2020 IEEE 20th International Conference on Software Quality, Reliability and Security Companion (QRS-C)

Using TDL for Standardised
Test Purpose Definitions

Philip Makedonski Ilie-Daniel Gheorghe-Pop Axel Rennoch
Institute of Computer Science SO0C SOC
University of Gottingen Fraunhofer FOKUS Fraunhofer FOKUS

Gottingen, Germany
makedonski@cs.uni-goettingen.de

Berlin, Germany
ilie-daniel.gheorghe-

Berlin, Germany
axel.rennoch@fokus.fraunhofer.de

pop@fokus.fraunhofer.de

Finn Kristoffersen Bostjan Pintar Andreas Ulrich
Cinderella ApS SINTESIO Foundation Siemens AG

Hvidovre, Denmark Kranj, Slovenia Miinchen, Germany

finn@cinderella.dk pintar@sintesio.org andreas.ulrich@siemens.com

Abstract—This article reports on experiences from the use of
the ETSI Test Description Language (TDL) and its extension for
structured test objective specification (TDL-TO) for the definition
of functional and non-functional test purposes in the Internet of
Things (IoT) domain. The experiences are based on results from
different working groups at ETSI TC MTS and the ETSI Special-
ist Task Force (STF) 574, focusing on the definition of test pur-
poses for functional, security, and performance testing of the
CoAP and MQTT protocols as well as VXLTE interoperability
testing.

Keywords—Test description, test purposes, security, perfor-
mance, interoperability, CoAP, MQTT, IoT, VxLTE

I. INTRODUCTION

The ETSI Test Description Language (TDL) [4] is a new do-
main-specific language for the specification of test descriptions
and the presentation of test execution results developed and
standardised at the European Telecommunications Standards In-
stitute (ETSI) by the Technical Committee Methods for Testing
and Specification (TC MTYS). It consists of a standardised meta-
model defining the relevant concepts, the relationships among
them, and the associated semantics. Test descriptions in TDL are
instances of the meta-model. Concrete representations of the in-
stances can take the form of structured text, graphical shapes,
and machine-readable assets for model exchange between tools.

While the main focus of TDL is on the specification of elab-
orated test descriptions, including relevant test data, test config-
urations, and test scenarios, standardised extensions provide
means to widen the scope of TDL to accommodate certain use
cases. The Structured Test Objective (TDL-TO) extension [1]
adopts established concepts for the specification of test pur-
poses, based in part on experiences with the previously applied
Test Purpose Language (TPLan) [5]. TDL-TO integrates these
concepts in TDL models by providing a (semi-) structured
means for expressing test objectives and mapping the resulting
structures to TDL model elements, which can then be used to
streamline the transition from test purposes to test descriptions.

Makedonski et al. [9] reported on a study initiated by the
ETSI Centre for Testing and Interoperability (CTI) to assess the

978-1-7281-8915-4/20/$31.00 ©2020 IEEE
DOI 10.1109/QRS-C51114.2020.00091

514

applicability of TDL for the standardisation of diverse technol-
ogies. It resulted in a set of non-trivial examples of test purposes
and test descriptions serving as a starting point for a more wide-
spread use of TDL within ETSI standardisation groups. This ar-
ticle discusses more recent experiences from the use of TDL and
in particular TDL-TO for Internet of Things (IoT) test purpose
definitions.

At ETSI, the TST working group within TC MTS develops
studies, guidelines, test catalogues, and test specifications for
specific ICT technologies that are not already covered by exist-
ing ETSI Technical Bodies (TBs). The initial technical focus of
TST is on:

e [oT network communication protocols, node connectiv-

ity, edge computing,

e JoT data accumulation and aggregation, and

e JoT application interfaces, business processes.

This article presents the current work within TST and the
achievements regarding the application of TDL-TO for the loT
domain.

Section II provides the motivation and scope for TDL, in par-
ticular the ideas and concepts behind TDL-TO and correspond-
ing tool support. Section III presents results from using TDL-
TO for the IoT protocols CoAP and MQTT. It addresses func-
tional, security, and performance testing aspects. Further expe-
riences from the test specification project defining interoperabil-
ity tests for Voice/Video over LTE (VXLTE) are discussed as
well. Finally, a short conclusion and an outlook are provided in
Section IV.

