
A Performance Benchmarking Methodology for
MQTT Broker Implementations

Ilie-Daniel Gheorghe-Pop

SQC
Fraunhofer FOKUS

Berlin, Germany
ilie-daniel.gheorghe-

pop@fokus.fraunhofer.de

Alexander Kaiser
Relayr GmbH

Berlin, Germany
alexander.kaiser@relayr.de

Axel Rennoch
SQC

Fraunhofer FOKUS
Berlin, Germany

axel.rennoch@fokus.fraunhofer.de

Sascha Hackel
SQC

Fraunhofer FOKUS
Berlin, Germany

sascha.hackel@fokus.fraunhofer.de

Abstract— The rapid growth of IoT across the globe has been
significant over the past decade. As the number of connected
devices increases by the order of billions year over year, the
capacity and operating costs of IoT networks and associated
communications software becomes crucial. The manufacturers,
software developers, integrators, telco operators as well as
business-end users face an increasing need of a benchmarking
reference that covers performance aspects of IoT transport
protocols. This paper introduces a performance benchmarking
methodology as well as examples for the definition of performance
tests for the MQTT protocol. The implementation work was done
within the open source project IoT Testware project which is part
of the Eclipse Foundation. The test suites were specified in TDL-
TO and realized in TTCN-3 using the open source IDE Eclipse
Titan. The test specifications are covered by the standardization
activities of the ETSI working group MTS TST.

Keywords— Performance testing, Benchmarking methodology,
MQTT, IoT, Open Source, TTCN-3

I. INTRODUCTION
IoT has become a major field in computing. The IoT

ecosystem has quickly evolved, driven by rapid developments
in standards, technologies and platforms. The continuous
adoption of IoT across major economic sectors such as
Agriculture, e-Health, Manufacturing, Automotive, Retail,
Transport and Mobility as well as building and home
automation[1] has provided both challenges as well as business
opportunities for the IT&C domain.

Cloud adoption has also been rising across all major
industries. As the business evolves, tailored services are being
developed addressing the vertical sectors. Among these, PaaS
Cloud services for IoT applications have seen a significant
increase over the last years[2].

As a wide range of IoT devices are constantly entering the
market. At the same time, numerous new cloud solutions from
small vendors are being developed and racing to create
integrated commercial systems. For IoT communication in
particular, cloud adoption has created the demand for
increasingly reliable, secure and scalable IT solutions. For
developers, this has become a constant challenge in the rapidly
evolving industry.

Due to the wide range of use-cases for IoT applications,
solutions are addressing very specific requirements and are very
heterogeneous. Many studies [3]-[11] have addressed these
characteristics of IoT communication protocols. Additionally, in
[12], the authors survey the most common application layer
communication protocols based on their main characteristics
and try to address the specific issues of communication.

Among the many transport protocols being developed, some
have gained more traction due to their applicability. In one
survey [13], the authors have provided details about the
characteristics and specific IoT applications for such protocols.
One specific challenge for the provider of an IoT
communications component that implements such a protocol, is
to be able to calibrate it in order to adapt to the network
conditions and service demands. In order for such a system
component to be commercially selected, it must first of all fulfil
all the specific system requirements. The next important aspect
lies in the operating costs and features. This is where scalability
and performance become a main differentiating factor.

The authors in[12] have concluded that the message queue
telemetry transport protocol (MQTT) is one of the most mature
protocols suitable for IoT communication cloud architectures.
MQTT has been introduced in 1999 by IBM and published as a
standard in 2013 by OASIS [14] and further developed
throughout the years to address new industry requirements,
currently reaching version 5.0 [15].

Although MQTT broker performance requirements differ
significantly depending on the targeted application, this paper
aims to provide a generic approach towards its evaluation. As
such, it proposes a benchmarking methodology for the MQTT
broker implementations. This methodology addresses the
specific requirements in terms of timing constraints, capacity
and robustness. At the same time, it also presents the work
performed towards standards development in the performance
evaluation of the MQTT protocol [33].

This paper is organized as follows: Section II provides the
background and related work. Section III introduces the
performance metrics and measurement considerations. Section
IV presents the benchmarking methodology and the general
approach for performance evaluations. Section V presents
different benchmarking scopes as well as a practical example.

