available via https at localhost at port 5006.

III. TESTING WITH TTCN-3

TTCN-3, the Testing and Test Control Notation, is the

test specification and implementation language defined by the

499

(a) Anatomy of URL including method for a HTTP message

(b) Elements of a HTTP message

Fig. 2: HTTP message

European Telecommunications Standards Institute (ETSI) for

the precise definition of test procedures for black-box testing

of distributed systems. It fits well with the test requirements

of RESTful-based applications with possibilities to efficiently

describe complex distributed test behavior through parallel

stimuli and responses.

One of the benefits of TTCN-3 is that it enables the

specifications of tests in a language and platform-independent

manner, thus following the micro-service paradigm to choose

the technology that fits best for the implementation of a

particular. Our goal is to consider a TTCN-3 test system as

another micro-services, with highly specific targets.

A. Architecture

According to the different RMM levels, we have structured

or TTCN-3 framework for testing RESTful API based web

services in three levels.

• RMM-0/1 support - We define message structure together

with port definitions and operations that support the

sending and receiving of simple, HTTP based messages.

As basic support, we consider support for GET messages,

the ability to specify the URL, and the ability to handle

information in header fields for sending and receiving

efficiently.

• RMM-2 support - RESTful API on this maturity level

make HTTP specific use of HTTP operations. Our frame-

work adds supporting functionality for the different HTTP

operations and some testing functionality to tests on

HTTP specific properties, like the idempotency of op-

erations like GET, or PUT.

• RMM-3 support - In addition to the features already

introduced support RMM 3 support introduced some test

functionality to work with the hypermedia aspects of

RMM 3. Framework components of all levels can be

combined.

B. Core Functionality for REST services RMM level 0/1

As core functionality of the TTCN-3 framework a TTCN-

3 module Lib_HTTP together with HTTP-to-TTCN-3 mapping

conventions have been defined. A TTCN-3 module supporting

this TTCN-3 framework should indicate encoding "RESTful

" for generic HTTP support and flexible HTTP message

body encoding, encoding "RESTful/json" for JSON message

body encoding or encoding "RESTful/XML" for XML encoded

message bodies.4 as module attributes.

"RESTful" defines a HTTP request as a record with fields

for message content, like query parameters, HTTP header

fields or message body, for HTTP requests that support

message bodies. For the specification of HTTP operations,

URIs and associated resources TTCN-3 encode and variant

attributes are being used.

Listing 1 and Listing 2 show an example for a HTTP request

and the type specification for a generic HTTP response taken

from Lib_HTTP, respectively.

1 type record ReadField {
2 string channelId,
3 string fieldId,
4 string api_key optional,
5 integer results optional,
6 string _start optional,
7 string traceId optional
8 }
9 with {

10 encode "REST/get";
11 variant "path:/channels/{channelId}/fields

/{fieldId}.json";
12 encode (api_key) "query";
13 encode (results) "query";
14 encode (_start) "query:start";
15 encode (traceId) "header:Trace-ID";
16 }

Listing 1: A templated and parameterized GET operation

1 type record HTTPResponse {
2 StatusLine statusLine, set of Header

headers, Body body optional
3 }
4 type record StatusLine {
5 integer statusCode, string reasonPhrase

optional
6 }
7 type record Body {
8 string messageBodyTxt optional,

octetstring messageBodyRaw optional
9 }

10 type record Header {
11 string name, string val
12 }

Listing 2: A generic HTTP response as defined by Lib_HTTP

Listing 1 shows support for different HTTP operations (line

10), URI templating (line 11), support of non-hierarchical

parametrization via query components (lines 12-14), support

of header fields (line 15) and rewriting of templates, queries,

and headers (lines 14-15).

As the third component of basic HTTP support, we bind the

execution of test cases to a specific webservice implementation

at runtime, via parametrization of the map operation.

