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Abstract—Microservices are emerging as a new computing 
paradigm which is a suitable complementation of cloud 
computing. Microservices will decompose traditional monolithic 
applications into a set of fine-grained services, which can be 
independently developed, tested, and deployed. However, there 
are many challenges of microservices. This paper provides a 
comprehensive overview of microservices. More specifically, 
firstly, we systematically compare traditional monolithic 
architecture, service-oriented architecture (SOA), and 
microservices architecture. Secondly, we give an overview of the 
container technology. Finally, we outline the technical 
challenges of microservices, such as performance, debugging 
and data consistency. 

Keywords—microservices, debugging, container, 
performance, monolithic architecture, service-oriented 
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I. INTRODUCTION

Microservices are new architectural styles [1]. 
Microservices have the following characteristics: independent 
development, independent deployment, independent release, 
high concurrency, high availability, high cohesion, and low 
coupling [1]. Based on the application of traditional 
monolithic architecture, with the iteration of business 
requirements and the additional expansion of functions, the 
application is difficult to expand and highly coupled [2]. In 
recent years, the mobile Internet of Things has developed 
rapidly, the scale of major companies has continued to expand, 
and business has developed rapidly. Applications such as 
search engines, e-commerce websites, and chat software all 
require high concurrency, high availability, high scalability, 
high cohesion, and low coupling. The traditional monolithic 
architecture will not meet the requirements [3]. Microservices 
by refining a monolithic application into multiple fine-grained 
microservices, each service can be independently developed, 
deployed, extended, and tested. To meet the requirements of 
the above applications. 

In recent years, microservice has become one of the latest 
architectural trends in the field of software engineering, and 
more and more cloud computing applications have begun to 
adopt microservices [4][5]. In foreign countries, Amazon, 
Netflix, The Guardian, Twitter, PayPal, SoundCloud, and 
others began to microservices software systems on the cloud. 
In China, Tencent, Baidu, Jingdong, Taobao, 360 Search, etc. 

have also begun to migrate software systems   microservices 
architecture. For example, Tencent's WeChat system [6] 
contains more than 3,000 microservices, distributed on more 
than 20,000 machines [7]. Netflix's online service system uses 
more than 500 microservices, involving 5 billion service 
interactions per day [8]. Each page of Amazon involves 100-
150 microservice calls [9]. 

With the iteration of business requirements and the 
additional expansion of functions, traditional monolithic 
applications lead to problems such as difficulty in expanding 
applications, high coupling, and high deployment costs [1]. 
The emergence of microservice technology will solve the 
above-mentioned problems encountered by traditional 
monolithic applications. This article will introduce 
microservices from two aspects of development style and 
deployment. From the aspect of architecture, we introduce the 
process of adopting different architectures from monolithic 
applications to componentization to microservices, to achieve 
decoupling and high expansion of server-side applications. 
However, after the traditional monolithic application is split 
into multiple microservices, decoupling, high expansion, and 
rapid development iteration can be achieved, but the problem 
that comes with it is the increase in the cost of testing and 
operation and maintenance deployment [1]. The emergence of 
container technology is undoubtedly an icing on the cake. We 
will introduce the use of container technology to achieve 
resource isolation and independent deployment of 
microservices from the perspective of deployment and 
operation. To achieve the single responsibility of 
microservices, service autonomy, lightweight 
communication, and reduce operation and maintenance 
deployment costs [3]. 

The main contributions of this work can be summarized as 
follows. 

• We present a comprehensive review of microservices
architectures.

• We give an overview of the container technology.

• We outline three technical challenges of
microservices.

The rest of this paper is organized as follows. Section 2 
describes the evolution of application architecture patterns 
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from traditional monolithic architecture, SOA to 
microservices architectures. Section 3 describes the container 
technology. Section 4 outlines the three challenges 
microservices faced: performance, debugging and data 
consistency. Section 5 summarizes this paper. 

II. ARCHITECTURE 
With increasing complexity and the need for highly 

scalable and robust applications, the traditional monolithic 
architecture is no longer the best choice. After a certain 
threshold, the monolithic architecture often hinders the 
performance and scalability of the application. Besides, due to 
the huge codebase, changes to closely coupled related 
processes in a monolithic architecture will greatly increase the 
impact of a single process failure. 

To cope with these limitations of a single architecture, 
developers adopted the principle of single responsibility 
proposed by Robert C. Martin (co-author of the Agile 
Manifesto). The principle says: bring together those that 
change for the same reason, and separate those that change for 
different reasons. 