506

2020 IEEE 20th International Conference on Software Quality, Reliability and Security Companion (QRS-C)

978-1-7281-8915-4/20/$31.00 ©2020 IEEE
DOI 10.1109/QRS-C51114.2020.00090

Finally, section VI presents the conclusions and outlook on
further work.

II. BACKGROUND
Because the IoT hardware is usually not acquired directly by

the IoT communication software provider, and the IoT
communication software solution is usually deployed on a
commercial cloud, realistic end-to-end test cycles are needed to
assess the performance of the solution and establish commercial
SLAs. For MQTT, a reliable and generic evaluation
methodology is currently not standardized. Because of this,
various dimensioning and capacity principles are used for the
overall solution architecture. These principles need to adapt to
the specifics of the environments ranging from local datacentres
to commercial public or private cloud. Additionally, even within
the same cloud provider there is a product range to choose from.

An important element is the connectivity between the IoT
platform solution components. Another critical element is the
connectivity with the external network components (MQTT
publishers and subscribers). Moreover, the compute and storage
resource consumption across system components are rarely
linearly dependent of the number of connected devices so the
scaling parameters of the solution need to be specifically
calculated.

Over the past few years, there have been several studies and
evaluation methods [18]-[18] proposed to characterize and
evaluate MQTT brokers. The most popular brokers chosen for
the evaluation were open source due to their accessibility. Our
work proposes a standardized requirements-driven performance
evaluation methodology and the associated example
implementation within the open-source IoT Testware project
[21][20][21] which is part of the Eclipse Foundation. Following
the standards-oriented testing model presented in [22], the test
suites developed were specified in TDL-TO[23][24][25] and
realized in TTCN-3[26] using the open source IDE Eclipse
Titan[27]. Furthermore, the standardization work in this
direction is currently ongoing within ETSI[28] complementing
the conformance[29] and security testing[30].

This approach aims to provide a uniform means of
evaluating the performance and benchmark testing of MQTT
broker implementations in accordance with the industry
practices. In the next section the MQTT broker performance
metrics are introduced.

III. PERFORMANCE METRICS
The performance metrics specified herein pertain to the

specifics of a MQTT broker implementation. As such, the
objective is to use these metrics in order to determine how well
the MQTT broker is performing its’ functions. As MQTT is a
transport protocol, the metrics will be focused on how fast,
reliable and efficient the transport of data is handled. The
metrics are designed to fit this purpose while covering multiple
use-case scenarios.

In order for the collected measurement data to be useful,
special consideration needs to be given to the test system (TS)
setup. Given that the performance evaluation is targeting one or
several brokers, identical TS setup characteristics are required in
order for the evaluation results to allow valid comparisons

between them. Some of the characteristics may refer to
infrastructure, hardware, physical or virtual resources as well as
network connectivity resources.

A. Measurement Methodology
From the performance perspective, all measurable metrics

related to the protocol should be considered. Although not
exhaustive, these metrics can be categorized as initially
proposed in [31] as follows:

Powerfulness metrics include 3 sub categories:
Responsiveness, Capacity and Scalability. From the
Responsiveness category the response time, roundtrip time and
latency time metrics are used. From the Capacity category the
arrival capacity, peak capacity, in progress capacity, streaming
capacity and Throughput capacity metrics are used. From the
Scalability category the scaling capacity metric is used.

Reliability metrics include 6 sub categories: Quality-of-
Service, Stability, Availability, Robustness, Recovery, and
Correctness. The Quality of Service sub category refers to well
defined requirements which may include acceptable values or
ranges for metrics from other categories. Stability refers to the
capacity of the System to deliver acceptable performance over
time. From the Availability sub category, the logical availability
metric is used. From the Robustness sub category, the service
capacity reduction and service responsiveness deterioration
metrics are used. From the Recovery sub category, the service
restart characteristics metric is used. Correctness metrics cover
the ability of delivering correctly processed requests under high
or odd load conditions.

Efficiency metrics cover resource utilization. The metrics
cover the characteristics of resource usage, linearity, scalability
and bottleneck. The efficiency metrics in this context are
referring to the service level and not covering the platform level.

B. Test Parameters
As a general practice, the benchmarking test environment

should reflect as close as possible the production environment.
For this reason, deployment platform and network parameters
should be the same as in production. For the benchmark test
script controlling the test system (TS) three types of parameter
categories have been identified: Test input specific parameters,
test output specific results and MQTT protocol standard v3.1.1.
[14] specific elements further described in the following tables:

Table I contains a non-exhaustive list of test parameters
defined for the benchmark standard. The list is expected to grow
over time, as additional subsystems and system configurations
are developed. These cover the test duration and measurement
intervals, type of protocol specific messages, transport network
specifics as well as performance metric validation thresholds.