II. TDL

A. Motivation for TDL

The growing scale, complexity, and interconnectedness of
systems, compounded by the need for faster time to market and
faster iteration cycles, increases the need for more scalable and
automatable approaches for the development of test specifica-
tions. The ETSI test development process in ETSI TR 102 840
[7], based on the joint ISO/IEC and ITU-T OSI conformance

Protocol Service
Specifications Definitions
Test Suite Structure and
v Test Purposes
Profile
Specification af
Abstract Test Suites
PTS
l v
Means of Testing
\4 v
IUT, ICSs, IXITs

l

Testing the IUT

l

Test Reports

Fig. 1. Conformance testing methodology (derived from ITU-T X.290)

testing methodology and framework illustrated in Fig. 1 [9], out-
lines a sequence of steps for the derivation of executable test
cases from a base standard. The intermediate artefacts at the dif-
ferent levels of abstraction are intended for specific audiences,
such as standardisation experts, technology experts, and test en-
gineers. Major time-consuming steps involve the development
of test purposes and the implementation of the abstract test
suites. Additional input in such processes may be retrieved from
profile test specifications (PTS), implementation conformance
statements (ICSs), and implementation extra information for
testing (IXITs). In protocol testing, the latter are mapped to
PICSs and PIXITs, correspondingly. Traditionally, many of the
steps have been document-oriented and lack sufficient tooling
and automation support to enable improved quality and better
scalability of the test specification and documentation to meet
the accelerating development processes.

At the level of executable tests, ETSI TC MTS developed
and is continuously maintaining the Testing and Test Control
Notation version 3 (TTCN-3), published as ETSI ES 201 873-1
[6], over the past 20 years. At the other end of the spectrum, the
Test Purpose Language (TPLan) [5] laid some groundwork for
the structured specification of test purposes, indicating what
needs to be tested in a declarative manner. Before TDL came
along, there was a methodology gap between the high-level ex-
pression of what needs to be tested expressed in test purposes
described in TPLan or simple loosely structured prose, and the
complex coding of the executable tests in TTCN-3. TDL fills

515

that gap. TDL adopted a more modern model-based approach to
domain-specific language development, capitalising on the ben-
efits provided by mature modelling frameworks and technolo-
gies. This paved the way for a more streamlined approach to test
specification development at a faster pace and a greater scale.

B. Scope of TDL

The TDL meta-model (TDL-MM) (part 1 of [4]), provides a
common ground for customised representations by means of dif-
ferent concrete syntaxes. The standardised graphical representa-
tion (TDL-GR) (part 2 of [4]) defines corresponding shapes for
the representation of model elements in TDL specifications. It
can also serve as a blueprint for customised graphical represen-
tations tailored to specific domains and stakeholders. The TDL
exchange format (TDL-XF) (part 3 of [4]) enables the inter-
change of TDL models between tools.

Complementary to the core constituents of TDL, extensions
provide additional capabilities to accommodate specific applica-
tion scenarios. The Structured Test Objective (TDL-TO) exten-
sion (part 4 of [4]) integrates concepts related to the specification
of test purposes in TDL models. The Extended Test Configura-
tions (TDL-TC) (part 7 of [4]) extension provides means for a
more sophisticated management and reuse of test configura-
tions.

Finally, mappings to other languages provide bridges to
other technologies in a standardised manner, to streamline the
transition to executable tests, for example. The mapping to
TTCN-3 (TDL-T3) (part 6 of [4]) provides a standardised map-
ping to TTCN-3, which can also serve as a blueprint for the map-
ping to other target execution platforms. The UML profile for
TDL (UP4TDL) (part 5 of [4]) instead provides a way to use
TDL within UML based environments.

Recent maintenance and evolution efforts added support for
inheritance in data and configuration related TDL elements, en-
abling better reuse in TDL. Future endeavours may bring stand-
ardised refinement of test purposes into test descriptions, as well
as standardised mappings to other execution platforms.