Eventually, Service Oriented Architecture (SOA) and 
microservice architectures were recognized and enabled 
developers to build applications as a set of small, decoupled 
services that run in their environment and can be deployed 
independently. 

Let us look at the evolution of application architecture 
patterns from traditional monolithic architecture, SOA to 
microservices architecture. 

A. Monolithic Architecture 
The monolithic architecture is a traditional method of 

software development, which has been used by large 
companies such as Amazon and eBay in the past. In a 
monolithic architecture, functions are encapsulated in an 
application. When a whole is small and has only a few 
functions, it can have its advantages, such as ease of 
development, testing, deployment, and expansion [10]. For 
the monolithic architecture, if we need to expand, we only 
need to copy the whole. However, as applications tend to 
become more complex, weaknesses appears [10]. For 
example, high complexity, poor reliability, limited scalability, 
and hindering technological innovation. As shown in figure1, 
when a traditional monolithic architecture is used to develop 
an application, the user interacts with the front-end 
application. The front-end application redirects the user 
request to the software instance hosted in the container and 
interacts with the database to complete all applications. 
Procedural responsibilities [11]. 

 
Fig. 1. Monolithic Architecture. 

B. Service-oriented architecture(SOA) 
In the 1990s, SOA was proposed as a revolutionary 

innovation to decouple service-side applications and improve 
the reuse of components [12]. As shown in figure2, the SOA 
architecture could be divided into multiple server application 
oriented function of loosely coupled services, each service can 
be managed in different containers, between services through 
an enterprise service bus to communicate, and share the same 
database [13]. 

 
Fig. 2. Service-Oriented Architecture. 

C. Microservices Architecture 
Microservices inherited the principles and concepts of the 

service-oriented architecture (SOA) style, and structure a 
service-based application into a very small set of loosely 
coupled software services [10]. In order to further decouple 
the service side applications, the microservices architecture 
proposes to divide the service side applications into several 
loosely coupled services oriented to business responsibilities 
[14]. In figure3, the server application is further divided into 
multiple fine-grained microservices, each service to achieve a 
given business responsibilities, and managed to run in 
different containers [15]. Each container has its own private 
database that cannot be accessed directly by other containers 
[16]. 

 
Fig. 3. Microservices Architecture.

D. Summary 
As shown in table 1, we compare traditional monolithic architecture, Service-oriented architecture, and microservices 

architectures in terms of componentization, component size, elasticity, deployment, storage mechanisms, technology and 
scalability. 
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TABLE I.  COMPARISON OF DIFFERENT ARCHITECTURES 

 Monolithic Architecture Service-Oriented Architecture Microservices Architecture 

Componentization Module Service Microservice 

Component size Big Coarse-grain Fine-grained 

Elasticity A single point of failure No single point of failure. No single point of failure. 

Deployment Holistic creation and deployment. Each component deployed 
independently. 

Each service is built and deployed 
independently. 

Storage mechanism Shared database. Shared database. Private database. 

Technology The same programming language 
and framework. Isomorphism Heterogeneous 

Scalability Unable to scale on demand. Scale on demand. Scale on demand. 

 

III. TECHNOLOGY OF CONTAINER 
The container is a lightweight virtualization technology. 

The virtualization of microservices has been the key to 
improving the performance of cloud applications [17]. The 
traditional virtual machine is a method of virtualization, and 
the container is another emerging virtualization technology. 
Due to its high performance, lightweight, and higher 
scalability [17], it is becoming more and more popular in 
virtual technology. Applications developed using 
microservice technology contain many independent 
decoupling services. These services have their development 
frameworks, and each service performs specific tasks of 
independent development and deployment [15]. Because 
microservices are independent of each other, you can use a 
virtualized environment to sandbox these microservices, 
making the system more secure and easier to manage.  

In the following, we will make a comprehensive review of 
container technology. In particular, firstly, we elaborated on 
the concepts of the container. Secondly, we introduced the 
container-based cluster architecture. Thirdly, we introduced 
the core technology of containers-virtualization. Finally, we 
introduced the containerized deployment of microservices. 

A. Concepts of the container 
The application and its run-time dependent environment 

are packaged and packaged into a standardized and strongly 
portable image [18]. The container engine provides a running 
environment with process isolation and limited resources to 
realize the decoupling of the application from the OS platform 
and underlying hardware. The application is packaged once 
and runs everywhere [19]. The Container can be deployed on 
a physical machine or virtual machine. Container engine and 
container orchestration scheduling platform can realize the life 
cycle management of the containable application [18]. 