Table II presents a non-exhaustive list of test output metrics.
These cover the time-measurement results of the protocol
specific application message calls. The listed metrics include
success and error rates, number of processed protocol specific
operations per time unit (e.g. connection requests per second) as
well as minimum, maximum and average durations for protocol
specific operations (e.g. min/max/average PUBLISH duration)

507

Table III includes the MQTT set of control packet messages
as well as their specific source and destination as well as whether
they have an associated payload.

In the following section, the benchmarking methodology is
presented.

IV. BENCHMARKING METHODOLOGY
This sections aims to describe a viable methodology for

benchmarking the performance of an MQTT broker. The
approach is inspired from the examples in [32] from the point of
view of measurement preconditions, approach and statistically
consistent measurement sampling.

As a general precondition for performance benchmarking, a
functionally correct implementation is a prerequisite. For this
the general assumption is that the broker has passed the
conformance testing described in [29].

A. Benchmarking Steps
First, the System under Test is described, including

hardware, resource manager (bare-metal/virtualization
technology) and network connectivity (type: wired/air, latency,
throughput capacity). This includes both the resources dedicated
to the broker as well the ones for the test system.

Second, the type of performance benchmarking is
established: whether the tests aim to determine the system KPI
values or the tests aim to check whether the system meets
established performance requirements. Depending on the
objective, the approach will differ. In this step the KPIs and
metrics w/o thresholds are selected. Two examples are presented
in section V reflecting the specific approach.

Third, the appropriate tests are selected and the test input
parameters are specified. These include the test types, duration,
metric threshold requirements, sample size and validation

TABLE II. TEST OUTPUT

Metric Description
Minimum call duration The minimum duration of a successful message request/response interaction within a Monitoring Window
Maximum call duration The maximum duration of a successful message request/response interaction within a Monitoring Window
Average call duration The average duration of a successful message request/response interaction within a Monitoring Window
Total number of calls The total number of workload specified request/response type operations executed during the test

Success rate Percentage number of successful workload operations relative to the total workload operations
Error rate Percentage number of failed workload operations relative to the total workload operations

Requests processed per
time unit

This metric reflects the average number of successfully processed requests per preferred time unit
(second/minute/etc.)

 TABLE I. MQTT MESSAGE TYPES

Control Packet Name Description Client-> Server Server-> Client Payload
CONNECT client requests a connection to the server � Required
CONNACK acknowledge connection request � None
PUBLISH Publish message � � Optional
PUBACK Publish acknowledgement � � None
PUBREC Publish received (QoS 2 publish received) � � None
PUBREL Publish release � � None

PUBCOMP Publish complete � � None
SUBSCRIBE Subscribe to topics � Required

SUBACK Subscribe acknowledgement � Required
UNSUBSCRIBE Unsubscribe from Topics � Required

UNSUBACK Unsubscribe acknowledgement � Required
PINGREQ Ping request � None
PINGRESP Ping response � None

DISCONNECT Disconnect notification � � None
AUTH Authentication Exchange � � None

TABLE III. TEST PARAMETERS

Parameter Description
Duration Amount of time that a system load is presented to a SUT

Type of call Type of messages contained within a workload
NoC number of clients generating or subscribing to data/control traffic
NoS Number of servers handling data/control traffic

Transport interface Underlying transport interface
WLF for GTW Work load factor for gateway expressed in number messages received per second, by type of message

Payload Size of the data in Bytes carried within a message.
Monitoring Window(s) The time interval window for which the monitored metrics are recorded. This reflects the measuring accuracy

(e.g. per second, minute, hour etc.)
Validation threshold(s) The specific metric thresholds used for validating whether a system performs at specifications.

508

checks. Then, the monitoring system is configured, and the
appropriate metrics are selected for observation.

Fourth, the tests are executed and the metrics are collected.
For this stage it is highly relevant that the TS and broker are not
affected by external factors in terms of compute and network
resources. As an example, the monitoring system load on both
the network and compute resources is commonly not taken into
consideration and this leads to skewed results.

Finally, the test results are checked and validated leading to
a verdict whether the performance tests are passed or failed.

