

Microservices: architecture, container, and
challenges

Guozhi Liu
School of Big Data and Intelligent

Engineering
Southwest Forestry University

Kunming, China
1499938459@qq.com

Minmin Qin
School of Big Data and Intelligent

Engineering
Southwest Forestry University

Kunming, China
swfuqmm@qq.com

Bi Huang
School of Big Data and Intelligent

Engineering
Southwest Forestry University

Kunming, China
125149146@qq.com

Hua Zhou
School of Big Data and Intelligent

Engineering
Southwest Forestry University

Kunming, China
hzhou@swfu.edu.cn

 Zhihong Liang
School of Big Data and Intelligent

Engineering
Southwest Forestry University

Kunming, China
zhliang@swfu.edu.cn

Zhang Li*
School of Continuing Education and

International Exchange
Yunnan Forestry Technological College

Kunming, China
779411989@qq.com
corresponding author

Abstract—Microservices are emerging as a new computing
paradigm which is a suitable complementation of cloud
computing. Microservices will decompose traditional monolithic
applications into a set of fine-grained services, which can be
independently developed, tested, and deployed. However, there
are many challenges of microservices. This paper provides a
comprehensive overview of microservices. More specifically,
firstly, we systematically compare traditional monolithic
architecture, service-oriented architecture (SOA), and
microservices architecture. Secondly, we give an overview of the
container technology. Finally, we outline the technical
challenges of microservices, such as performance, debugging
and data consistency.

Keywords—microservices, debugging, container,
performance, monolithic architecture, service-oriented
architecture.

I. INTRODUCTION

Microservices are new architectural styles [1].
Microservices have the following characteristics: independent
development, independent deployment, independent release,
high concurrency, high availability, high cohesion, and low
coupling [1]. Based on the application of traditional
monolithic architecture, with the iteration of business
requirements and the additional expansion of functions, the
application is difficult to expand and highly coupled [2]. In
recent years, the mobile Internet of Things has developed
rapidly, the scale of major companies has continued to expand,
and business has developed rapidly. Applications such as
search engines, e-commerce websites, and chat software all
require high concurrency, high availability, high scalability,
high cohesion, and low coupling. The traditional monolithic
architecture will not meet the requirements [3]. Microservices
by refining a monolithic application into multiple fine-grained
microservices, each service can be independently developed,
deployed, extended, and tested. To meet the requirements of
the above applications.

In recent years, microservice has become one of the latest
architectural trends in the field of software engineering, and
more and more cloud computing applications have begun to
adopt microservices [4][5]. In foreign countries, Amazon,
Netflix, The Guardian, Twitter, PayPal, SoundCloud, and
others began to microservices software systems on the cloud.
In China, Tencent, Baidu, Jingdong, Taobao, 360 Search, etc.

have also begun to migrate software systems microservices
architecture. For example, Tencent's WeChat system [6]
contains more than 3,000 microservices, distributed on more
than 20,000 machines [7]. Netflix's online service system uses
more than 500 microservices, involving 5 billion service
interactions per day [8]. Each page of Amazon involves 100-
150 microservice calls [9].

With the iteration of business requirements and the
additional expansion of functions, traditional monolithic
applications lead to problems such as difficulty in expanding
applications, high coupling, and high deployment costs [1].
The emergence of microservice technology will solve the
above-mentioned problems encountered by traditional
monolithic applications. This article will introduce
microservices from two aspects of development style and
deployment. From the aspect of architecture, we introduce the
process of adopting different architectures from monolithic
applications to componentization to microservices, to achieve
decoupling and high expansion of server-side applications.
However, after the traditional monolithic application is split
into multiple microservices, decoupling, high expansion, and
rapid development iteration can be achieved, but the problem
that comes with it is the increase in the cost of testing and
operation and maintenance deployment [1]. The emergence of
container technology is undoubtedly an icing on the cake. We
will introduce the use of container technology to achieve
resource isolation and independent deployment of
microservices from the perspective of deployment and
operation. To achieve the single responsibility of
microservices, service autonomy, lightweight
communication, and reduce operation and maintenance
deployment costs [3].

The main contributions of this work can be summarized as
follows.

• We present a comprehensive review of microservices
architectures.

• We give an overview of the container technology.

• We outline three technical challenges of
microservices.