A typical runtime binding can be seen in Listing 3 where

the local port service is mapped to the system port server

4The current implementation only supports JSON message body encoding.
However we are planning to extend the support to support also XML encoding.
Therefore the encoding "RESTful/XML" has been reserved

500

. Also, the baseUrl, which consists of scheme, host,

optional port, and basepath is being provided to the

test system implementation. For this a predefined data type

RESTAPIconfig has been defined in Lib_HTTP.

1 module TestSuite {
2 import from Lib_HTTP all;
3 ...
4 type port HTTPPort message {
5 in HTTPResponse;
6 out ReadField;
7 map param (RESTAPIconfig config);
8 }
9

10 type component RESTComponent {
11 port HTTPPort service; }
12 type component TSRestService {
13 port HTTPPort server; }
14

15 testcase test_ReadSingleData() runs on RESTComponent
system TSRestService {

16 map(mtc:service, system:server) param (
RESTAPIconfig:{

17 baseUrl := BASE_URL,
18 authorization := omit
19 });
20 ...
21 }}

Listing 3: Runtime binding of abstract test case to concrete

webservice implementation

C. Extended functionality for REST services at RMM level 2

REST-based applications with an RMM level 2 make use

of HTTP operations beyond pure GET or POST functionality,

like PUT and DELETE, to follow the CRUD (Create, Read,

Update, Delete) principle. In addition to these operations,

the presented framework also supports HEAD, OPTIONS,

PATCH, etc. These extensions are supported in the same

way as the GET operation with the usage of the encode "

" attribute.

HTTP Operation Idempotent Safe encode attribute

GET yes yes encode "REST/get"
HEAD yes yes encode "REST/head"
OPTIONS yes yes encode "REST/options"
PUT yes no encode "REST/put"
DELETE yes no encode "REST/delete"
POST no no encode "REST/post"
PATCH no no encode "REST/patch"

TABLE I: Overview of currently supported HTTP operation

and their classification with respect to idempotency and safe-

ness [1]

Typical applications on this RMM level use a protocol

description, like an OpenAPI specification [5], to define the

RESTful API. The TTCN-3 framework provides a mapping of

a RESTful API and a set of helping functionality and separates

them into three modules:

• Operations - specifies the API’s endpoints together with

their HTTP operations

• Models - specifies the data model and the data structures

that can be used in the operations and the responses

• Components - specifies the test system architecture and

binds the operations and responses to the ports

While the separation into modules is technically unnecessary,

it’s relation to RESTful protocol descriptions terminology like

in [5], and related tooling, the separation with appropriate

module naming has shown to be helpful. For each module, the

encode "RESTful" attributes specifies the compliance of the

mapping to this RESTful TTCN-3 mapping. For the support

of OpenAPI v2 specifications, a supporting library openapiv2

is provided. The library contains OpenAPI specific types like

string, double or date.
As an example to illustrate the mapping concepts we will

use the Petstore webservice as introduced in [15].

1 /pet/findByStatus:
2 get:
3 summary: "Finds Pets by status"
4 operationId: "findPetsByStatus"
5 produces:
6 - "application/json"
7 parameters:
8 - name: "status"
9 in: "query"

10 description: "Status values that need to be
considered for filter"

11 required: true
12 type: "array"
13 items:
14 type: "string"
15 enum:
16 - "available"
17 - "pending"
18 - "sold"
19 default: "available"
20 collectionFormat: "multi"
21 responses:
22 200:
23 description: "successful operation"
24 schema:
25 type: "array"
26 items:
27 $ref: "#/definitions/Pet"
28 400:
29 description: "Invalid status value"

Listing 4: A YAML based operation definition in Swagger.

[15], shortened

1) Operations: In HTTP based RESTful API specifications

an operations is represented by an endpoint together with the

HTTP-operation. Fig. 2a displays this as path and operation
respectively.

Listing 4 shows a typical operation specification using the

YAML format of the OpenAPI specification v2 (OASv2).

