
Synthesized dataset for search-based test data
generation methods focused on MC/DC criterion

Ján Čegiň
Institute of Informatics, Information
Systems and Software Engineering

Slovak University of Technology
in Bratislava

Bratislava, Slovakia

jan.cegin@stuba.sk

Karol Rástočný
Institute of Informatics, Information
Systems and Software Engineering

Slovak University of Technology
in Bratislava

Bratislava, Slovakia

karol.rastocny@stuba.sk

Mária Bieliková
Slovak Research Center
for Artificial Intelligence

slovak.AI
Bratislava, Slovakia

maria.bielikova@slovak.ai

Abstract—Unit testing focused on the Modified Condi-
tion/Decision Coverage (MC/DC) criterion is essential in develop-
ment of safety-critical systems as recommended by international
standards. Designing unit tests for such specific software is time-
consuming task which can be partially automated by test data
generation methods. Special attention is given to search-based
methods which are often used for problems where traditional
methods like symbolic execution fall short. However, no publicly
available dataset for evaluation of such methods taking into
account specifics of the MC/DC criterion, which is esential for
safety-critical systems. In this paper we present an analysis of
software of safety-critical systems and we postulate to find a
fitting open source project which could serve as a synthesized
dataset for future evaluations of search-based test data generation
methods for the MC/DC criterion.

Index Terms—MC/DC criterion, unit testing, search-based
testing, test data generation, safety-critical systems

I. INTRODUCTION

Safety-critical systems are nowadays present in multiple

domains and used in various parts of everyday life. Aviation,

automotive, healthcare and many more are some of the do-

mains where safety-critical systems are present. Software of

these systems is tested via multiple techniques, which are rec-

ommended for use in standards such as IEC 61508 [1] (general

standard for safety critical systems) and ISO 26262 [3] (au-

tomotive industry). Both international standards recommend

the Modified Condition/Decision Coverage (MC/DC) criterion

for designing unit tests [2]. MC/DC is a very strong criterion

which greatly reduces the number of tests needed to meet

necessary condition coverage, whilst preserving necessary

quality attributes.

There have been proposed methods to generate test data that

conform with the MC/DC criterion [4]. Test data generation is

a very important and difficult field of software engineering. It

is because its results affect the cost of software development

as well as the effectiveness of testing. Search-based methods

look at the problem of generating test data as a computational

search problem. These methods are often used for problems,

where traditional test data generation techniques [4] (symbolic

execution, model based, etc.) fail short. But problems exist

with the evaluation of such methods, as no public dataset is

present for complex evaluation of different techniques.

In this paper, we address a problem of missing public dataset

for evaluation of test data generation methods conforming with

the MC/DC criterion. We present an analysis of current eval-

uation techniques used in this domain. Secondly, we present

a first analysis of software of an automotive safety-critical

system and we postulate properties of needed synthesized

dataset based on the analysis of the real world industrial

project.

II. EVALUATING SEARCH-BASED TEST DATA GENERATION

METHODS FOR MC/DC CRITERION

Some of the search-based methods [2], [5] for the MC/DC

criterion use hand-picked classes and methods that were pre-

viously used in works they are comparing with. Most methods

use the Triangle classification algorithm — a program which

classifies a triangle base on edge sizes. However, this algorithm

differs significantly in its implementations, as pointed out in

the method [5] which also evaluated itself on four different

implementations of this algorithm. This leads to varying

complexity of this algorithm used in evaluations.

Other methods [8], [9] evaluate themselves on multiple

benchmarks, most notably programs that have been used pre-

viously with the inclusion of some new open-source methods

they picked. Methods are often picked to contain known

defects to evaluate, if the given method does not only improve

coverage, but if it also finds these known defects.

There are also methods [6], [7] that were evaluated on indus-

trial programs or even complete industrial projects. However,

these projects are not available for research, as these projects

are often legal bounded to not be published. Published metrics

from these projects remain at a basic level (number of classes,

lines of code, etc.).

As such, the current evaluations of search-based methods

for test data generation for branch or MC/DC criteria are of

varying quality, ranging from only one method used, to using

multiple industrial projects. This makes replicating results as

well as comparing methods difficult.

680

2020 IEEE 20th International Conference on Software Quality, Reliability and Security Companion (QRS-C)

978-1-7281-8915-4/20/$31.00 ©2020 IEEE
DOI 10.1109/QRS-C51114.2020.00118

III. SYNTHESISED DATASET CONSTRUCTION

We present our work on a synthesised dataset based upon

real industrial project which is an embedded software system

for control of car parts from our industrial partner. This system

fails under the SIL 4 level defined in the IEC 61508 [1]. A

synthesized dataset for evaluation of test data generation for

combinatorial testing has been created and used [10] before.

We propose similar approach for synthesizing a dataset for

search-based methods and MC/DC criterion.

We propose the following process for the synthesised dataset

construction. Firstly, we collect metrics for available safety-

critical systems, present and analyze them as so we can provide

a comparison using software metrics with open-source projects

written in the same language. This give us an insight what

features differentiate software of safety-critical systems from

open-source software, if some do at all. Using this knowledge,

we can find a suitable open-source projects which would be

close to the analyzed safety-critical systems using the collected

metrics. Such projects can be processed by various test data

generation methods. Finally, we select functions, generated

unit tests and achieved coverage, which are similar to the ones

present in the analyzed safety-critical systems. This provides

a dataset for evaluation of future test data generation methods

from the provided baseline, as well as a reasonable comparison

of different methods and their applicability to unit testing for

the MC/DC criterion.