The rest of this paper is organized as follows. Section 2
describes the evolution of application architecture patterns

629

2020 IEEE 20th International Conference on Software Quality, Reliability and Security Companion (QRS-C)

978-1-7281-8915-4/20/$31.00 ©2020 IEEE
DOI 10.1109/QRS-C51114.2020.00107

from traditional monolithic architecture, SOA to
microservices architectures. Section 3 describes the container
technology. Section 4 outlines the three challenges
microservices faced: performance, debugging and data
consistency. Section 5 summarizes this paper.

II. ARCHITECTURE
With increasing complexity and the need for highly

scalable and robust applications, the traditional monolithic
architecture is no longer the best choice. After a certain
threshold, the monolithic architecture often hinders the
performance and scalability of the application. Besides, due to
the huge codebase, changes to closely coupled related
processes in a monolithic architecture will greatly increase the
impact of a single process failure.

To cope with these limitations of a single architecture,
developers adopted the principle of single responsibility
proposed by Robert C. Martin (co-author of the Agile
Manifesto). The principle says: bring together those that
change for the same reason, and separate those that change for
different reasons.

Eventually, Service Oriented Architecture (SOA) and
microservice architectures were recognized and enabled
developers to build applications as a set of small, decoupled
services that run in their environment and can be deployed
independently.

Let us look at the evolution of application architecture
patterns from traditional monolithic architecture, SOA to
microservices architecture.

A. Monolithic Architecture
The monolithic architecture is a traditional method of

software development, which has been used by large
companies such as Amazon and eBay in the past. In a
monolithic architecture, functions are encapsulated in an
application. When a whole is small and has only a few
functions, it can have its advantages, such as ease of
development, testing, deployment, and expansion [10]. For
the monolithic architecture, if we need to expand, we only
need to copy the whole. However, as applications tend to
become more complex, weaknesses appears [10]. For
example, high complexity, poor reliability, limited scalability,
and hindering technological innovation. As shown in figure1,
when a traditional monolithic architecture is used to develop
an application, the user interacts with the front-end
application. The front-end application redirects the user
request to the software instance hosted in the container and
interacts with the database to complete all applications.
Procedural responsibilities [11].

Fig. 1. Monolithic Architecture.

B. Service-oriented architecture(SOA)
In the 1990s, SOA was proposed as a revolutionary

innovation to decouple service-side applications and improve
the reuse of components [12]. As shown in figure2, the SOA
architecture could be divided into multiple server application
oriented function of loosely coupled services, each service can
be managed in different containers, between services through
an enterprise service bus to communicate, and share the same
database [13].

Fig. 2. Service-Oriented Architecture.

C. Microservices Architecture
Microservices inherited the principles and concepts of the

service-oriented architecture (SOA) style, and structure a
service-based application into a very small set of loosely
coupled software services [10]. In order to further decouple
the service side applications, the microservices architecture
proposes to divide the service side applications into several
loosely coupled services oriented to business responsibilities
[14]. In figure3, the server application is further divided into
multiple fine-grained microservices, each service to achieve a
given business responsibilities, and managed to run in
different containers [15]. Each container has its own private
database that cannot be accessed directly by other containers
[16].

Fig. 3. Microservices Architecture.

D. Summary
As shown in table 1, we compare traditional monolithic architecture, Service-oriented architecture, and microservices

architectures in terms of componentization, component size, elasticity, deployment, storage mechanisms, technology and
scalability.

630

TABLE I. COMPARISON OF DIFFERENT ARCHITECTURES

 Monolithic Architecture Service-Oriented Architecture Microservices Architecture

Componentization Module Service Microservice

Component size Big Coarse-grain Fine-grained

Elasticity A single point of failure No single point of failure. No single point of failure.

Deployment Holistic creation and deployment. Each component deployed
independently.

Each service is built and deployed
independently.

Storage mechanism Shared database. Shared database. Private database.

Technology The same programming language
and framework. Isomorphism Heterogeneous

Scalability Unable to scale on demand. Scale on demand. Scale on demand.

III. TECHNOLOGY OF CONTAINER
The container is a lightweight virtualization technology.

The virtualization of microservices has been the key to
improving the performance of cloud applications [17]. The
traditional virtual machine is a method of virtualization, and
the container is another emerging virtualization technology.
Due to its high performance, lightweight, and higher
scalability [17], it is becoming more and more popular in
virtual technology. Applications developed using
microservice technology contain many independent
decoupling services. These services have their development
frameworks, and each service performs specific tasks of
independent development and deployment [15]. Because
microservices are independent of each other, you can use a
virtualized environment to sandbox these microservices,
making the system more secure and easier to manage.