C. TDL-TO

Without the TDL-TO extension, TDL provides simplified
and generic means for the specification of test objectives by
means of informal text. The TDL-TO extension introduces ad-
ditional concepts to support the specification of (semi-) struc-
tured test objectives in a more formalised manner as well as a
concrete syntax notation for representing the additional con-
cepts. The additional concepts are related to the specification of
the domain, including events and entities, as well as the structure
of the test objectives, defining event occurrence sequences for
initial conditions, expected behaviour, and final conditions. The
notation for the representation of structured test objectives is
graphical in nature. However, the contents of the event occur-
rences are in the form of an embedded structured language that
is close to natural English, where entity and event references are
surrounded by keywords and descriptive text. This approach
provides some formalisation to the specification of test objec-
tives in order to facilitate the validation of test objectives and
paves the way for transforming them to test descriptions or test
case skeletons, while still retaining a natural language feel. In

Domain {
pics:
— ACCEPTS_REQUESTS
— AUTHENTICATES_REQUESTS

entities:

- client

server
gateway
authenticator

;
events:

sends
receives
registers
acknowledges
logs
initiates
confirms

b

Fig. 2. Domain specification with TDL-TO

addition to the standardised graphical representation, a purely
textual notation is provided as an informative example.

The domain specification concepts add the notions of ab-
stract events and entities. Reusable event occurrence templates
help in defining fixed patterns for event occurrences where indi-
vidual parts can be overridden when the template is used within
a structured test objective. Finally, Protocol Implementation
Conformance Statements (PICS) provide an indication in which
implementations a particular test objective is applicable. Fig. 2
showcases an example with domain specification concepts.

Structured test objectives contain additional descriptive
meta-information, including an optional reference to a related
test configuration, as well as a selection of applicable PICS. The
initial conditions, expected behaviour, and final conditions are
comprised of event occurrence sequences, which make up the
major contribution of the TDL-TO extension. Fig. 3 showcases
an illustrative example for a minimal test purpose specified with
TDL-TO. The main part of the test purpose is contained in the

expected behaviour block. It is comprised of one or, more com-
monly as in the example, two blocks, describing the basic stim-
ulus-response pattern. When a sequence of one or more events
occurs as a stimulus, then a sequence of one or more events oc-
curs as a response to the first sequence. In the example, each
sequence is comprised of a single event occurrence. Each event
occurrence references one or, for more completeness, two (as in
the example) entities that are involved in the event occurrence.
Event occurrences also include references to the events that oc-
cur. In this example, the events are sends and receives, but they
can also be arbitrary events or states defined in the domain spec-
ification, such as moves, is, has, etc. An event argument provides
additional information regarding the event occurrence, usually
in the form of a data specification, it may also indicate a defined
state or desired position. Finally, time labels (.) and time con-
straints (/) can be used to express temporal dependencies be-
tween event occurrences and corresponding temporal require-
ments.

The initial and final conditions are omitted in the example
for brevity. They follow a similar structure as the expected be-
haviour, but only include one block with the relevant sequences
of event occurrences which define the state of the System Under
Test (SUT) before and after the test, contained in a correspond-
ing with sequence of one or more event occurrences within the
initial and/or final conditions blocks.

The textual representation is convenient for editing and ver-
sioning. The graphical representation is more convenient for em-
bedding in documents. The corresponding graphical representa-
tion for the example in Fig. 3 discussed above is shown in Fig.
4. As part of the graphical layout, some keywords, such as entity,
as well as special characters may be omitted for better readabil-
ity. Similarly, optional compartments which are empty may be
omitted in the final graphical representation.