Fig. 2b display one possible resulting status line as defined

by this operation.
The TTCN-3 framework maps each REST operation, and

its response to two respective TTCN-3 structures, the first

structure, a record, follows the mapping as specified in

III-B. The second TTCN-3 structure, a union, summarizes the

information about the different specified HTTP responses for

the request.
Listing 5 shows the elements of the proposed TTCN-3

mapping. Each REST operation is modelled as a TTCN-

3 record. The specific REST properties are specified using

501

TTCN-3 attributes. encode "REST/get" identifies this record

as a GET operation for the endpoint as specified by variant

"path: /pet/findByStatus". As the operation has only one

array of strings parameters the resulting record contains one

mandatory element of type StatusElement (a type restricted

string defined in the models section.). encode (status) "

query" identifies the status field as a query parameter to the

GET operation.

1 type record FindPetsByStatus {

2 record of StatusEnum status

3
}

4
with {

5
encode "REST/get";

6
variant "path: /pet/findByStatus";

7
encode (status) "query"

8
}

Listing 5: A simple parametrized GET operation

1
// 200 - successful operation

2
// 400 - Invalid status value

3
type union FindPetsByStatusResponse {

4
record of Pet _200,

5
noContext _400

6
}

7
with {

8
encode "REST/getResponse";

9
encode (_200) "body/json"

10
}

Listing 6: A simple TTCN-3 response

An operation also specifies responses, with potentially spe-

cific return codes. Listing 6 shows the mapping of the HTTP

response to the respective TTCN-3 type. The union is enriched

with encoding information for the mapping of different status

codes and potential response bodies. For each response code,

an alternative shall be specified (lines 4 - 5). Each alternative

field references to one response code. The response code 200

maps to the field name _200, as identifier naming restrictions

in TTCN-3 prohibiting number literals as identifiers. The

example in Listing 4 defines two responses, a 200 and a 400.

The content of the 200 is specified as an array of pets (a

data structure that is referenced and defined somewhere later

in the YAML file). The content of the later one is not further

defined; we call this status unspecified. The supporting library

openapiv2 provides the predefined type noContext, a generic

HTTP response to handle this type of generic, potentially

underspecified response.

Send and receive templates can be specified to describe test

behaviour and awaited responses.

1

module PetStoreTemplates {

2

import from Operations all;

3

template FindPetsByStatus findPetByStatus := {
status := {"available", "sold"}}

4

template FindPetsByStatusResponse
findPetByStatusResponseSucc := { _200 := ?}

5

template FindPetsByStatusResponse
findPetByStatusResponseInv := { _400 := ?}

6 }Listing 7: Simple templates for GET request and

corresponding responses

When being sending findPetByStatus to the webserice

this would be encoded to a HTTP request with the status line

GET http://localhost/v2/pet/findByStatus?status=

available&status=sold HTTP/1.1

2) Models: Different to unstructured parameters that can be

encoded in the start line of an HTTP request (e.g., as query

parameters), the message body carries (encoded) structured

information. JSON and XML are widely used as encodings.

Their usage is indicated as MIME type in the HTTP Content

-Type header field. The current version of the framework sup-

ports JSON encoded message bodies in requests and responses.

Listing 6 introduced the usage of encoded message bodies

in responses, Listing 8 visualises the usage in requests. For

sending or receiving data structures (Pet) are being referenced

that have been specified the OpenAPI specification of the

web services. Listing 9 displays a possible mapping of the

structured object to TTCN-3. Our predefined TTCN-3 library

openapiv2 provides predefined OpenAPIv2 data types (e.g.

string or int64).