B. Benchmarking Metric Examples
Finally, the test results are checked and validated leading to

a verdict whether the performance tests are passed or failed.

• connection-release delay: the time delay between
DISCONNECT message and TCP connection closing.
Value expressed in milliseconds (ms).

• setup-delay: the time interval starts when a CONNECT
message is sent and ends when the corresponding
CONNACK message has been received back. Value
expressed in milliseconds (ms).

• publish delay: the time interval starts when a PUBLISH
message is sent and ends when the corresponding
PUBACK/PUBCOMP message has been received.
Value expressed in milliseconds (ms).

• subscription delay: the time between SUBSCRIBE and
SUBACK message. Value expressed in milliseconds
(ms).

• unsubscription delay: the time between UNSUBSCRIBE
and UNSUBACK message. Value expressed in
milliseconds (ms).

• ping delay: the time between PINGREQ and PINGRESP
message. Value expressed in milliseconds (ms).

For each of the measurements enumerated above, the
minimum, maximum and average values are also calculated
according to Table 2 and reported to the specified monitoring
windows.

C. Benchmark Types
For evaluating the metrics described in sub-section B, the

benchmark tests can be grouped in 3 main categories.

1) Load Tests: These tests are used for determining or
validating the broker workload range. The workload consists of
one or multiple message exchanges between the broker and the
Test System. The aim is to observe the Powerfulness and
Efficiency metrics as well as the Correctness (Reliability
category) metric in order to determine or validate the maximum
operating workload handled by the broker.

2) Endurance Tests: These tests are used for determining or
validating the broker Reliability and Efficiency. These tests
generally consist of exposing the broker to a variable or high
operational workload for long periods of time. The metrics
observed are the Reliability and Efficiency ones. This type of

testing covers operational aspects such as degradation over time,
memory leaks and resource consumption estimates.

3) Stress Tests: These tests are used for determining or
validating the broker Robustness and Recovery (Reliability
category) metrics. This is achieved by injecting workload spikes
throughout the test and observing the degradation and recovery
patterns of the system as well as the maximum workload
operational limits.

V. BENCHMARKING EXAMPLES

A. KPI Determination
A KPI determination benchmark is an exploratory

performance evaluation that aims to determine the operational
performance of a broker. The KPIs are specified as an input. The
scope of this evaluation is to establish a reliable indication of
how the System under Test is expected to perform in production.
The KPIs are determined according to the intended use-case
scenario for the broker.

B. KPI Validation
The KPI validation benchmark is performance evaluation

that aims to validate whether the broker performs according to
requirement specifications. The KPIs and their thresholds are
specified as an input. The scope of this evaluation is to establish
a reliable indication of how the broker is expected to perform in
production. The KPIs are determined according to the intended
use-case scenario for the broker.

a) KPI Determination: As a first example, a device
manufacturer has finished a hardware MQTT broker prototype
for the industrial IoT market. The target objective is to provide
communication in small industrial buildings serving a potential
capacity of 50 to 5000 MQTT clients. The expected use-case
requires QoS1 for data transmission and foresees a 1000-10000
published messages per second load. Additionally, the
manufacturer wants to determine the system reliability,
specifically Stability, Availability and Correctness.

As presented in section IV the first step is to specify the SuT
hardware and network resources. In our example we consider
the underlying hardware to be a bare-metal SoC box running
Ubuntu 18.04 OS. It has a dual core 2,4 GHz CPU, 2Gb or
RAM, 120GB SSD and a 1Gb Ethernet connection. For
simplification, the network is considered wired, with a 1Gbps
throughput running TCP/IP over a 1000BASE-T Ethernet LAN
connection with an estimated 1ms end-to-end delay for all
connections. The test system (TS) consists of a quad-core power
pc with 2.4GHz CPU, 8Gb of RAM, 500GB SSD and 1Gb
Ethernet connection. The TS is deployed in virtual containers
running over a Unix environment with direct access to the
network (non-virtualized network connection). The monitoring
system resource consumption is considered negligible.

The second step is to select the KPIs and metrics of interest.
The KPIs selected by the manufacturer are Capacity (max
number of publish requests handled per second), responsiveness
(average delay of processing client requests), number of
registered subscribers, resource usage and stability. The Broker
operates with QoS 1. The selected associated metrics are as
follows:

509

• Publish delay: the time interval starts when a PUBLISH
message is sent and ends when the corresponding
PUBACK (QoS1) message has been received. Value
expressed in milliseconds (ms).