Container technology based on namespaces and cgroups. 
Namespace isolation allows process groups to be separated, 
preventing them from seeing resources in other groups. 
Container technology uses different namespaces to isolate 
processes, network interfaces, access interprocess 
communication, mount points, isolate kernel, and version 
identifiers. The control group manages and restricts resource 
access to the process group by restricting enforcement, 
accounting, and isolation—for example, by restricting the 
available memory of specific containers [18]. 

B. Container-based Cluster architecture 
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Host nodeHost node
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Fig. 4. Container-based cluster architecture. 

Containerization simplifies the steps from a single 
application in a container to the ability to run containerized 
applications across clustered hosts [18]. The latter benefits 
from the container's built-in interoperability. Individual 
container hosts are grouped into interconnected clusters, as 
shown in  figure4. Each cluster consists of several (host) 
nodes. Application services are logical groups of containers 
from the same image. Application services allow applications 
to be extended across different host nodes [20]. A volume is a 
mechanism for applications that require data persistence. 
Containers can mount these volumes for storage. Linking 
allows two or more containers to connect and communicate 
[18]. The setup and management of these container clusters 
require choreography support for inter-container 
communication, linking, and service assemblies. 

As shown in figure4. Container linking allows multiple 
containers to be linked together and send information between 
them. Linked containers can transfer data about themselves 
through environment variables. To establish links and certain 
types of relationships, Docker relies on the name of the 
container, which must be unique, which means that links are 
usually limited to containers on the same host. 

C. Virtualization 
Resource virtualization includes to use an intermediate 

software layer above the underlying system to provide 
abstractions of multiple virtual resources [20]. Generally, a 
virtual resource is called a virtual machine (VM) and can be 
regarded as an independent execution context. The most 
common form of hypervisor-based virtualization (hosted 
virtualization) consists of a virtual machine monitor (VMM) 
that sits on top of the host operating system (OS), which 
provides a complete abstraction for VMs. In this case, each 
VM has its operating system, and its execution is completely 
independent of other VMs. For example, this allows multiple 
different operating systems to run on one host. There are 
various virtualization technologies. At present, the most 
popular is hypervisor-based virtualization, which is mainly 
represented by Xen, VMware, and KVM.  

Xen is an open-source project developed by the 
Cambridge University Computer Lab [21][22]. It is a software 
layer that directly runs on the computer hardware to replace 
the operating system [22]. It can run multiple guest operating 
systems (Guest OS) concurrently on the computer hardware. 
Xen uses the ICA protocol. High performance is achieved 
through a technology called paravirtualization [23]. Even on 
some architectures that are extremely unfriendly to traditional 
virtualization technologies (such as x86), Xen also performs 
well. 

Vmware uses full virtualization technology [24][25], so 
there is no need to modify the original operating system, and 
it can support different operating systems at the same time. 
The Guest OS task runs on the hardware and cannot sense 
other Guest OS [24]. Vmware's host VM mode divides the 
virtual software into two parts. One part is VMM, used for 
virtual CPU. The other part is an app that uses OS for device 
support and a VM driver placed inside OS as an intermediary 
between app and OS [25]. The VMware virtual machine is 
installed on the host OS, and the host OS provides a good 
device driver. 

KVM stands for Kernel-based Virtual Machine. It is a 
kernel-based virtualization technology [26][27]. It is a 
virtualization module embedded in the system. It uses 
virtualization technology by optimizing the kernel. This 
kernel module makes Linux a hypervisor, and the virtual 
machine uses Linux. Managed by its scheduler [26]. The 
virtual machine in KVM is implemented as a regular Linux 
process, which is scheduled by a standard Linux scheduler; 
each virtual CPU of the virtual machine is implemented as a 
regular Linux process [28]. This allows KVM to use the 
existing features of the Linux kernel. However, KVM itself 
does not perform any hardware emulation and requires the 
client space program to set the address space of a guest virtual 
server through the /dev/kvm interface, provide it with 
simulated I/O, and map its video display back to the host 
display Screen [27][28]. 

Container Container

Shared Operating System

Hardware

App App App

Guest OS Guest OS

Virtual Machine Monitor

Hardware

App App App

Container based architecture hypervisor based architecture

 
Fig. 5. Comparison of container- and hypervisor-based virtualization 
architectures. 