In the following, we will make a comprehensive review of
container technology. In particular, firstly, we elaborated on
the concepts of the container. Secondly, we introduced the
container-based cluster architecture. Thirdly, we introduced
the core technology of containers-virtualization. Finally, we
introduced the containerized deployment of microservices.

A. Concepts of the container
The application and its run-time dependent environment

are packaged and packaged into a standardized and strongly
portable image [18]. The container engine provides a running
environment with process isolation and limited resources to
realize the decoupling of the application from the OS platform
and underlying hardware. The application is packaged once
and runs everywhere [19]. The Container can be deployed on
a physical machine or virtual machine. Container engine and
container orchestration scheduling platform can realize the life
cycle management of the containable application [18].

Container technology based on namespaces and cgroups.
Namespace isolation allows process groups to be separated,
preventing them from seeing resources in other groups.
Container technology uses different namespaces to isolate
processes, network interfaces, access interprocess
communication, mount points, isolate kernel, and version
identifiers. The control group manages and restricts resource
access to the process group by restricting enforcement,
accounting, and isolation—for example, by restricting the
available memory of specific containers [18].

B. Container-based Cluster architecture

ServiceContainer Container

Container

Container
Volume

Host nodeHost node

Container

Container

Volume

Host node

Container

Container

Service

Host node

Link

Cluster

Mounted

Link

Link

631

Fig. 4. Container-based cluster architecture.

Containerization simplifies the steps from a single
application in a container to the ability to run containerized
applications across clustered hosts [18]. The latter benefits
from the container's built-in interoperability. Individual
container hosts are grouped into interconnected clusters, as
shown in figure4. Each cluster consists of several (host)
nodes. Application services are logical groups of containers
from the same image. Application services allow applications
to be extended across different host nodes [20]. A volume is a
mechanism for applications that require data persistence.
Containers can mount these volumes for storage. Linking
allows two or more containers to connect and communicate
[18]. The setup and management of these container clusters
require choreography support for inter-container
communication, linking, and service assemblies.

As shown in figure4. Container linking allows multiple
containers to be linked together and send information between
them. Linked containers can transfer data about themselves
through environment variables. To establish links and certain
types of relationships, Docker relies on the name of the
container, which must be unique, which means that links are
usually limited to containers on the same host.

C. Virtualization
Resource virtualization includes to use an intermediate

software layer above the underlying system to provide
abstractions of multiple virtual resources [20]. Generally, a
virtual resource is called a virtual machine (VM) and can be
regarded as an independent execution context. The most
common form of hypervisor-based virtualization (hosted
virtualization) consists of a virtual machine monitor (VMM)
that sits on top of the host operating system (OS), which
provides a complete abstraction for VMs. In this case, each
VM has its operating system, and its execution is completely
independent of other VMs. For example, this allows multiple
different operating systems to run on one host. There are
various virtualization technologies. At present, the most
popular is hypervisor-based virtualization, which is mainly
represented by Xen, VMware, and KVM.

Xen is an open-source project developed by the
Cambridge University Computer Lab [21][22]. It is a software
layer that directly runs on the computer hardware to replace
the operating system [22]. It can run multiple guest operating
systems (Guest OS) concurrently on the computer hardware.
Xen uses the ICA protocol. High performance is achieved
through a technology called paravirtualization [23]. Even on
some architectures that are extremely unfriendly to traditional
virtualization technologies (such as x86), Xen also performs
well.

Vmware uses full virtualization technology [24][25], so
there is no need to modify the original operating system, and
it can support different operating systems at the same time.
The Guest OS task runs on the hardware and cannot sense
other Guest OS [24]. Vmware's host VM mode divides the
virtual software into two parts. One part is VMM, used for
virtual CPU. The other part is an app that uses OS for device
support and a VM driver placed inside OS as an intermediary
between app and OS [25]. The VMware virtual machine is
installed on the host OS, and the host OS provides a good
device driver.

KVM stands for Kernel-based Virtual Machine. It is a
kernel-based virtualization technology [26][27]. It is a
virtualization module embedded in the system. It uses
virtualization technology by optimizing the kernel. This
kernel module makes Linux a hypervisor, and the virtual
machine uses Linux. Managed by its scheduler [26]. The
virtual machine in KVM is implemented as a regular Linux
process, which is scheduled by a standard Linux scheduler;
each virtual CPU of the virtual machine is implemented as a
regular Linux process [28]. This allows KVM to use the
existing features of the Linux kernel. However, KVM itself
does not perform any hardware emulation and requires the
client space program to set the address space of a guest virtual
server through the /dev/kvm interface, provide it with
simulated I/O, and map its video display back to the host
display Screen [27][28].