The structured test objectives can then be refined into more
detailed test descriptions, either manually or (semi-) automati-
cally (e.g. by means of model transformations). A graphical rep-
resentation of the derived test description is shown in Fig. 5. It
can be used for documentation and communication purposes, or
as the basis for further refinement, including transformation to

Test Purpose {
TP Id GET_RESOURCE

PICS Selection ACCEPTS_REQUESTS
Expected behaviour
ensure that {

Test objective "A resource shall be received within 5ms after a request"

when {
(.) at time point t1:
the client entity sends a request
containing uri set to "/resource/";
to the server entity
}
then {
(!) within 5ms after tl1:
the client entity receives a response
containing body set to "resource: {...}";
from the server entity
}
}
}
Fig. 3. Test purpose example with TDL-TO (textual representation)

516

TP Id GET_RESOURCE

Test Objective

A resource shall be received within 5ms after a request

PICS Selection ACCEPTS REQUESTS

Expected Behaviour

ensure that {
when {
. at time point tl:
the client sends a request

to the server entity
}
then {
! Sms after tl:
the client receives a response

from the server entity

containing uri set to "/resource/"

containing body set to "resource: {...

}vv

Fig. 4. Test purpose example with TDL-TO (graphical representation of Figure 3)

executable test cases, e.g. specified in TTCN-3 with the help of
the standardised mapping of TDL to TTCN-3 (part 6 of [4]), as
shown in Fig. 6.

D. Tool support for TDL

The TDL Open Source Project (TOP) [22] fosters the shared
development and testing of contributed tools to manage TDL
models and related assets, such as generated documentation, and
different representations of the models. The TOP serves as a
common starting point to accelerate the adoption of TDL and
lowers the barrier of entry for both, users and tool-vendors. In
addition, it offers a platform to validate the TDL standards and
check their applicability, consistency, and usability.

The TOP is built on top of the Eclipse platform [23] and as-
sociated technologies, including the Eclipse Modelling Frame-
work (EMF) [24], Xtext for textual editor implementation [25],
and Sirius for graphical editor implementation [26].

For the realisation of the graphical representation of struc-
tured test objectives, it was determined that they need to be ex-
ported as tables in a Word document to better serve the end-us-
ers. Specific templates are provided to accommodate established
notations and guidelines in the different working groups. While
the original implementation for the Word generation was based
on the docx4;j library [14], recently the Apache POI library [15]
was adopted instead.

Traditionally, the TOP follows the development of the TDL
standards. While it is used to prototype and explore different so-
lutions for new features, users typically only gain access to them
after the standards are published. To involve users more actively
in the maintenance and evolution of TDL and also gain early
feedback on potential solutions, a pilot implementation-first ap-
proach for a planned feature is pursued with the variants speci-
fication. The variants specification provides means for the reuse
of whole test purposes, where variants of the test purpose with
different combinations of meta-information and event argu-
ments can be specified without the need to duplicate all the other
parts that remain unchanged. This approach does present some

517

challenges in the absence of a standardised description of the
feature that users can rely on. However, it also provides an op-
portunity for users to be involved in determining how the feature
should work. This way, users can try early on if a proposed so-
lution fulfils their requirements, rather than waiting for another
maintenance cycle to address new or changing requirements. If
this new approach proves to be successful, it may be taken up
for other features in the future as well, in order to pursue an agile
and user-driven evolution of TDL.

III. EXPERIENCES WITH TDL

Test purpose definitions have been developed and used in
industry and research, in and outside of standardization for many
years. In practice, we have seen many templates for such test
purpose definitions for various public test suites [3]. The mini-
mal parts cover an identifier, status information (e.g. manda-
tory), references (for the related requirements) and some (natural
language) text field for a textual description of the test purpose,
as illustrated in the example in Fig. 7. More detailed test purpose
descriptions may also cover e.g. selection criteria (PICSs) and
initial conditions, and distinguish between a textual summary,
the “core” definition of the condition/expectation of the test, and
some optional comments/notes. Furthermore, advanced test pur-
poses include additional information for dedicated parameters.
A higher level of detail and supplementary information about
the test purpose enable an easier and accurate implementation of
the test case within a chosen test framework.

Historically, we can observe a large variety in the templates
being used for test purposes as well as in corresponding levels
of detail and supplementary information supplied with the test
purposes. Larger test development projects have to decide about
the chosen test purpose description style and conventions, often
leading to yet more templates and differences in the information
provided as part of the test purpose specifications.

Following the advanced test methodology developed within
ETSI MTS, it was decided to apply TDL-TO for the definition
of test purposes within the work on the [oT-Testware [2] project.