The lightweight alternative to the hypervisor is container-
based virtualization, also known as OS-level virtualization. 
This virtualization partitions the resources of the physical 
machine, thereby creating multiple isolated user-space 
instances on the same OS. Nevertheless, under these 
circumstances, users still have the illusion that they are 
working on their separate network, memory, and file system 
subsystems [29]. The main difference is that there is no need 
to convert instructions from the upper layer to the lower layer 
in the hypervisor. For this, a virtual driver is required. In  
figure5, the differences between container-based and 
hypervisor-based architectures are depicted [18]. It can be 
seen that although virtualization based on hypervisors 
provides an abstraction for a complete guest OS (one for each 
virtual machine), container-based virtualization works at the 
OS level, directly providing an abstraction for guest 
applications. The hypervisor works at the level of hardware 
abstraction, while the container works at the system call/ABI 
layer [18]. Because container-based virtualization works at the 
operating system level, all containers share an operating 
system kernel. Therefore, the container-based system is 
weaker than the hypervisor-based system. However, from the 
user's perspective, each container looks and executes exactly 
like an independent OS [29]. 

D. Containerized deployment of microservices 
For microservices, containers are superior to virtual 

machines in many aspects. Containers are lightweight, easy to 
manage, and have fast startup times. They can fundamentally 
reduce the downtime of enterprise-level applications, thereby 
reducing the deployment of microservice-based applications 
[17],the workload and cost. 

As shown in figure6, containerized deployment of 
microservices is mainly divided into four steps: microservice 
development, microservice container image construction, 
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microservice container image management, and microservice 
container orchestration management. 

• Development of microservices: services have their 
development frameworks and each service 
independent development. 

• Building a microservice container image: Package 
microservices into multiple container images. 

• Manage microservice container images: Optimize 
microservices container image, for example, reduce 
the size of container image. Then, use DockerHub to 
manage container images. 

• Microservice container orchestration management: 
Select the appropriate container management tool, To 
deploy and manage the microservice container through 
the writing of the configuration file. So that the 
microservice instance runs normally in the respective 
container and maintains good interaction. To the entire 
system, application runs normally and completes the 
microservice Containerized deployment. 

Push

pull

package package package

deploy

 
Fig. 6. Containerized  deployment of microservices. 

Through container technology, the deployment of 
applications will become more convenient. A single container 
does not need to host a complete application, and a whole 
application is refined into multiple fine-grained 
microservices. Use containers to perform fine-grained 
microservices. Independently deploy and implement given 
business responsibilities. Therefore, container deployment 
will be an ideal choice for microservice deployment. 

IV. CHALLENGES 

A. Performance 
Performance is defined as a software quality attribute that 

includes software system behavior [30]. Performance is an 
important but often overlooked aspect of software 
development methods. Performance refers to the system's 
responsiveness: the time required to respond to a specific 
event, or the number of events processed within a given time 
interval [31]. 

The microservices architecture requires continuous 
interaction between the services that make up the application. 
At the same time, each service needs to use the 
communication interface between its services to perform 
transaction operations[32]. Therefore, network 
communication is a negative factor affecting the performance 
of microservices. 

Lightweight communication mechanisms are used to 
communicate between microservices. When a service 
provider cannot be called due to network reasons, subsequent 
service consumers will have a "cascading failure", that is, an 
avalanche effect [33][34], as shown in figure7. 
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Service B Service A

The call is 
successful

The call is 
successful
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Service 
D

Service B Service A
Call fails Call fails

Tim
e goes by
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A is not available

A and B are not 
available

System 
unavailable

 
Fig. 7. Cascading effect. 

The inherent performance challenges of distributed 
applications, complex system communication [34]. 
Traditional monolithic applications are called in memory, 
while distributed applications are calls that move between 
processes, possibly through the network, which brings 
additional latency and speed loss. Calling remote 
microservices in a loop increases the delay of each loop 
iteration and may quickly render the service call unavailable. 

B. Debugging 
Microservices systems are essentially concurrent 

distributed systems. In general, the effective way to debug 
concurrent distributed systems is to track and visualize the 
execution of the system [35]. Compared with traditional 
concurrent distributed systems, microservices systems are 
more complex and dynamic [36], as follows: 

• A large number of microservices instances run on a 
large number of nodes (such as physical or virtual 
machines), and the distribution of microservices 
instance is also constantly changing, which brings 
great uncertainty to the communication between 
microservices [37]. 

• Microservices systems involve complex 
environmental configurations, and incorrect or 
inconsistent environmental configurations may cause 
runtime failures [38]. 

• A large number of complex asynchronous interactions 
are involved between microservices. These 
asynchronous interactions involve complex call 
chains, which can easily lead to improper 
collaboration, which in turn can lead to runtime 
failures [36]. 