Container Container

Shared Operating System

Hardware

App App App

Guest OS Guest OS

Virtual Machine Monitor

Hardware

App App App

Container based architecture hypervisor based architecture

Fig. 5. Comparison of container- and hypervisor-based virtualization
architectures.

The lightweight alternative to the hypervisor is container-
based virtualization, also known as OS-level virtualization.
This virtualization partitions the resources of the physical
machine, thereby creating multiple isolated user-space
instances on the same OS. Nevertheless, under these
circumstances, users still have the illusion that they are
working on their separate network, memory, and file system
subsystems [29]. The main difference is that there is no need
to convert instructions from the upper layer to the lower layer
in the hypervisor. For this, a virtual driver is required. In
figure5, the differences between container-based and
hypervisor-based architectures are depicted [18]. It can be
seen that although virtualization based on hypervisors
provides an abstraction for a complete guest OS (one for each
virtual machine), container-based virtualization works at the
OS level, directly providing an abstraction for guest
applications. The hypervisor works at the level of hardware
abstraction, while the container works at the system call/ABI
layer [18]. Because container-based virtualization works at the
operating system level, all containers share an operating
system kernel. Therefore, the container-based system is
weaker than the hypervisor-based system. However, from the
user's perspective, each container looks and executes exactly
like an independent OS [29].

D. Containerized deployment of microservices
For microservices, containers are superior to virtual

machines in many aspects. Containers are lightweight, easy to
manage, and have fast startup times. They can fundamentally
reduce the downtime of enterprise-level applications, thereby
reducing the deployment of microservice-based applications
[17],the workload and cost.

As shown in figure6, containerized deployment of
microservices is mainly divided into four steps: microservice
development, microservice container image construction,

632

microservice container image management, and microservice
container orchestration management.

• Development of microservices: services have their
development frameworks and each service
independent development.

• Building a microservice container image: Package
microservices into multiple container images.

• Manage microservice container images: Optimize
microservices container image, for example, reduce
the size of container image. Then, use DockerHub to
manage container images.

• Microservice container orchestration management:
Select the appropriate container management tool, To
deploy and manage the microservice container through
the writing of the configuration file. So that the
microservice instance runs normally in the respective
container and maintains good interaction. To the entire
system, application runs normally and completes the
microservice Containerized deployment.

Push

pull

package package package

deploy

Fig. 6. Containerized deployment of microservices.

Through container technology, the deployment of
applications will become more convenient. A single container
does not need to host a complete application, and a whole
application is refined into multiple fine-grained
microservices. Use containers to perform fine-grained
microservices. Independently deploy and implement given
business responsibilities. Therefore, container deployment
will be an ideal choice for microservice deployment.

IV. CHALLENGES

A. Performance
Performance is defined as a software quality attribute that

includes software system behavior [30]. Performance is an
important but often overlooked aspect of software
development methods. Performance refers to the system's
responsiveness: the time required to respond to a specific
event, or the number of events processed within a given time
interval [31].

The microservices architecture requires continuous
interaction between the services that make up the application.
At the same time, each service needs to use the
communication interface between its services to perform
transaction operations[32]. Therefore, network
communication is a negative factor affecting the performance
of microservices.

Lightweight communication mechanisms are used to
communicate between microservices. When a service
provider cannot be called due to network reasons, subsequent
service consumers will have a "cascading failure", that is, an
avalanche effect [33][34], as shown in figure7.

Service C

Service
D

Service B Service A

The call is
successful

The call is
successful

Service C

Service
D

Service B Service A

The call is
successful

Call fails

Service C

Service
D

Service B Service A
Call fails Call fails

Service C

Service
D

Service B Service A
Call fails Call fails

Tim
e goes by

normal

A is not available

A and B are not
available

System
unavailable

Fig. 7. Cascading effect.

The inherent performance challenges of distributed
applications, complex system communication [34].
Traditional monolithic applications are called in memory,
while distributed applications are calls that move between
processes, possibly through the network, which brings
additional latency and speed loss. Calling remote
microservices in a loop increases the delay of each loop
iteration and may quickly render the service call unavailable.