1 type record AddPet {
2 Pet body
3 }
4 with {
5 encode "REST/post";
6 variant "path: /pet";
7 encode (body) "body/json"
8 }

Listing 8: A POST request operation with message body,

JSON encoded

1 import from openapiv2 all;
2

3 type set Pet {
4 int64 id optional,
5 Category category optional,
6 string name,
7 record of string photoUrls,
8 record of Tag tags optional,
9 string status optional

10 }
11 type set Category {
12 int64 id, string name
13 }
14 type set Tag {
15 int64 id, string name
16 }
17 type string StatusEnum ("available", "pending",

"sold");

Listing 9: Referenced TTCN-3 data structures

1 Pet:
2 type: "object"
3 required:
4 - "name"
5 - "photoUrls"
6 properties:
7 id:
8 type: "integer"
9 format: "int64"

10 category:
11 $ref: "#/definitions/Category"
12 name:
13 type: "string"
14 photoUrls:

502

15 type: "array"
16 items:
17 type: "string"
18 tags:
19 type: "array"
20 items:
21 $ref: "#/definitions/Tag"
22 status:
23 type: "string"
24 enum:
25 - "available"
26 - "pending"
27 - "sold"

Listing 10: OpenAPI specification of structured object

In our framework and reference implementation, we have

applied a simplified mapping from JSON encoded OpenAPI

object specifications to TTCN-3, which we call POTO (Plain

Old TTCN-3 Objects). We consider this mapping a subset of

[11], which defines a full TTCN-3 to JSON. For the focus

of testing RESTful APIs that carry JSON encoded structured

data, supporting a subset of the TTCN-3 to JSON mapping

has been proved efficient. Other than POTO encoding rules

can be referenced by using the respective encoding attribute

values.

3) Components: In TTCN-3 ports are being used for

communication with the system under test. Test components

have ports, and the actual test behavior is being executed on

components. As third element of the RESTful API TTCN-

3 framework ports and components are being defined as

introduced by Listing 3.

1 module PetStoreTestSuite {
2 import from Lib_HTTP, openapiv2 all;
3 import from Models, Operations, Components all;
4

5 // Configuration
6 ...
7 // Testdata
8 template FindPetsByStatus findPetByStatus := {
9 status := {"available", "sold"} }

10

11 testcase SendFindByStatus()
12 runs on PetStoreClient system PetStoreServer

{
13 map(mtc:service, system:server) param (

configNoAuth);
14

15 timer t; t.start(5.0);
16 service.send(findPetByStatus);
17 alt {
18 [] service.receive(FindPetsByStatusResponse

:{_200 := ?}) {
19 t.stop; setverdict(pass);
20 }
21 [] service.receive(FindPetsByStatusResponse

:{_400 := ?}) {
22 t.stop; setverdict(inconc);
23 }
24 [] service.receive(HTTPResponse:?) {
25 t.stop; setverdict(inconc);
26 }
27 [] service.receive {
28 t.stop; setverdict(fail);
29 }
30 [] t.timeout {

31 setverdict(fail, "Server was not
responding. Check base url");

32 }
33 }
34 }}

Listing 11: A simple TTCN-3 test suite testing a RESTful

API

4) Assertions: RMM level 2 and above applications are

defined by respecting more strictly the actual semantics of

HTTP operations. To maintain the targeted maturity level, as-

suring properties like idempotency increase the interoperability

between clients and servers as clients.

By using the proposed TTCN-3 test framework, this class

of assertions can be implemented efficiently, as shown by

Listing 12. Similarly, also other deviations of idempotency

can be implemented.5

1 function AssertIdempotency(FindPetsByStatus request,
integer retries)

2 runs on PetStoreClient return boolean {
3 var template FindPetsByStatusResponse r1, r0;
4 for (var integer i := 0; i < retries - 1; i := i

+ 1) {
5 service.send(request);
6 alt {
7 [i == 0] service.receive(

FindPetsByStatusResponse:?) -> value r1 {
8 r0 := r1;
9 }

10 [i > 0] service.receive(
FindPetsByStatusResponse:?) -> value r1 {

11 if (not (match(r0, r1))) {
12 setverdict(fail);
13 return false;
14 }
15 }
16 [] service.receive(HTTPResponse:?) {
17 setverdict(fail);
18 return false;
19 }
20 }
21 }
22 return true; }