• Because microservices instance can be created and 
destroyed dynamically, there is a lack of 
correspondence between microservices and system 
nodes in microservices systems [37]. 
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These high complexity and dynamics have brought many 
challenges to debugging microservices systems [39][37]. 
Literature [36] pointed out that the current debugging of 
microservices systems depends largely on the developer's 
experience with the system and similar failure cases, and 
mainly relies on manual methods to check logs. 

C. Data consistency 
Although microservices systems bring many benefits in 

terms of flexibility and scalability, how to ensure the 
consistency of data in the system is challenging [38]. In a 
monolithic system, data is stored centrally in the same 
database; while in a microservices architecture, data is 
distributed in databases of different microservices, how to 
ensure transaction consistency across multiple databases is a 
critical issue that needs to be resolved [40][41]. 

Obviously, the traditional method of solving data 
consistency in a single database is not suitable for 
microservices systems [42]. In the context of microservices, 
there are currently two methods for solving data consistency: 

• Cloning-based method. Each microservice creates a 
clone of the original database and interacts with its 
private database independently [43]. Each update in 
the private database will be notified to other cloned 
databases by broadcast to ensure the consistency of 
data between the databases. However, the 
disadvantage of this method is that it requires more 
resources to store data [40]. 

• Based on the private database method, each 
microservice has its private database [44]. For 
example, a document [45] proposes a slicing mode, 
which divides the unified central data storage into a set 
of horizontal slices according to the business boundary 
of each microservice. However, the main challenge 
faced by this method is how to ensure the consistency 
of the data when connecting the data in different 
databases [40]. 

Distributed applications cannot guarantee simultaneous 
transactions, and all distributed transactions must be called 
asynchronously [45][40]. Influenced by network delays, 
complicated communication modes, etc., may cause data to be 
inconsistent[46]. According to CAP theory, a choice must be 
made between usability and consistency. If you choose to 
provide consistency, you have to pay the price of blocking 
other concurrent accesses before consistency is met. This may 
continue for an indefinite period, especially in distributed 
systems that already have network delays, complex 
communications, and other features that can easily lead to lost 
connections[45]. Usability is generally a better choice, but 
maintaining data consistency between services and databases 
is a fundamental requirement [46]. Therefore, data 
consistency will be an important challenge for microservices. 

V. CONCLUSION 
The goal of this paper is to provide a comprehensive 

overview of the current status of widely used microservices 
technologies. Firstly, it describes the evolution of application 
architecture patterns from traditional monolithic architecture, 
SOA to microservices architecture. Secondly, the important 
technologies of microservices are explained from two aspects 
of container and data management. Finally, the three technical 
challenges faced by microservices are listed: performance, 
debugging, and data consistency. Besides, the needs of the 

organization should be considered when choosing a 
microservices architecture. There is usually no one 
development model that is the best. Instead, each design 
pattern performs better in different situations. The complex 
architecture is accompanied by a long development cycle and 
additional licensing fees for third-party applications. At the 
same time, hiring higher quality developers and testers in the 
team is another factor that increases the total cost. However, it 
should not be forgotten that these architectures can increase 
productivity and reduce costs because they have higher energy 
efficiency in the long run. 

ACKNOWLEDGEMENTS 
This work was supported in part by the Project of National 

Natural Science Foundation of China under Grant No. 
61702442, 61862065, and 61662085, the Application Basic 
Research Project in Yunnan Province Grant No. 2018FB105, 
the Major Project of Science and Technology of Yunnan 
Province under Grant No. 202002AD080002 and  No. 
2019ZE005. 

REFERENCES 
[1] A. Balalaie, A. Heydarnoori and P. Jamshidi, "Microservices 

Architecture Enables DevOps: Migration to a Cloud-Native 
Architecture," in IEEE Software, vol. 33, no. 3, pp. 42-52, May-June 
2016, doi: 10.1109/MS.2016.64. 

[2] X. Xu, X. Liu, Z. Xu, F. Dai, X. Zhang and L. Qi, "Trust-Oriented IoT 
Service Placement for Smart Cities in Edge Computing," in IEEE 
Internet of Things Journal, vol. 7, no. 5, pp. 4084-4091, May 2020, doi: 
10.1109/JIOT.2019.2959124. 

[3] C. Richardson, "Microservices-Pattern: Microservice Architecture," 
March 2014. http://microservices.io/patterns/microservices.html. 