B. Debugging
Microservices systems are essentially concurrent

distributed systems. In general, the effective way to debug
concurrent distributed systems is to track and visualize the
execution of the system [35]. Compared with traditional
concurrent distributed systems, microservices systems are
more complex and dynamic [36], as follows:

• A large number of microservices instances run on a
large number of nodes (such as physical or virtual
machines), and the distribution of microservices
instance is also constantly changing, which brings
great uncertainty to the communication between
microservices [37].

• Microservices systems involve complex
environmental configurations, and incorrect or
inconsistent environmental configurations may cause
runtime failures [38].

• A large number of complex asynchronous interactions
are involved between microservices. These
asynchronous interactions involve complex call
chains, which can easily lead to improper
collaboration, which in turn can lead to runtime
failures [36].

• Because microservices instance can be created and
destroyed dynamically, there is a lack of
correspondence between microservices and system
nodes in microservices systems [37].

633

These high complexity and dynamics have brought many
challenges to debugging microservices systems [39][37].
Literature [36] pointed out that the current debugging of
microservices systems depends largely on the developer's
experience with the system and similar failure cases, and
mainly relies on manual methods to check logs.

C. Data consistency
Although microservices systems bring many benefits in

terms of flexibility and scalability, how to ensure the
consistency of data in the system is challenging [38]. In a
monolithic system, data is stored centrally in the same
database; while in a microservices architecture, data is
distributed in databases of different microservices, how to
ensure transaction consistency across multiple databases is a
critical issue that needs to be resolved [40][41].

Obviously, the traditional method of solving data
consistency in a single database is not suitable for
microservices systems [42]. In the context of microservices,
there are currently two methods for solving data consistency:

• Cloning-based method. Each microservice creates a
clone of the original database and interacts with its
private database independently [43]. Each update in
the private database will be notified to other cloned
databases by broadcast to ensure the consistency of
data between the databases. However, the
disadvantage of this method is that it requires more
resources to store data [40].

• Based on the private database method, each
microservice has its private database [44]. For
example, a document [45] proposes a slicing mode,
which divides the unified central data storage into a set
of horizontal slices according to the business boundary
of each microservice. However, the main challenge
faced by this method is how to ensure the consistency
of the data when connecting the data in different
databases [40].

Distributed applications cannot guarantee simultaneous
transactions, and all distributed transactions must be called
asynchronously [45][40]. Influenced by network delays,
complicated communication modes, etc., may cause data to be
inconsistent[46]. According to CAP theory, a choice must be
made between usability and consistency. If you choose to
provide consistency, you have to pay the price of blocking
other concurrent accesses before consistency is met. This may
continue for an indefinite period, especially in distributed
systems that already have network delays, complex
communications, and other features that can easily lead to lost
connections[45]. Usability is generally a better choice, but
maintaining data consistency between services and databases
is a fundamental requirement [46]. Therefore, data
consistency will be an important challenge for microservices.

V. CONCLUSION
The goal of this paper is to provide a comprehensive

overview of the current status of widely used microservices
technologies. Firstly, it describes the evolution of application
architecture patterns from traditional monolithic architecture,
SOA to microservices architecture. Secondly, the important
technologies of microservices are explained from two aspects
of container and data management. Finally, the three technical
challenges faced by microservices are listed: performance,
debugging, and data consistency. Besides, the needs of the

organization should be considered when choosing a
microservices architecture. There is usually no one
development model that is the best. Instead, each design
pattern performs better in different situations. The complex
architecture is accompanied by a long development cycle and
additional licensing fees for third-party applications. At the
same time, hiring higher quality developers and testers in the
team is another factor that increases the total cost. However, it
should not be forgotten that these architectures can increase
productivity and reduce costs because they have higher energy
efficiency in the long run.

ACKNOWLEDGEMENTS
This work was supported in part by the Project of National

Natural Science Foundation of China under Grant No.
61702442, 61862065, and 61662085, the Application Basic
Research Project in Yunnan Province Grant No. 2018FB105,
the Major Project of Science and Technology of Yunnan
Province under Grant No. 202002AD080002 and No.
2019ZE005.

REFERENCES
[1] A. Balalaie, A. Heydarnoori and P. Jamshidi, "Microservices

Architecture Enables DevOps: Migration to a Cloud-Native
Architecture," in IEEE Software, vol. 33, no. 3, pp. 42-52, May-June
2016, doi: 10.1109/MS.2016.64.

[2] X. Xu, X. Liu, Z. Xu, F. Dai, X. Zhang and L. Qi, "Trust-Oriented IoT
Service Placement for Smart Cities in Edge Computing," in IEEE
Internet of Things Journal, vol. 7, no. 5, pp. 4084-4091, May 2020, doi:
10.1109/JIOT.2019.2959124.