Listing 12: A sample idempotency assertion

D. RESTful APIs on RMM level 3

As stated earlier, true RESTful APIs have RMM-level 3 ma-

turity, i.e., hypertext media usage as a precondition. However,

only very few publicly available APIs support hypermedia as

”the engine of application state” [13] (HATEOAS) which is

one of its four constraints. For example, the ”freeplan” web

service as provided by the Deutsche Bahn AG6 describes the

API as ”A RESTful webservice to request a railway journey

[...]”. An analysis of the swagger7 specification reveals that no

5Example: For repeated, identical DELETE requests, a successful DELETE
request might return as a first response another status-code than subsequent
requests. Nevertheless, the status of the resources (deleted) is the same for
the first and all following identical requests. Therefore this type of behavior
can also be considered ”idempotent”.

6https://developer.deutschebahn.com/store/apis/info?name=Fahrplan-Free&
version=v1&provider=DBOpenData

7freeplan swagger specification

503

hypermedia is being used. The absence of hypermedia does not

constitute a ”defect” or limitation in the API’s usability, but

an architectural design decision. It just serves as an example

of widespread incorrect use of the term RESTful.
Applications that use hypermedia in RESTful APIs embed,

in addition to the resource data, links to describe transitions

between resource states. A client only needs to understand the

link names, the so-called relations, to interact and manipulate

an APIs resources. As relations are central to the hyperme-

dia concept and ”a REST API should spend almost all of

its descriptive effort in defining the media type(s) used for

representing resources and driving application state [...]” [13],

we will examine the fitness of our proposed framework by

exploring the compatibility to ”HAL - Hypertext Application

Language” [16] as an example. Beyond the usage of using

standard relations as maintained, for example, by IANA8 HAL

is one way to define relations and encapsulates it in an own

media type application/hal+json.

1) HAL - Hypertext Application Language: HAL target

is to give ”a consistent and easy way to hyperlink between

resources” in an API [17]. While HAL supports JSON and

XML to express hyperlinks, we are currently considering

the support of HAL and JSON only. Listing 13 shows a

hypothetical response for the request of a pet as introduced

earlier. It contains the status of the pet resource (line 12-13)

as well as links to documentation (line 4) and operations (line

2-11). According to [17] "_links", "self", and "curies"

should be included in every response.

1 { "_links": {
2 "curies": [{ "name": "ps", "href": "http://

petstore.io/docs/rels/{rel}", "templated": true
}],

3 "self": { "href": "/pet/123" },
4 "next": { "href": "/pet/124" },
5 "previous": { "href": "/pet/122" },
6 "ps:findByStatus": {
7 "href": "/pet/findByStatus{?status}",
8 "templated": true
9 }

10 },
11 "petsName": "MyDog",
12 "status": "available"
13 }}

Listing 13: A (hypothetical) HAL compatible response for

requesting a per resource

2) Testing HAL based applications: Link relations are the

central element of RESTful API on RMM-level 3. Thus we

mandate a test framework for RMM-level 3 RESTful APIs

to verify the correctness or at least the availability of the

advertised link relations. As the semantic of the link relations

strongly depends on the used media type, we have started in-

vesting the applicability for HAL based applications. Lib_HAL

includes predefined data types to support the modeling of HAL

link relations. Listing 14 visualises the usage of the predefined

data types Href and Curies to map the HAL specification into

a TTCN-3 data type, together with encoding annotations to

8https://www.iana.org/assignments/link-relations/link-relations.xhtml

indicate the actual usage at execution time. We introduce a

specific Accept-Header (line 5) and expect in a response

a Content-Type: application/hal+json (line 12).

In addition to the resource data, we have introduced in the

message body of a 200 response (line 11) a _links fields

to capture the link relations (line 16-19).