Tester SUT

client : API server : API

http : HTTPGatel http : HTTPGatel

qequest (uri:
I Te~..
Resplonse (body := "resourcé: {3
="‘~1__

I I

-~
{"t1 + bms"}

Fig. 5. Test description in TDL-GR derived from Fig. 3

function setupTestConfiguration_ClientServer()
runs on MTC_BasicClientServer {

client := API.create;
map (client : http_to_server_http ,
system : server_http);

function TD_GET_RESOURCE()
runs on MTC_ClientServer {
client.start(TD_GET_RESOURCE_client_main());

function TD_GET_RESOURCE_client_main()
runs on API {
http_to_server_http.send(Request : {
uri := "/resource"
});
http_to_server_http.receive(Response :
body := "resource: {...}"

;s

{

b

testcase tc_TD_GET_RESOURCE ()
runs on MTC_ClientServer
system SYSTEM_ClientServer {
setupTestConfiguration_ClientServer() ;
TD_GET_RESOURCE() ;
all component.done ;

Fig. 6. TTCN-3 test code derived from Fig. 3 (based on part 6 of [4])

Based on our experiences, we have determined that it is essential
to define test scenarios in a formalised way to avoid misinter-
pretation and to enable the application of suitable tools support-
ing consistency checking and formatting during development
and maintenance.

Major arguments for the application of TDL-TO in the IoT
Testware project are the possibility of expressing informal test
specifications, the support of simple description structures
(event occurrence sequences), global, domain-specific keyword
definitions and the focus on a single test observation for a
pass/fail verdict criterion.

518

TPId: SIP_RG_RT_V_009

Status: Mandatory
Ref: RFC 3261 section 10.2.
Purpose: Ensure that the IUT, in order to be registered, sends

a REGISTER request to its registrar, with the same
URI in the From and the To header.

Fig. 7. Simple test purpose for the SIP protocol

In the following sections we present the specific experiences
obtained from the IoT Testware project for different testing
types and from an ETSI interoperability test specification pro-
ject on Voice and Video services over Long Term Evolution
(LTE) networks (VXLTE).

A. Functional Tests

From our experience, most standardised test purpose cata-
logues developed for conformance and interoperability tests fo-
cus mostly on the telecommunications domain. Other domains,
such as industrial production or IoT, are generally underrepre-
sented. In the context of a national research project in Germany
[13] the focus has been on the IoT protocols CoAP and MQTT.

Each test purpose (TP) has been written in TDL-TO and thus
in a structured manner which is consistent with all other TPs.
The intention was to formalise the TPs and provide a user-read-
able format by generating tables out of the TDL-TO specifica-
tion.

As a result of our project, two ETSI technical specifications
have been produced covering conformance test purposes: 164
tests for CoAP and 162 tests for MQTT. The most frequently
used language elements for TDL-TO were conditions, domains
(entities, events, pics), and event sequences.

B. Security Tests

The work regarding security testing addresses general loT
security considerations [11] and specific test purposes and
guidelines about selected IoT protocols [16], [17]. The collec-
tive ideas presented in the documents are enriched with example
test purposes to outline possible test case implementations and
attack scenarios.

Starting from technical requirements for Industrial Automa-
tion and Control System (IACS) components, first a selection of
basic requirements was created to build a profile for a base se-
curity level. A total of 43 test purposes were defined using TDL-
TO and included in ETSI TS 103 646, which is currently under
review among ETSI members. During this work, it became clear
that the application of TDL-TO emphasises the test developer
perspective. In particular, it requires the clear identification of
the major verdict criteria for the pass/fail decision. The view-
point is shifted from the system design and implementation ap-
proach to the logic of conditions, triggers, and expected out-
comes to validate the required system security.