[3] C. Richardson, "Microservices-Pattern: Microservice Architecture,"
March 2014. http://microservices.io/patterns/microservices.html.

[4] A. Krylovskiy, M. Jahn and E. Patti, "Designing a Smart City Internet
of Things Platform with Microservice Architecture," 2015 3rd
International Conference on Future Internet of Things and Cloud,
Rome, 2015, pp. 25-30, doi: 10.1109/FiCloud.2015.55.

[5] H. Knoche and W. Hasselbring, "Using Microservices for Legacy
Software Modernization," in IEEE Software, vol. 35, no. 3, pp. 44-49,
May/June 2018, doi: 10.1109/MS.2018.2141035.

[6] F. Rademacher, J. Sorgalla and S. Sachweh, "Challenges of Domain-
Driven Microservice Design: A Model-Driven Perspective," in IEEE
Software, vol. 35, no. 3, pp. 36-43, May/June 2018, doi:
10.1109/MS.2018.2141028.

[7] F. Dai, Q. Mo, Z. Qiang, B. Huang, W. Kou and H. Yang, "A
Choreography Analysis Approach for Microservice Composition in
Cyber-Physical-Social Systems," in IEEE Access, vol. 8, pp. 53215-
53222, 2020, doi: 10.1109/ACCESS.2020.2980891.

[8] Q. Mo, W. Song, F. Dai, L. Lin and T. Li, "Development of
Collaborative Business Processes: A Correctness Enforcement
Approach," in IEEE Transactions on Services Computing, doi:
10.1109/TSC.2019.2961346.

[9] X. Xu, H. Cao, Q. Geng, X. Liu, F. Dai, C. Wang, "Dynamic Resource
Provisioning for Workflow Scheduling under Uncertainty in Edge
Computing Environment," Concurrency and Computation-Practice &
Experience, 2020, doi: 10.1002/cpe.5674.

[10] L. De Lauretis, "From Monolithic Architecture to Microservices
Architecture," 2019 IEEE International Symposium on Software
Reliability Engineering Workshops (ISSREW), Berlin, Germany,
2019, pp. 93-96, doi: 10.1109/ISSREW.2019.00050.

[11] C. Esposito, A. Castiglione and K. R. Choo, "Challenges in Delivering
Software in the Cloud as Microservices," in IEEE Cloud Computing,
vol. 3, no. 5, pp. 10-14, Sept.-Oct. 2016, doi: 10.1109/MCC.2016.105.

[12] V. Singh and S. K. Peddoju, "Container-based microservice
architecture for cloud applications," 2017 International Conference on
Computing, Communication and Automation (ICCCA), Greater
Noida, 2017, pp. 847-852, doi: 10.1109/CCAA.2017.8229914.

[13] A. Koschel, I. Astrova and J. Dötterl, "Making the move to
microservice architecture," 2017 International Conference on
Information Society (i-Society), Dublin, 2017, pp. 74-79, doi:
10.23919/i-Society.2017.8354675.

634

[14] A. Sill, "The Design and Architecture of Microservices," in IEEE
Cloud Computing, vol. 3, no. 5, pp. 76-80, Sept.-Oct. 2016, doi:
10.1109/MCC.2016.111.

[15] Z. Xiao, I. Wijegunaratne and X. Qiang, "Reflections on SOA and
Microservices," 2016 4th International Conference on Enterprise
Systems (ES), Melbourne, VIC, 2016, pp. 60-67, doi:
10.1109/ES.2016.14.

[16] A. Furda, C. Fidge, O. Zimmermann, W. Kelly and A. Barros,
"Migrating Enterprise Legacy Source Code to Microservices: On
Multitenancy, Statefulness, and Data Consistency," in IEEE Software,
vol. 35, no. 3, pp. 63-72, May/June 2018, doi:
10.1109/MS.2017.440134612.

[17] T. Salah, M. J. Zemerly, C. Y. Yeun, M. Al-Qutayri and Y. Al-
Hammadi, "Performance comparison between container-based and
VM-based services," 2017 20th Conference on Innovations in Clouds,
Internet and Networks (ICIN), Paris, 2017, pp. 185-190, doi:
10.1109/ICIN.2017.7899408.

[18] C. Pahl, A. Brogi, J. Soldani and P. Jamshidi, "Cloud Container
Technologies: A State-of-the-Art Review," in IEEE Transactions on
Cloud Computing, vol. 7, no. 3, pp. 677-692, 1 July-Sept. 2019, doi:
10.1109/TCC.2017.2702586.