1 module PetStoreHal language "TTCN-3:2018 Object-
Oriented features" {

2 import from Lib_HAL all;
3 ...
4 type record GetPetById_HAL extends GetPetById {
5 string accept
6 } with { encode (accept) "header:Accept"; }
7

8 // 200 - successful operation
9 type union GetPetById_HALResponse

10 extends GetPetByIdResponse {
11 PetHal _200
12 } with { encode (_200) "body/hal+json"; }
13

14 type set PetHal {
15 string petName, string status,
16 record {
17 Href _self, Curies curies,
18 Href next optional, Href previous optional
19 } _links
20 }
21

22 template GetPetById_HAL GetPetHal := {
23 accept := "application/hal+json",
24 petId := 22
25 }
26 ...
27 }

Listing 14: A TTCN-3 type system for a HAL extended

GetPetById operation

By using such types, variations of application-level testing

can be performed. For example, it can be possible to define

assertions that assert the validity of individual link relations

(like self) or all link relations for each received response.

This approach could also be combined with idempotency

assertions, as introduced earlier. The different application-level

testing approaches are currently under validation. Results on

the effectiveness could be published in a later phase.

E. Implementation and validation

Fig. 3 outlines the structure and functional components of

our proposed RESTful API test framework, RJ-Plugin9.

It fully respects the specification of the TTCN-3 test system

architecture, as defined in [18] [19] [20]. It consists of a

set of mapping rules (a), a collection of predefined TTCN-3

libraries (b), as well as the respective TTCN-3 system adapters,

platform adapters, and codecs (SA, PA, CD), packaged as

TTworkbench plugins. With such a framework available, a

broad range of new applications for TTCN-3 is opened in

micro-service testing. For example, TTCN-3 can be used

for micro-service unit testing, as well as integration testing.

Applying the parallelization concepts of TTCN-3 scalability

9Published as open-source for Spirent’s TTworkbench under the MIT
license, available for review

504

and performance tests could be generated on the same test

basis as for the functional tests.

Fig. 3: Components and structure of the framework (RJ-

Plugin)

While under constant development the framework offers the

following features

• Multiple components support, to enable multiple, parallel

executing test components

• Basic and API-Key authentication support.

• Flexible JSON encoding via POTO mapping or, if avail-

able via ”JSON” or ”JSON RFC7159”

• Functional support for RMM-level 2 aspects like testing

idempotency
• Initial support for application/hal+json media type

as a representation of hypermedia in RESTful APIs on

RMM-level 3

We validated our approach by testing various publicly avail-

able API in OpenData10, IoT11, and smart home systems12.

Some APIs offered an OpenAPI, aka swagger, specifications,

others did not. For APIs that did not offer an OpenAPI spec,

we specified one and applied the mapping rules.

IV. RESULTS AND OUTLOOK

We have defined a TTCN-3 framework by defining a map-

ping between HTTP/JSON based RESTful API operations.

We provide a reference implementation for the Spirent’s

TTworkbench and apply it to various applications in various

domains. One of the key findings was that by using a struc-

tured test approach, we could identify underspecifications, like

undocumented status code for responses. While all APIs used

the term REST API, according to our assessment, none of

the tested APIs achieved RMM-level 3 maturity. Only one

(LaMetric) made some use of hypermedia concepts.

We are planning to support the automatic generation of the

TTCN-3 type system for OpenAPI v2/v3 specifications and

adding XML support.

10e.g. Deutsche Bahn APIs
11e.g. Mathworks ThingSpeak API
12e.g. LaMetric API or Timeular API

ACKNOWLEDGMENT

Funded by the German Federal Ministry of Education and

Research(BMBF) - NR 16DII113. We are also grateful to the

anonymous reviewers for their valuable suggestions to improve

the quality of the presented ideas in this paper.