The technical scope of the defined test purposes for the IACS
components contains several important security aspects, among
others:

}

TP Id TP_CR 1 1 CVE_2018 14367_1
Test Objective Ensure that the IUT does not crash by using an invalid code in the CoAP header
Reference CVE-2018-14367
Initial Conditions
with {
the IUT being_in the initial_state

Expected Behaviour

ensure that {
when {

the

version indicating value 1,

msg_type indicating value 0,
token_length indicating value O,

code indicating value NULL,

msg_id corresponding to MSG_ID1

then {

the IUT is pingable

IUT receives a request message containing
//Confirmable

//broken message

Fig. 8. CoAP security test purpose example

Identification and authentication
Account changeability

Strength of password

Session lock

Input validation

Information confidentiality

Use of cryptography

Update support

From the language point of view, the TP specification used
domain definitions (entities, events, pics), event sequences time
labels, and time constraints.

Additional work regarding test purpose definitions for secu-
rity testing has been done for dedicated IoT protocols. The tech-
nical specifications address CoAP and MQTT security aspects.
They provide general aspects about security testing of the loT
protocols, e.g., security testing techniques (fuzz testing, penetra-
tion testing, spoofing, amplification etc.), test configurations,
but also protocol specific test purposes for security. A major part
addresses test purposes focusing on testing for vulnerabilities,
known and published by CVE, e.g. CVE 2018 14367 [12], as
illustrated in Fig. 8.

The TOP toolset was well-suited for the task. However, in
the version of the TOP tools used for this project the automatic
translation to the Word tabular format lost some existing syntax
formatting (e.g. bold style for keywords) and missed the listing
of the catalogue of defined keywords in the common domain
definitions. A change request to improve these features has been
reported to the TOP project as the improvements will benefit
other users as well. The TOP maintenance team is devoted to
adding addressing this change request as well as adding other
improvements.

519

C. Performance Tests

For communications protocols in general, specifically for
protocols working in constrained environments, performance re-
quirements typically target transmission volume, robustness,
and latency. In the case of IoT protocols, testers must be able to
specify the test type, duration, load intervals, as well as perfor-
mance related thresholds or constraints.

Performance tests provide a basis for benchmark testing and
performance evaluation of protocols. Performance test purpose
descriptions heavily use the timing expressions of TDL-TO. In
addition to the domain specifications such as events, pics and
entities, they allow for describing performance benchmarks of
10T protocols such as CoAP and MQTT using multiple types of
tests. For these protocols, current work includes multiple perfor-
mance aspect tests, including:

e [oad tests

e Stress tests

e Endurance tests

TDL-TO provides the elements and syntax to be able to write
performance test purposes, as illustrated in Fig. 9, depicting a
test purpose for a stress test using pings to evaluate the server
response time during load spikes. It is actively used for stand-
ardization work for MQTT and CoAP protocols at ETSI
[18][19]. Further details on the performance benchmarking
methodology, including additional samples using TDL-TO, can
be obtained from [27].

D. Interoperability test specification

In the ETSI test suite specification project for voice and
video services over LTE [20], TDL-TO was used to specify the
conformance criteria utilised in interoperability test descrip-
tions. The TDL-TO test purposes were defined for all interfaces
of the identified test configurations used in interoperability test-
ing.

TP Id Ping_Stress_Test

Test Objective

Determine if the IUT (server) can handle the given spiking load for a determined period of time
without exceeding the delay threshold within a given acceptable message loss rate.

PICS Selection PERFORMANCE

Expected Behaviour

ensure that {
when
. at time point tl:

! during INTERVAL after tl:
. at time point t2:
! during INTERVAL after tl

code indicating value 7.03
}
then
the IUT assures the response messages and
the IUT assures the packet loss limit and
the IUT assures the DELAY

the clients sends multiple Ping messages and assures the RATE and
the IUT receives several Ping messages and
the clients sends multiple Ping messages and assures the SPIKE RATE and

the IUT sends multiple messages containing

Fig. 9. Performance test purpose example with TDL-TO

Configuration {
Interface Type defaultGT accepts DiameterMessage;
Component Type DiameterComp with
gate g of type defaultGT