[4] A. Krylovskiy, M. Jahn and E. Patti, "Designing a Smart City Internet 
of Things Platform with Microservice Architecture," 2015 3rd 
International Conference on Future Internet of Things and Cloud, 
Rome, 2015, pp. 25-30, doi: 10.1109/FiCloud.2015.55. 

[5] H. Knoche and W. Hasselbring, "Using Microservices for Legacy 
Software Modernization," in IEEE Software, vol. 35, no. 3, pp. 44-49, 
May/June 2018, doi: 10.1109/MS.2018.2141035. 

[6] F. Rademacher, J. Sorgalla and S. Sachweh, "Challenges of Domain-
Driven Microservice Design: A Model-Driven Perspective," in IEEE 
Software, vol. 35, no. 3, pp. 36-43, May/June 2018, doi: 
10.1109/MS.2018.2141028. 

[7] F. Dai, Q. Mo, Z. Qiang, B. Huang, W. Kou and H. Yang, "A 
Choreography Analysis Approach for Microservice Composition in 
Cyber-Physical-Social Systems," in IEEE Access, vol. 8, pp. 53215-
53222, 2020, doi: 10.1109/ACCESS.2020.2980891. 

[8] Q. Mo, W. Song, F. Dai, L. Lin and T. Li, "Development of 
Collaborative Business Processes: A Correctness Enforcement 
Approach," in IEEE Transactions on Services Computing, doi: 
10.1109/TSC.2019.2961346. 

[9] X. Xu, H. Cao, Q. Geng, X. Liu, F. Dai, C. Wang, "Dynamic Resource 
Provisioning for Workflow Scheduling under Uncertainty in Edge 
Computing Environment," Concurrency and Computation-Practice & 
Experience, 2020, doi: 10.1002/cpe.5674. 

[10] L. De Lauretis, "From Monolithic Architecture to Microservices 
Architecture," 2019 IEEE International Symposium on Software 
Reliability Engineering Workshops (ISSREW), Berlin, Germany, 
2019, pp. 93-96, doi: 10.1109/ISSREW.2019.00050. 

[11] C. Esposito, A. Castiglione and K. R. Choo, "Challenges in Delivering 
Software in the Cloud as Microservices," in IEEE Cloud Computing, 
vol. 3, no. 5, pp. 10-14, Sept.-Oct. 2016, doi: 10.1109/MCC.2016.105. 

[12] V. Singh and S. K. Peddoju, "Container-based microservice 
architecture for cloud applications," 2017 International Conference on 
Computing, Communication and Automation (ICCCA), Greater 
Noida, 2017, pp. 847-852, doi: 10.1109/CCAA.2017.8229914. 

[13] A. Koschel, I. Astrova and J. Dötterl, "Making the move to 
microservice architecture," 2017 International Conference on 
Information Society (i-Society), Dublin, 2017, pp. 74-79, doi: 
10.23919/i-Society.2017.8354675. 

634



[14] A. Sill, "The Design and Architecture of Microservices," in IEEE 
Cloud Computing, vol. 3, no. 5, pp. 76-80, Sept.-Oct. 2016, doi: 
10.1109/MCC.2016.111. 

[15] Z. Xiao, I. Wijegunaratne and X. Qiang, "Reflections on SOA and 
Microservices," 2016 4th International Conference on Enterprise 
Systems (ES), Melbourne, VIC, 2016, pp. 60-67, doi: 
10.1109/ES.2016.14. 

[16] A. Furda, C. Fidge, O. Zimmermann, W. Kelly and A. Barros, 
"Migrating Enterprise Legacy Source Code to Microservices: On 
Multitenancy, Statefulness, and Data Consistency," in IEEE Software, 
vol. 35, no. 3, pp. 63-72, May/June 2018, doi: 
10.1109/MS.2017.440134612. 

[17] T. Salah, M. J. Zemerly, C. Y. Yeun, M. Al-Qutayri and Y. Al-
Hammadi, "Performance comparison between container-based and 
VM-based services," 2017 20th Conference on Innovations in Clouds, 
Internet and Networks (ICIN), Paris, 2017, pp. 185-190, doi: 
10.1109/ICIN.2017.7899408. 

[18] C. Pahl, A. Brogi, J. Soldani and P. Jamshidi, "Cloud Container 
Technologies: A State-of-the-Art Review," in IEEE Transactions on 
Cloud Computing, vol. 7, no. 3, pp. 677-692, 1 July-Sept. 2019, doi: 
10.1109/TCC.2017.2702586. 

[19] C. Pahl, "Containerization and the PaaS Cloud," in IEEE Cloud 
Computing, vol. 2, no. 3, pp. 24-31, May-June 2015, doi: 
10.1109/MCC.2015.51. 