• Subscriber Count: the maximum number of registered
subscribers within a measurement window.

• Capacity: number of successfully handled Publish
messages per second. Threshold is initially set to 1000

• Correctness: percentage of successfully handled Publish
messages per second.

• Resource usage – amount of CPU, Memory used by the
IuT during the Capacity evaluation. with a min, max and
average values.

The third step consists of determining the tests and
configuring the monitoring system. According to the KPI
requirements, the type of tests required are load testing for
determining the IuT Capacity and Resource usage and
Endurance testing for determining the system Responsiveness,
Correctness and Availability. The monitoring system is
configured to record number of subscribers, PUBLISH delay,
rate of success for PUBLISH messages, CPU, Mem and
Network in/out usage. The monitoring window is set to 1 second
and post-processing averages are configured to cover 1 minute
for load tests and 1 hour for endurance tests.

1) Load Testing
1000 Clients connect to the IuT and subscribe to topics. Each

client starts sending Publish messages at a rate of 1 message per
second. The rate increases by 1 up to a maximum of 10 every
minute. The test duration is set to 10 minutes and executed 10
times. The test is repeated for an incremented number of
connected clients up to 5000 in incremental steps of 1000
clients. The input parameters are no longer incremented if the
test fails. Test duration: 10 minutes per test.

Metrics:
• number of connected clients
• number of PUBLISH messages processed per second
• average PUBLISH messages processing delay
• rate of successfully processed PUBLISH messages
• CPU load user time %
• Memory load (Mb)
• Network Packet In (Kb)
• Network Packet Out (Kb)

Test Success Criteria
• Fail criteria: rate of successfully processed PUBLISH

messages falls under 90%
• Fail criteria: CPU load goes over 80%
• Fail criteria: Memory load goes over 90%
• Pass criteria: Test ended without fail criteria triggered

2) Endurance Testing
Starting from the highest load successfully passed, the test

parameters are noted with max X where X is the metric from the
Load test. For example: max Clients connect to the broker and
subscribe to topics.

Each client starts sending Publish messages at a rate of max
message per second. The rate remains constant. The test duration
is set to 600 minutes and executed 10 times. The test is repeated

for an decremented number of connected clients down to 1000
in decremented steps of 1000 clients in case of failure. The input
parameters are no longer decremented if the test succeeds. Test
duration: 600 minutes per test.

Metrics:
• number of connected clients
• number of PUBLISH messages processed per second
• average PUBLISH messages processing delay
• rate of successfully processed PUBLISH messages
• CPU load user time %
• Memory load (Mb)
• Network Packet In (Kb)
• Network Packet Out (Kb)

Test Success Criteria:
• Fail criteria: rate of successfully processed PUBLISH

messages falls under 90%
• Fail criteria: CPU load goes over 80%
• Fail criteria: Memory load goes over 90%
• Pass criteria: Test ended without fail criteria triggered.

The fourth step consists of executing the tests. As a general
precondition: the SuT is operational – MQTT broker is active.
TS is operational and connected to the SuT. Finally, the results
are collected and the Powerfulness, Reliability and Efficiency
selected KPI values are determined.

C. Examples of Tests
A test should be presentable as a document, with

accompanying data files, that provides a full description of an
execution of a performance test on a test system. Description of
the test case and objective of the test case, e.g., the definition of
the targeted metrics should be contained therein. The following
sections should be addressed in general:

• Test procedure: Description of the execution of the test
o Test sequence to run the test case: sequence

of actions for running the experiment and
collect the measurements needed to compute
the metrics

o Test duration (per iteration).

o Number of iterations of the experiment.
Number of repetitions of the experiments to
obtain relevant statistical results.

o Measurements collected to compute the
metrics.

• Procedure for metrics calculation
o Description of the procedure applied

(statistical aggregation, algorithm, etc. to
compute the metrics based on the raw
measurements collected.

• Expected output of the test case
o Test report

An example recommended test report is presented in Table
IV. Furthermore, a series of examples for load, endurance and
stress tests examples with TDL-TO are presented in Tables V-
VII.