From our preliminary results, we present software metrics

analysis of the software developed by our industrial partner.

These metrics were collected per function, as the focus is on

unit testing, with more than 1100 functions. We selected the

most commonly used software metrics such as Logical Source

Lines of Code (LSLOC) and McCabe Cyclomatic complexity.

Our findings are summarized in Table I. To further emphasize

the possible specifics that software of safety critical systems

might have, we also propose these metrics:

• Condition complexity (CCom): number of and and or
logical operations used in conditions inside analyzed

function. We propose this metric to measure condition

complexity which directly affects the number of needed

test cases for MC/DC criterion.

• Function calls (FAll): number of all function calls inside

the function.

• Function calls (Funq): number of unique function calls

inside the function. We propose function call–based met-

rics to emphasize the number of external function calls

inside the analyzed function.

• Bitwise operations (NBit): number of bitwise operations

used in the function. We propose this metric as bitwise

operations used for memory manipulation are common in

safety-critical systems.

It should be also noted that the IEC 61508 [1] forbids

such code constructs as recursion and memory manipulation,

as it only allows static memory on the SIL 4 level. As

such, we search for open-source projects that avoid such code

constructs, or keep their usage at a minimal level.

TABLE I
METRICS PER FUNCTION FOR THE ANALYSED SOFTWARE

Metric Avg Std 25% 50% 75% Min Max
LSLOC 16 15 7 12 20 2 124
McCabe 7.6 7.5 3 5 9 2 53
CCom 0.8 1.4 0 0 1 0 12
FAll 3.2 5.4 0 1 4 0 54
Funq 1.6 3 0 0 2 0 32
Nbit 4.8 10 0 0 5 0 85

IV. CONCLUSION AND FUTURE WORK

We address the problem of missing publicly available

dataset for evaluation of test data generation methods for unit

testing conforming with the MC/DC criterion. We assume that

there exist differences between open-source software projects

and software of safety-critical systems. Based on this we ana-

lyzed real automotive safety-critical system. Using this analy-

sis, we will outline differences between open-source software

and the domain specific software of safety-critical systems.

This analysis will serve for fitting open-source projects, which

would have at least similar features.

Next, we plan to expand the analysis to open-source projects

and to compare results of analysed projects. This should

provide us with information as to which projects are fitting

for a dataset synthesis. Then we plan to produce unit tests

conforming with MC/DC criterion, thus providing functions,

their tests and a baseline coverage for further evaluations.

ACKNOWLEDGMENT

This work was supported by the Scientific Grant Agency of

the Slovak Republic, grant No. VG 1/0725/19.

REFERENCES

[1] Derek Fowler and Phil Bennett. 2000. IEC 61508 - A Suitable Bases
for the Certification of Safety-Critical Transport-Infrastructure Systems?
SAFECOMP ’00. Springer-Verlag, 250–263.

[2] A. El-Serafy, G. El-Sayed, C. Salama and A. Wahba, ”Enhanced Genetic
Algorithm for MC/DC test data generation,” 2015 INISTA, Madrid,
2015, pp. 1-8.

[3] ISO 26262:2018 – Road vehicles -— Functional safety, International
Standardization Organization, Geneva, CH, 2018.

[4] S. Anand et al., “An orchestrated survey of methodologies for automated
software test case generation,” J. Syst. Softw., vol. 86, pp. 1978–2001,
Aug. 2013.

[5] A. Pachauri and G. Srivastava, “Automated test data generation for
branch testing using genetic algorithm: An improved approach using
branch ordering, memory and elitism,” J. Syst. Softw., vol. 86, pp.
1191–1208, 2013.

[6] P. Bokil, P. Darke, U. Shrotri, and R. Venkatesh, “Automatic test data
generation for C programs,” SSIRI 2009 - 3rd IEEE Int. Conf. Secur.
Softw. Integr. Reliab. Improv., pp. 359–368, 2009.

[7] T. Su et al., “Automated coverage-driven test data generation using
dynamic symbolic execution,” Proc. - 8th Int. Conf. Softw. Secur. Reliab.
SERE 2014, pp. 98–107, 2014

[8] P. Braione, G. Denaro, A. Mattavelli, and M. Pezzè, “Combining
symbolic execution and search-based testing for programs with complex
heap inputs,” Proc. 26th ACM SIGSOFT Int. Symp. Softw. Test. Anal.
- ISSTA 2017, pp. 90–101, 2017

[9] J. Kim, M. Kwon, and S. Yoo, “Generating test input with deep
reinforcement learning,” Proc. - Int. Conf. Softw. Eng., pp. 51–58, 2018

[10] Y. Jia, M. B. Cohen, M. Harman, and J. Petke, “Learning combinatorial
interaction test generation strategies using hyperheuristic search,” in
Proc. - Int. Conf. on Software Engineering, vol. 1, pp. 540–550, 2015

681