[19] C. Pahl, "Containerization and the PaaS Cloud," in IEEE Cloud
Computing, vol. 2, no. 3, pp. 24-31, May-June 2015, doi:
10.1109/MCC.2015.51.

[20] M. G. Xavier, I. C. D. Oliveira, F. D. Rossi, R. D. D. Passos, K. J.
Matteussi and C. A. F. D. Rose, "A Performance Isolation Analysis of
Disk-Intensive Workloads on Container-Based Clouds," 2015 23rd
Euromicro International Conference on Parallel, Distributed, and
Network-Based Processing, Turku, 2015, pp. 253-260, doi:
10.1109/PDP.2015.67.

[21] W. Liangming, L. Fagui, Z. Hao and Z. Haiyan, "Trusted network
connection of Inter-Domian on Xen virtual machine," 2011
International Conference on Electronics, Communications and Control
(ICECC), Ningbo, 2011, pp. 4058-4061, doi:
10.1109/ICECC.2011.6066603.

[22] J. Wu and J. Li, "ERTDS: A dynamic CPU scheduler for Xen
virtualization systems," 2017 International Conference on Applied
System Innovation (ICASI), Sapporo, 2017, pp. 457-460, doi:
10.1109/ICASI.2017.7988453.

[23] R. Sailer et al., "Building a MAC-based security architecture for the
Xen open-source hypervisor," 21st Annual Computer Security
Applications Conference (ACSAC'05), Tucson, AZ, 2005, pp. 10 pp.-
285, doi: 10.1109/CSAC.2005.13.

[24] I. Ahmad, J. M. Anderson, A. M. Holler, R. Kambo and V. Makhija,
"An analysis of disk performance in VMware ESX server virtual
machines," 2003 IEEE International Conference on Communications
(Cat. No.03CH37441), Austin, TX, USA, 2003, pp. 65-76, doi:
10.1109/WWC.2003.1249058.

[25] D. T. Vojnak, B. S. Ðor�evi�, V. V. Tim�enko and S. M. Štrbac,
"Performance Comparison of the type-2 hypervisor VirtualBox and
VMWare Workstation," 2019 27th Telecommunications Forum
(TELFOR), Belgrade, Serbia, 2019, pp. 1-4, doi:
10.1109/TELFOR48224.2019.8971213.

[26] W. Bai and W. Li, "A Novel VSFTP-Based KVM Virtualization Cloud
Deployment Scheme," 2018 5th IEEE International Conference on
Cyber Security and Cloud Computing (CSCloud)/2018 4th IEEE
International Conference on Edge Computing and Scalable Cloud
(EdgeCom), Shanghai, 2018, pp. 211-217, doi:
10.1109/CSCloud/EdgeCom.2018.00045.

[27] S. Zhang, L. Wang and X. Han, "A KVM Virtual Machine Memory
Forensics Method Based on VMCS," 2014 Tenth International
Conference on Computational Intelligence and Security, Kunming,
2014, pp. 657-661, doi: 10.1109/CIS.2014.72.

[28] C. Guo, T. Li, Z. Gong and H. Han, "A virtual vulnerability validation
platform based on KVM," 2015 IEEE 5th International Conference on
Electronics Information and Emergency Communication, Beijing,
2015, pp. 228-231, doi: 10.1109/ICEIEC.2015.7284527.

[29] M. G. Xavier, M. V. Neves, F. D. Rossi, T. C. Ferreto, T. Lange and
C. A. F. De Rose, "Performance Evaluation of Container-Based
Virtualization for High Performance Computing Environments," 2013
21st Euromicro International Conference on Parallel, Distributed, and
Network-Based Processing, Belfast, 2013, pp. 233-240, doi:
10.1109/PDP.2013.41.

[30] S. Prasad and S. B. Avinash, "Application of polyglot persistence to
enhance performance of the energy data management systems," 2014
International Conference on Advances in Electronics Computers and
Communications, Bangalore, 2014, pp. 1-6, doi:
10.1109/ICAECC.2014.7002444.

[31] S. Nadkarni, A. Kadakia and K. Shrivastava, "Providing Scalability to
Data Layer Using a Novel Polyglot Persistence Approach," 2018
Fourth International Conference on Computing Communication
Control and Automation (ICCUBEA), Pune, India, 2018, pp. 1-5, doi:
10.1109/ICCUBEA.2018.8697383.