510

TABLE V. TEST REPORT EXAMPLE

Test Number T-01 Test Category Performance Test Type Load Testing
Test Objective "Determine if the IUT(broker) can handle the given incremental load for a determined period of

time without exceeding the delay threshold within a given acceptable message loss rate."
Test

Description
Test Scenario 1

Test Case 1
Configuration 1: Against

Mosca Server

Test Scenario 1
Test Case 1

Configuration 2: Against
Mosquitto Server

Reference
2ms

Preconditions the CLIENT having a MQTT_CONNECTION to the IUT
Expected

Behaviour
ensure that {
 when {
 (.) at time point t1: the tester entity send multiple PUBLISH messages and
 assure the INCREMENTAL_RATE and

 (!) during the INTERVAL after t1: the IUT entity receive multiple PUBLISH message
containing

 topic_name corresponding to TOPIC,
 payload corresponding to RETAINED_MESSAGE;
 }
 then {
 (!) INTERVAL after t1 :
 the IUT entity assure and send the PUBACK messages and
 the IUT entity assure the packet_loss_limit and
 the IUT entity assure the DELAY;
 }

Output Average PUBLISH/PUBACK delay in ms (KPIx),
Measurements Publish Success Rate Sequence Delay Reference

Values TC1 100% 0.998ms 2 ms
Values TC2 100% 0.93ms 2 ms

TABLE IV. PERFORMANCE LOAD TEST PURPOSE EXAMPLE WITH TDL-TO

TP Id TP_MQTT_Performance_Broker_Endurance_003
Test Objective Determine if the IUT(broker) can handle the given incremental load for a determined period of time without

exceeding the delay threshold within a given acceptable message loss rate.
Reference [MQTT-3.1.2-9], [MQTT-3.1.4-1], [MQTT-3.2.2-6]
PICS Selection PICS_BROKER_BASIC and PICS_BROKER_PERFORMANCE and PICS_CLIENT_BASIC

Initial Conditions
with {
 the CLIENT having a MQTT_CONNECTION to the IUT
}

Expected Behaviour
ensure that {
 when {
 (.) at time point t1:
 the tester send multiple PUBLISH messages and assure the RATE and
 (!) during the INTERVAL after t1:
 the IUT receive multiple PUBLISH message containing
 topic_name corresponding to TOPIC,
 payload corresponding to RETAINED_MESSAGE;
 }
 then {
 (!) INTERVAL after t1 :
 the IUT assure and send the PUBACK messages and
 the IUT assure the packet_loss_limit and
 the IUT assure the DELAY
 }
}

Final Conditions

511

TABLE VII. PERFORMANCE ENDURANCE TEST PURPOSE EXAMPLE WITH TDL-TO

TP Id TP_MQTT_Performance_Broker_Endurance_003
Test Objective Determine if the IUT(broker) can handle the given incremental load for a determined period of time without

exceeding the delay threshold within a given acceptable message loss rate.
Reference [MQTT-3.1.2-9], [MQTT-3.1.4-1], [MQTT-3.2.2-6]
PICS Selection PICS_BROKER_BASIC and PICS_BROKER_PERFORMANCE and PICS_CLIENT_BASIC

Initial Conditions
with {
 the CLIENT having a MQTT_CONNECTION to the IUT
}

Expected Behaviour
ensure that {
 when {
 (.) at time point t1:
 the tester send multiple PUBLISH messages and assure the RATE and
 (!) during the INTERVAL after t1:
 the IUT receive multiple PUBLISH message containing
 topic_name corresponding to TOPIC,
 payload corresponding to RETAINED_MESSAGE;
 }
 then {
 (!) INTERVAL after t1 :
 the IUT assure and send the PUBACK messages and
 the IUT assure the packet_loss_limit and
 the IUT assure the DELAY
 }
}

Final Conditions

TABLE VI. PERFORMANCE STRESS TEST PURPOSE EXAMPLE WITH TDL-TO

TP Id TP_MQTT_Performance_Broker_Stress_003
Test Objective Determine if the IUT(broker) can handle the given spiking load for a determined period of time without

exceeding the delay threshold within a given acceptable message loss rate.
Reference [MQTT-3.1.2-9], [MQTT-3.1.4-1], [MQTT-3.2.2-6]
PICS Selection PICS_BROKER_BASIC and PICS_BROKER_PERFORMANCE and PICS_CLIENT_BASIC