Test Configuration CF_VXLTE_INT containing
SUT component EPC_PGW_A of type DiameterComp
SUT component EPC_PCRF_A of type DiameterComp
SUT component S_CSCF_A of type DiameterComp
SUT component I_CSCF_A of type DiameterComp
SUT component P_CSCF_A of type DiameterComp
SUT component HSS_A of type DiameterComp
SUT component EPC_MME_A of type DiameterComp
SUT component IMS_AS_A of type DiameterComp
connection between EPC_MME_A.g and HSS_A.g
connection between EPC_PGW_A.g and EPC_PCRF_A.g
connection between EPC_PCRF_A.g and P_CSCF_A.g
connection between HSS_A.g and S_CSCF_A.g
connection between HSS_A.g and I_CSCF_A.g
connection between IMS_AS_A.g and HSS_A.g

Test Configuration CF_VXLTE_RMI containing
SUT component EPC_PGW_B of type DiameterComp
SUT component EPC_PCRF_A of type DiameterComp
SUT component EPC_PCRF_B of type DiameterComp
SUT component P_CSCF_B of type DiameterComp
SUT component HSS_A of type DiameterComp
SUT component EPC_MME_B of type DiameterComp
connection between EPC_MME_B.g and HSS_A.g
connection between EPC_PGW_B.g and EPC_PCRF_B.g
connection between EPC_PCRF_A.g and EPC_PCRF_B.g
connection between EPC_PCRF_B.g and P_CSCF_B.g

} // End of Configuration section

Fig. 10. TDL-TO test configuration example

Packages with common domain definitions (event, entities,
configurations, and data) were specified and imported in the
packages containing the test purposes for the individual inter-
faces. Fig. 10 illustrates the specification of two test configura-
tions, CF_VXLTE INT and CF_VXLTE RMI. The test config-
urations define the components, their role (tester or SUT), and

520

which communication may take place between the components
over explicitly defined connections. Tester components have not
been specified since with interoperability testing user equipment
is planned to be used manually to execute each and every test
scenario in the first phase. Over the complete signalling path,
monitoring points are created to observe the behaviour on each
interface along the complete signalling path. Therefore, only
SUT components were defined along their ports to identify the
connections between them.

The test purpose definition in TDL-TO follows the overall
approach illustrated in Fig. 1. In addition to the information re-
trieved from the requirements of the base protocol standard, we
also used information from an abstract test suite specification
related to an earlier release of the base protocol, effectively ap-
plying a re-engineering approach. For requirements that were
still valid, the test purposes from the previous test suite specified
in TPLan were translated into TDL-TO using the textual syntax
supported by TOP. In addition, TDL-TO test purposes were
specified for new requirements of the base protocol specifica-
tion. The TDL-TO test purposes were converted to the tabular
representation format in Word using TOP.

In the TDL-TO behaviour specifications of the test purposes,
the event data instances were defined using information from the
existing abstract test suite data definition libraries. This way, the
transformation from test purposes to the TTCN-3 test case im-
plementation was also supported. More general guidelines on
transformation of TDL towards executable tests are presented in
the TDL Reference Implementation technical report [21].

In this project, more than 300 TDL-TO test purposes were
specified covering the functional requirements of the base stand-
ard. These test purposes were used for the definition of interop-
erability test descriptions and the development of the abstract
test suite specification in TTCN-3. Using TDL-TO and TOP
helped the test specification process to ensure syntactically cor-
rect and semantically consistent test purposes. In addition, the

early formalization of data in TDL-TO was useful for the trans-
formation to the interoperability test descriptions and abstract
test suite.

IV. CONCLUSIONS AND FUTURE WORK

TDL has been applied in several standardization projects and
identified as a suitable language for the definition of test pur-
poses covering different testing types including conformance,
security, performance, and interoperability. The most relevant
part of TDL in this work was the TDL-TO extension, which was
designed for the definition of test purposes.

It is expected that TDL will be used more and more in inter-
national test specification projects. ETSI continues to maintain
TDL, with a forward-looking roadmap for the evolution of the
language to improve its usability and widen its user base.

ACKNOWLEDGMENT

The work is supported by the experts from the ETSI TC
MTS working group TDL and TST. The work on TDL has been
partially funded by the European Telecommunications Stand-
ards Institute (ETSI) in the context of the Specialist Task Force
(STF) projects 454, 476, 492, 522, and 577 between 2013 and
2020. The work on VXLTE test specification has been per-
formed by the experts in the STF 574 project, funded by the
ETSI. The work on IoT test purposes has been partly funded by
the German Federal Ministry of Economics and Technology
with its project [oT-T.