REFERENCES

[1] R. Fielding and J. Reschke, “Hypertext Transfer Protocol (HTTP/1.1):
Semantics and Content - RFC 7231,” Jun. 2014, library Catalog:
tools.ietf.org. [Online]. Available: https://tools.ietf.org/html/rfc7231

[2] W3C, “Web Services Architecture - Relationship to the World
Wide Web and REST Architectures,” 2004. [Online]. Available:
https://www.w3.org/TR/ws-arch/#relwwwrest

[3] ——, “Web Services Description Language (WSDL) Version 2.0 Part
1: Core Language,” 2007. [Online]. Available: https://www.w3.org/TR/
wsdl20/

[4] ——, “Simple Object Access Protocol (SOAP) 1.1,” 2000. [Online].
Available: https://www.w3.org/TR/2000/NOTE-SOAP-20000508/

[5] OpenAPI Initiative, “OpenAPI Specification (OAS) v3.0.3,” Feb. 2020.
[Online]. Available: http://spec.openapis.org/oas/v3.0.3

[6] Smartbear Software, “OpenAPI Specification - Version 2.0 Swagger.”
[Online]. Available: https://swagger.io/specification/v2/

[7] R. T. Fielding, “Architectural Styles and the Design of Network-based
Software Architectures,” Doctoral Thesis, University of California,
Irvine, 2000. [Online]. Available: https://www.ics.uci.edu/∼fielding/
pubs/dissertation/top.htm

[8] ECMA International, “The JSON Data Interchange Syntax,”
Dec. 2017. [Online]. Available: http://www.ecma-international.org/
publications/files/ECMA-ST/ECMA-404.pdf

[9] ETSI. European Telecommunications Standards Institute (ETSI), “ETSI
Standard (ES) 201 873-7 V4.7.1: The Testing and Test Control Notation
version 3; Part 7: Using ASN.1 with TTCN-3,” 2018, pages: 1-320
Volume: 1 Place: Sophia- Antipolis, France.

[10] ——, “ETSI Standard (ES) 201 873-9 V4.10.1: The Testing and Test
Control Notation version 3; Part 9: Using XML schema with TTCN-3,”
2019, pages: 1-320 Volume: 1 Place: Sophia- Antipolis, France.

[11] ——, “ETSI Standard (ES) 201 873-11 V4.8.1: The Testing and Test
Control Notation version 3; Part 11: Using JSON with TTCN-3,” 2018,
pages: 1-34 Volume: 1 Place: Sophia- Antipolis, France.

[12] ——, “ETSI Standard (ES) 201 873 V4.11.1: The Testing and
Test Control Notation version 3; Parts 1-11,” 2019, pages: 1-320
Volume: 1 Place: Sophia- Antipolis, France. [Online]. Available:
http://www.ttcn-3.org/index.php/downloads/standards

[13] R. T. Fielding, “REST APIs must be hypertext-driven,” Oct.
2008, library Catalog: roy.gbiv.com. [Online]. Available: https:
//roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven

[14] Google, “Protocol Buffers Version 3 Language Specification |
Google Developers.” [Online]. Available: https://developers.google.
com/protocol-buffers/docs/reference/proto3-spec

[15] Smartbear Software, “Petstore - A sample server.” [Online]. Available:
https://petstore.swagger.io/

[16] M. Kelly, “HAL - Hypertext Application Language,” Sep. 2013.
[Online]. Available: http://stateless.co/hal specification.html

[17] ——, “JSON Hypertext Application Language,” library Cat-
alog: tools.ietf.org. [Online]. Available: https://tools.ietf.org/html/
draft-kelly-json-hal-08

[18] ETSI. European Telecommunications Standards Institute (ETSI), “ETSI
Standard (ES) 201 873 V4.11.1: The Testing and Test Control Notation
version 3; Part: 1: TTCN-3 Core Language,” Apr. 2019.

[19] ——, “ETSI Standard (ES) 201 873-5 V4.8.1: The Testing and Test
Control Notation version 3; Part: 5: TTCN-3 Runtime Interface (TRI),”
May 2017.

[20] ——, “ETSI Standard (ES) 201 873-6 V4.12.1: The Testing and Test
Control Notation version 3; Part: 6: TTCN-3 Control Interfaces (TCI),”
May 2020.

505