Initial Conditions
with {
 the CLIENT having a MQTT_CONNECTION to the IUT
}

Expected Behaviour
ensure that {
 when {
 (.) at time point t1:
 the tester send multiple PUBLISH messages and assure the RATE and
 (!) during the INTERVAL after t1:
 the IUT receive multiple PUBLISH message containing
 topic_name corresponding to TOPIC,
 payload corresponding to RETAINED_MESSAGE; and
 (.) at time point t2:
 the tester send multiple PUBLISH messages and assure the SPIKE_RATE and
 (!) during the INTERVAL after t1: the IUT receive multiple PUBLISH message containing
 topic_name corresponding to TOPIC,
 payload corresponding to RETAINED_MESSAGE;
 }
 then {
 (!) INTERVAL after t2 :
 the IUT assure and send the PUBACK messages and
 the IUT assure the packet_loss_limit and
 the IUT assure the DELAY
 }
}

Final Conditions

512

VI. CONCLUSIONS AND FUTURE WORK
In this paper we described a performance evaluation

benchmarking methodology for MQTT broker
implementations. The proof of concept implementation was
performed using the Eclipse Titan framework within the IoT
Testware open source project. In addition, the work presented
herein is also part of standardization efforts [33].

A benchmark example was provided using the described
methodology. Additionally, test examples specified in TDL-TO
and realized in TTCN-3 Eclipse Titan were presented. Future
work will attempt to use this methodology on a real-life
production system and disseminate the results.

ACKNOWLEDGMENT
The work is supported by the experts from the ETSI TC

MTS working group TDL and TST. The work on IoT test
purposes has been partly funded by the German Federal Ministry
of Economics and Technology with its project IoT-T. The
authors appreciate the Eclipse foundation, in particular the
members of the IoT-Testware and Titan projects for their
contributions.

REFERENCES
[1] Rayes A., Salam S. (2019) “IoT Vertical Markets and Connected

Ecosystems”. In: Internet of Things From Hype to Reality. Springer,
https://doi.org/10.1007/978-3-319-99516-8_9

[2] [Online] Statista Research Department, (May , 2020) “Number of
publicly known Internet of Things (IoT) platforms worldwide from 2015
to 2019” Available: https://www.statista.com/statistics/1101483/global-
number-iot-platform/

[3] A. Al-Fuqaha, A. Khreishah, M. Guizani, A. Rayes and M. Mohammadi,
"Toward better horizontal integration among IoT services," in IEEE
Communications Magazine, vol. 53, no. 9, pp. 72-79, September 2015,
doi: 10.1109/MCOM.2015.7263375.

[4] [Online] Andrew Foster (PrismTech Whitepaper) “Messaging
Technologies for the Industrial Internet and the Internet of Things”, 2014.
Available: https://www.smartindustry.com/assets/Uploads/SI-WP-
Prismtech-Messaging-Tech.pdf

[5] N. Naik, "Choice of effective messaging protocols for IoT systems:
MQTT, CoAP, AMQP and HTTP," 2017 IEEE International Systems
Engineering Symposium (ISSE), Vienna, 2017, pp. 1-7, doi:
10.1109/SysEng.2017.8088251.

[6] J. Ramirez and C. Pedraza, "Performance analysis of communication
protocols for Internet of things platforms," 2017 IEEE Colombian
Conference on Communications and Computing (COLCOM), Cartagena,
2017, pp. 1-7, doi: 10.1109/ColComCon.2017.8088198.

[7] S. N. Swamy, D. Jadhav and N. Kulkarni, "Security threats in the
application layer in IOT applications," 2017 International Conference on
I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC),
Palladam, 2017, pp. 477-480, doi: 10.1109/I-SMAC.2017.8058395.

[8] M. B. Yassein, M. Q. Shatnawi and D. Al-zoubi, "Application layer
protocols for the Internet of Things: A survey," 2016 International
Conference on Engineering & MIS (ICEMIS), Agadir, 2016, pp. 1-4, doi:
10.1109/ICEMIS.2016.7745303.

[9] L. Nastase, "Security in the Internet of Things: A Survey on Application
Layer Protocols," 2017 21st International Conference on Control Systems
and Computer Science (CSCS), Bucharest, 2017, pp. 659-666, doi:
10.1109/CSCS.2017.101.

[10] Karagiannis, Vasileios & Chatzimisios, Periklis & Vázquez-Gallego,
Francisco & Alonso-Zarate, J.. (2015). A survey on application layer
protocols for the Internet of Things. Trans. IoT Cloud Comput.. 3. 11-17..