REFERENCES

[1] ETSI ES 203 119-4, Methods for Testing and Specification (MTS);
The Test Description Language (TDL); Part 4: Structured Test
Objective Specification (Extension)

[2] A. Kaiser and S. Hackel: “Standards-Based IoT Testing with Open-
Source Test Equipment,” IEEE 19th International Conference on
Software Quality, Reliability and Security Companion (QRS-C),
June 2019. (DOI 10.1109/QRS-C.2019.00085)

[3] ETSI catalog of standardised public test suites,
http://www.tten-3.org/index.php/downloads/publicts/publicts-etsi

[4] ETSI Test Description Language (TDL) standards (ES 203 119),
https://tdl.etsi.org/index.php/downloads

[5] ETSI TPLan: A notation for expressing Test Purposes,
https://portal.etsi.org/Services/Centre-for-Testing-
Interoperability/ETSI-Approach/Testing-Languages/TPLAN

[6] ETSI TTCN-3 standards (ES 201 873),
http://www.tten-3.org/index.php/downloads/standards

521

(7

(8]

[9]
[10]

(1]

[12]
[13]
[14]
[13]

[16]

[17]

[18]

[19]

[20]

[21]
[22]
[23]
[24]
[25]

[26]
[27]

ETSI TR 102 840: Model-based testing in standardisation,
https://www.etsi.org/deliver/etsi tr/102800_102899/102840/01.02.0
1_60/tr_102840v010201p.pdf

IEC 62443-4-2: Security for industrial automation and control
systems - Part 4-2: Technical security requirements for IACS
components, https://webstore.iec.ch/publication/34421
ITU-T Recommendation X.290, OSI conformance
methodology and framework for protocol - general concepts.
P. Makedonski et al.: Test descriptions with ETSI TDL,
https://link.springer.com/article/10.1007/s11219-018-9423-9
ETSI: MTS Test specification for foundational Security IoT-Profile,
https://portal.etsi.org/webapp/WorkProgram/Report WorkItem.asp?
WKI ID=54751

Common Vulnerabilities and Exposures,
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-14367

testing

ToT-T project, https:/www.iot-t.de/en/

Docx4j library: https://www.docx4java.org/trac/docx4]

Apache POI - the Java API for Microsoft Documents,
https://poi.apache.org/

ETSI Test Specification for CoAP; Part 2: Security Tests,
https://portal.etsi.org/webapp/WorkProgram/Report WorkItem.asp?
WKI_ID=54409

ETSI Test Specification for MQTT; Part 2: Security Tests,
https://portal.etsi.org/webapp/WorkProgram/Report_WorklItem.asp?
WKI 1D=54410

ETSI Test Specification for CoAP; Part 3: Performance Tests,
https://portal.etsi.org/webapp/WorkProgram/Report_WorklItem.asp?
wki_id=54412

ETSI Test Specification for MQTT; Part 3: Performance Tests,
https://portal.etsi.org/webapp/WorkProgram/Report WorkItem.asp?
wki_id=54411

ETSI TS 103 653-1, Core Network and Interoperability Testing
(INT); VoLTE/ViLTE interoperability test description over 4G/early
5G in physical/virtual environments; Part 1: Test Purposes & PICS
for VOLTE/VILTE interoperability;

ETSI TR 103 119, Methods for Testing and Specification (MTS);
The Test Description Language (TDL); Reference Implementation
ETSI TDL Open Source Project (TOP),
https://tdl.etsi.org/index.php/open-source

Eclipse Platform,
https://projects.eclipse.org/projects/eclipse.platform
Eclipse Modeoing Framework (EMF),
https://www.eclipse.org/modeling/emf/

Xtext, https://www.eclipse.org/Xtext/

Sirius, https://www.eclipse.org/sirius/
I.D. Gheorghe-Pop et al: “A Performance Benchmarking
Methodology for MQTT Broker Implementations”, IEEE 20th
International Conference on Software Quality, Reliability and
Security Companion (QRS-C), 2020.