[32] F. Dai, H. Chen, Z. Qiang, Z. Liang, B. Huang, L. "Wang, Automatic
Analysis of Complex Interactions in Microservice Systems,"
Complexity, 2020, doi: 10.1155/2020/2128793.

[33] K. Takeda et al., "Franz-Keldysh and avalanche effects in a germanium
waveguide photodiode," 10th International Conference on Group IV
Photonics, Seoul, 2013, pp. 138-139, doi:
10.1109/Group4.2013.6644409.

[34] M. M. Hayat, B. E. A. Saleh and M. C. Teich, "Effect of dead space on
gain and noise of double-carrier-multiplication avalanche
photodiodes," in IEEE Transactions on Electron Devices, vol. 39, no.
3, pp. 546-552, March 1992, doi: 10.1109/16.123476.

[35] F. Dai, Q. Mo, T. Li, B. Huang, Y. Yang, Y. Zhao. "Refactoring
Business Process Models with Process Fragments Substitution".
Wireless Networks, 2020, doi: 10.1007/s11276-020-02367-3.

[36] X. Zhou et al., "Fault Analysis and Debugging of Microservice
Systems: Industrial Survey, Benchmark System, and Empirical Study,"
in IEEE Transactions on Software Engineering, doi:
10.1109/TSE.2018.2887384.

[37] X. Zhou et al., "Delta Debugging Microservice Systems," 2018 33rd
IEEE/ACM International Conference on Automated Software
Engineering (ASE), Montpellier, France, 2018, pp. 802-807, doi:
10.1145/3238147.3240730.

[38] L. Safina, M. Mazzara, F. Montesi and V. Rivera, "Data-Driven
Workflows for Microservices: Genericity in Jolie," 2016 IEEE 30th
International Conference on Advanced Information Networking and
Applications (AINA), Crans-Montana, 2016, pp. 430-437, doi:
10.1109/AINA.2016.95.

[39] C. Esposito, A. Castiglione and K. R. Choo, "Challenges in Delivering
Software in the Cloud as Microservices," in IEEE Cloud Computing,
vol. 3, no. 5, pp. 10-14, Sept.-Oct. 2016, doi: 10.1109/MCC.2016.105.

[40] M. E. Kholy and A. E. Fatatry, "Framework for Interaction Between
Databases and Microservice Architecture," in IT Professional, vol. 21,
no. 5, pp. 57-63, 1 Sept.-Oct. 2019, doi: 10.1109/MITP.2018.2889268.

[41] R. M. Munaf, J. Ahmed, F. Khakwani and T. Rana, "Microservices
Architecture: Challenges and Proposed Conceptual Design," 2019
International Conference on Communication Technologies
(ComTech), Rawalpindi, Pakistan, 2019, pp. 82-87, doi:
10.1109/COMTECH.2019.8737831.

[42] M. Villamizar et al. Cost comparison of running web applications in
the cloud using monolothic, microservice, and AWs Lambada
architecture [C]// Proceedings of the Service Oriented Computing and
Applications, 2017, vol. 11, pp. 233- 247, doi: 10.1007/s11761-017-
0208-y.

[43] G. Granchelli, M. Cardarelli, P. Di Francesco, I. Malavolta, L. Iovino
and A. Di Salle, "MicroART: A Software Architecture Recovery Tool
for Maintaining Microservice-Based Systems," 2017 IEEE
International Conference on Software Architecture Workshops
(ICSAW), Gothenburg, 2017, pp. 298-302, doi:
10.1109/ICSAW.2017.9.

[44] N. Alshuqayran, N. Ali and R. Evans, "A Systematic Mapping Study
in Microservice Architecture," 2016 IEEE 9th International
Conference on Service-Oriented Computing and Applications
(SOCA), Macau, 2016, pp. 44-51, doi: 10.1109/SOCA.2016.15.

[45] C. H. Costa, J. Filho, F. Oliveira. "Sharding by Hash partitioning. A
database scalability pattern to achieve evenly sharded database
clusters," Proceedings of the International Conference on Enterprise
Information Systems, 2015, doi: 10.5220/0005376203130320.

[46] X. Xu, R. Mo, F. Dai, W. Lin, S. Wan and W. Dou, "Dynamic Resource
Provisioning With Fault Tolerance for Data-Intensive Meteorological
Workflows in Cloud," in IEEE Transactions on Industrial Informatics,
vol. 16, no. 9, pp. 6172-6181, Sept. 2020, doi:
10.1109/TII.2019.2959258.

635