[11] Masek, P., Hosek, J., Zeman, K., Stusek, M., Kovac, D., Cika, P., …
Kröpfl, F. (2016). Implementation of True IoT Vision: Survey on
Enabling Protocols and Hands-On Experience. International Journal of
Distributed Sensor Networks. https://doi.org/10.1155/2016/8160282.

[12] Jasenka Dizdarevi�, Francisco Carpio, Admela Jukan, and Xavi Masip-
Bruin. 2019. A Survey of Communication Protocols for Internet of Things
and Related Challenges of Fog and Cloud Computing Integration. ACM
Comput. Surv. 51, 6, Article 116 (February 2019).
https://doi.org/10.1145/3292674

[13] Tara Salman, Raj Jain, ”A Survey of Protocols and Standards for Internet
of Things”, Advanced Computing and Communications, Vol. 1, No. 1,
March 2017, arXiv:1903.11549

[14] OASIS, “MQTT Version 3.1.1,” 2014, Available: http://docs.oasis-
open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html, (visited Nov,2019)

[15] OASIS, “MQTT Version 5.0”, 2019 . Available: https://docs.oasis-
open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html, (visited Nov, 2019)

[16] M. Houimli, L. Kahloul and S. Benaoun, "Formal specification,
verification and evaluation of the MQTT protocol in the Internet of
Things," 2017 International Conference on Mathematics and Information
Technology (ICMIT), Adrar, 2017, pp. 214-221, doi:
10.1109/MATHIT.2017.8259720.

[17] E. Bertrand-Martínez, P. Feio, V. Nascimento, B. Pinheiro, A. Abelém:
A Methodology for Classification and Evaluation of IoT Brokers, IFIP
2019, DOI: 978-3-903176-23-2

[18] D. Thangavel, X. Ma, A. Valera, H. Tan and C. K. Tan, "Performance
evaluation of MQTT and CoAP via a common middleware," 2014 IEEE
Ninth International Conference on Intelligent Sensors, Sensor Networks
and Information Processing (ISSNIP), Singapore, 2014, pp. 1-6, doi:
10.1109/ISSNIP.2014.6827678.

[19] [Online] Eclipse IoT-testware:
Available:https://projects.eclipse.org/projects/technology.iottestware

[20] [Online] IoT-T project, Available: https://www.iot-t.de/
[21] I. Schieferdecker, S. Kretzschmann, A. Rennoch, M. Wagner: IoT-

Testware – an Eclipse project. IEEE QRS 2017, DOI
10.1109/QRS.2017.59

[22] A. Kaiser, S. Hackel: Standards-Based IoT Testing with Open-Source
Test Equipment. IEEE QRS 2019, DOI 10.1109/QRS-C.2019.00085

[23] ETSI Test Description Language (TDL) standards (ES 203 119):
Available: https://tdl.etsi.org/index.php/downloads

[24] ETSI TPLan: A notation for expressing Test Purposes. Available:
https://portal.etsi.org/Services/Centre-for-Testing-Interoperability/ETSI-
Approach/Testing-Languages/TPLAN

[25] ETSI TR 103 119, Methods for Testing and Specification (MTS); The
Test Description Language (TDL); Reference Implementation

[26] ETSI TTCN-3 standards (ES 201 873) Available: http://www.ttcn-
3.org/index.php/downloads/standards

[27] [Online] Eclipse Titan: https://projects.eclipse.org/projects/tools.titan
[28] ETSI TR 103 119, Methods for Testing and Specification (MTS); The

Test Description Language (TDL); Reference Implementation
[29] ETSI Test Specification for MQTT; Part 1: Conformance Tests

https://portal.etsi.org/webapp/WorkProgram/Report_WorkItem.asp?WK
I_ID=54401

[30] ETSI Test Specification for MQTT; Part 2: Security Tests
https://portal.etsi.org/webapp/WorkProgram/Report_WorkItem.asp?WK
I_ID=54410

[31] ETSI TR 101 577: Methods for Testing and Specifications (MTS);
Performance Testing of Distributed Systems; Concepts and Terminology

[32] RFC2544: Benchmarking Methodology for Network Interconnect
Devices

[33] ETSI Test Specification for MQTT; Part 3: Performance Tests Available:
https://portal.etsi.org/webapp/WorkProgram/Report_WorkItem.asp?wki
_id=54411

513