[20] M. G. Xavier, I. C. D. Oliveira, F. D. Rossi, R. D. D. Passos, K. J. 
Matteussi and C. A. F. D. Rose, "A Performance Isolation Analysis of 
Disk-Intensive Workloads on Container-Based Clouds," 2015 23rd 
Euromicro International Conference on Parallel, Distributed, and 
Network-Based Processing, Turku, 2015, pp. 253-260, doi: 
10.1109/PDP.2015.67. 

[21] W. Liangming, L. Fagui, Z. Hao and Z. Haiyan, "Trusted network 
connection of Inter-Domian on Xen virtual machine," 2011 
International Conference on Electronics, Communications and Control 
(ICECC), Ningbo, 2011, pp. 4058-4061, doi: 
10.1109/ICECC.2011.6066603. 

[22] J. Wu and J. Li, "ERTDS: A dynamic CPU scheduler for Xen 
virtualization systems," 2017 International Conference on Applied 
System Innovation (ICASI), Sapporo, 2017, pp. 457-460, doi: 
10.1109/ICASI.2017.7988453. 

[23] R. Sailer et al., "Building a MAC-based security architecture for the 
Xen open-source hypervisor," 21st Annual Computer Security 
Applications Conference (ACSAC'05), Tucson, AZ, 2005, pp. 10 pp.-
285, doi: 10.1109/CSAC.2005.13. 

[24] I. Ahmad, J. M. Anderson, A. M. Holler, R. Kambo and V. Makhija, 
"An analysis of disk performance in VMware ESX server virtual 
machines," 2003 IEEE International Conference on Communications 
(Cat. No.03CH37441), Austin, TX, USA, 2003, pp. 65-76, doi: 
10.1109/WWC.2003.1249058. 

[25] D. T. Vojnak, B. S. Ðor�evi�, V. V. Tim�enko and S. M. Štrbac, 
"Performance Comparison of the type-2 hypervisor VirtualBox and 
VMWare Workstation," 2019 27th Telecommunications Forum 
(TELFOR), Belgrade, Serbia, 2019, pp. 1-4, doi: 
10.1109/TELFOR48224.2019.8971213. 

[26] W. Bai and W. Li, "A Novel VSFTP-Based KVM Virtualization Cloud 
Deployment Scheme," 2018 5th IEEE International Conference on 
Cyber Security and Cloud Computing (CSCloud)/2018 4th IEEE 
International Conference on Edge Computing and Scalable Cloud 
(EdgeCom), Shanghai, 2018, pp. 211-217, doi: 
10.1109/CSCloud/EdgeCom.2018.00045. 

[27] S. Zhang, L. Wang and X. Han, "A KVM Virtual Machine Memory 
Forensics Method Based on VMCS," 2014 Tenth International 
Conference on Computational Intelligence and Security, Kunming, 
2014, pp. 657-661, doi: 10.1109/CIS.2014.72. 

[28] C. Guo, T. Li, Z. Gong and H. Han, "A virtual vulnerability validation 
platform based on KVM," 2015 IEEE 5th International Conference on 
Electronics Information and Emergency Communication, Beijing, 
2015, pp. 228-231, doi: 10.1109/ICEIEC.2015.7284527. 

[29] M. G. Xavier, M. V. Neves, F. D. Rossi, T. C. Ferreto, T. Lange and 
C. A. F. De Rose, "Performance Evaluation of Container-Based 
Virtualization for High Performance Computing Environments," 2013 
21st Euromicro International Conference on Parallel, Distributed, and 
Network-Based Processing, Belfast, 2013, pp. 233-240, doi: 
10.1109/PDP.2013.41. 

[30] S. Prasad and S. B. Avinash, "Application of polyglot persistence to 
enhance performance of the energy data management systems," 2014 
International Conference on Advances in Electronics Computers and 
Communications, Bangalore, 2014, pp. 1-6, doi: 
10.1109/ICAECC.2014.7002444. 

[31] S. Nadkarni, A. Kadakia and K. Shrivastava, "Providing Scalability to 
Data Layer Using a Novel Polyglot Persistence Approach," 2018 
Fourth International Conference on Computing Communication 
Control and Automation (ICCUBEA), Pune, India, 2018, pp. 1-5, doi: 
10.1109/ICCUBEA.2018.8697383. 

[32] F. Dai, H. Chen, Z. Qiang, Z. Liang, B. Huang, L. "Wang, Automatic 
Analysis of Complex Interactions in Microservice Systems," 
Complexity, 2020, doi: 10.1155/2020/2128793. 

[33] K. Takeda et al., "Franz-Keldysh and avalanche effects in a germanium 
waveguide photodiode," 10th International Conference on Group IV 
Photonics, Seoul, 2013, pp. 138-139, doi: 
10.1109/Group4.2013.6644409. 

[34] M. M. Hayat, B. E. A. Saleh and M. C. Teich, "Effect of dead space on 
gain and noise of double-carrier-multiplication avalanche 
photodiodes," in IEEE Transactions on Electron Devices, vol. 39, no. 
3, pp. 546-552, March 1992, doi: 10.1109/16.123476. 

[35] F. Dai, Q. Mo, T. Li, B. Huang, Y. Yang, Y. Zhao. "Refactoring 
Business Process Models with Process Fragments Substitution". 
Wireless Networks, 2020, doi: 10.1007/s11276-020-02367-3. 

[36] X. Zhou et al., "Fault Analysis and Debugging of Microservice 
Systems: Industrial Survey, Benchmark System, and Empirical Study," 
in IEEE Transactions on Software Engineering, doi: 
10.1109/TSE.2018.2887384.  

[37] X. Zhou et al., "Delta Debugging Microservice Systems," 2018 33rd 
IEEE/ACM International Conference on Automated Software 
Engineering (ASE), Montpellier, France, 2018, pp. 802-807, doi: 
10.1145/3238147.3240730. 

[38] L. Safina, M. Mazzara, F. Montesi and V. Rivera, "Data-Driven 
Workflows for Microservices: Genericity in Jolie," 2016 IEEE 30th 
International Conference on Advanced Information Networking and 
Applications (AINA), Crans-Montana, 2016, pp. 430-437, doi: 
10.1109/AINA.2016.95. 

[39] C. Esposito, A. Castiglione and K. R. Choo, "Challenges in Delivering 
Software in the Cloud as Microservices," in IEEE Cloud Computing, 
vol. 3, no. 5, pp. 10-14, Sept.-Oct. 2016, doi: 10.1109/MCC.2016.105. 

[40] M. E. Kholy and A. E. Fatatry, "Framework for Interaction Between 
Databases and Microservice Architecture," in IT Professional, vol. 21, 
no. 5, pp. 57-63, 1 Sept.-Oct. 2019, doi: 10.1109/MITP.2018.2889268. 

[41] R. M. Munaf, J. Ahmed, F. Khakwani and T. Rana, "Microservices 
Architecture: Challenges and Proposed Conceptual Design," 2019 
International Conference on Communication Technologies 
(ComTech), Rawalpindi, Pakistan, 2019, pp. 82-87, doi: 
10.1109/COMTECH.2019.8737831. 

[42] M. Villamizar et al. Cost comparison of running web applications in 
the cloud using monolothic, microservice, and AWs Lambada 
architecture [C]// Proceedings of the Service Oriented Computing and 
Applications, 2017, vol. 11, pp. 233- 247, doi: 10.1007/s11761-017-
0208-y. 

[43] G. Granchelli, M. Cardarelli, P. Di Francesco, I. Malavolta, L. Iovino 
and A. Di Salle, "MicroART: A Software Architecture Recovery Tool 
for Maintaining Microservice-Based Systems," 2017 IEEE 
International Conference on Software Architecture Workshops 
(ICSAW), Gothenburg, 2017, pp. 298-302, doi: 
10.1109/ICSAW.2017.9. 

[44] N. Alshuqayran, N. Ali and R. Evans, "A Systematic Mapping Study 
in Microservice Architecture," 2016 IEEE 9th International 
Conference on Service-Oriented Computing and Applications 
(SOCA), Macau, 2016, pp. 44-51, doi: 10.1109/SOCA.2016.15. 

[45] C. H. Costa, J. Filho, F. Oliveira. "Sharding by Hash partitioning. A 
database scalability pattern to achieve evenly sharded database 
clusters," Proceedings of the International Conference on Enterprise 
Information Systems, 2015, doi: 10.5220/0005376203130320. 

[46] X. Xu, R. Mo, F. Dai, W. Lin, S. Wan and W. Dou, "Dynamic Resource 
Provisioning With Fault Tolerance for Data-Intensive Meteorological 
Workflows in Cloud," in IEEE Transactions on Industrial Informatics, 
vol. 16, no. 9, pp. 6172-6181, Sept. 2020, doi: 
10.1109/TII.2019.2959258. 

 

635


