
Software Fault Tolerance via
Environmental Diversity

Kishor Trivedi
Department of Electrical and Computer Engineering,

Duke University, Durham, USA

Keynote Talk

QRS 2020

Dec. 11, 2020

1
Copyright © 2020 by K.S. Trivedi

Outline

ü Motivation/Definitions

ü Real System Examples

ü Software Fault Classification

ü Environmental Diversity

ü Methods of Mitigation

ü Conclusions

2

Health & Medicine
Avionics

Entertainment
Banking

Communication

3

Pervasive Dependence on Computer Systems
Implies the Need for High Reliability/Availability

3

ü Laprie: Trustworthiness of a computer system such
that reliance can justifiably be placed on the service it
delivers

Dependability

Attributes

Availability
Reliability
Safety
Maintainability

Fault Prevention/Avoidance
Fault Removal
Fault Tolerance
Fault Forecasting

Means

Threats
Faults
Errors
Failures

Dependability– An umbrella term

Copyright © 2020 by K.S. Trivedi 4

Two of the Attributes of Dependability

ü Reliability

ÁContinuity of service, how long does system work
w/o system failure

ü Availability

ÁReadiness of service, how frequently it fails and
how quickly can it be repaired/restored/recovered

Copyright © 2020 by K.S. Trivedi 5

IFIP Working Group 10.4 (Laprie)

ü Failure occurs when the delivered service no longer complies

with the desired output.

ü Error is that part of the system state which is liable to lead to

subsequent failure.

ü Fault (or bug) is adjudged or hypothesized cause of an error.

Faults are the cause of errors that may lead to failures

Fault Error Failure

Motivation

Copyright © 2020 by K.S. Trivedi 6

Example Failures from High Tech
companies

Mar. 2015 , Gmail was down for 4 hours and 40 min.

Mar. 2015, Down for 3 hours affecting Europe and US

Sept. 2015, AWS DynamoDB down for 4 hours impacting
among others Netflix, AirBnB, Tinder

Dec. 2015, Microsoft Office 365 and Azure down for 2
hours

Mar. 2015, Apple ITunes, App Stores long 0utage: 12 hours

7

More examples of real failures

Feb. 2017 Amazon S3 service outage (almost 6 hours)

Jul. 2017 - Google Cloud Storage service outage (3

hours and 14 min.) - API low-level software defect

Jul. 2017 - Microsoft Azure service outage (4 hours) ï

Load Balancer Software bug

8

These examples indicate that even the most advanced tech

companies are not offering high levels of dependability

More Recent Examples

ü In Commercial aircrafts (Boeing 737 Max

software problem)

ü Ethiopian Airlines Flight, March 2019,

149 people died

ü Lion Air Flight crash, Oct. 2018,

189 people died

ü Air India’s passenger service system software,

which looks after check-in, baggage and

reservation, was down for more than 5 hours

on April 27, 2019.

Copyright © 2020 by K.S. Trivedi 9

Software is a big problem

ü Hardware fault tolerance, fault management,

reliability/availability modeling relatively well developed

ü System outages more due to software faults

Key Challenge:

Software reliability is one of the
weakest links in system
reliability/availability

10

Motivation

ü Fault prevention or Fault avoidance

ü Fault Removal

ü Fault Tolerance

11

Ensuring Software Reliability:
Known Means

Motivation

ü Fault prevention or Fault avoidance

Á Good software engineering practices
V Requirement Elicitation (Abuse Case Analysis – TCS SSA)

V Design Analysis / Review

V Secure Programming Standard & Review

V Secure Programming Compilation

V Software Development lifecycle

V Automated Code Generation Tools (IDE like Eclipse)

Á Use of formal methods
V UML, SysML, BPM

V Proof of correctness

V Model Checking (SMART, SPIN, PRISM)

ü Bug free code not yet possible for large scale software
systems

ü Yet there is a strong need for failure-free system
operation

12

Reliable Software

Motivation

System outages and software

ü The unstoppable cost increase of software failures

ÁBrokerage $6,450,000 / h

ÁCredit card authorization $2,600,000 / h

ÁeCommerce $225,000 / h

ÁAirline reservation $89,000 / h

Á ...

ü Failures must be avoided through rigorous testing
and fault removal as well as by fault tolerance
against residual faults

13

Ensuring Software Reliability:
Known Means

ü Fault prevention or Fault avoidance

ü Fault Removal

ü Fault Tolerance

14

Motivation

ü Fault removal
Á Can be carried out during

V the specification and design phase

V the development phase

V the operational phase

Á Failure data may be collected and used to parameterize a software
reliability growth model(SRGM) to predict when to stop testing

ü Impossible to fully test and verify if software is fault-free

“Testing shows the presence, not the absence, of bugs” - E. W. Dijkstra

ü Software is still delivered with many bugs either because of
inadequate budget for testing, very difficult to reproduce/detect/
localize/correct bugs or inadequacy of techniques employed/
known

15

Reliable Software

Motivation

ü Fault prevention or Fault avoidance

ü Fault Removal

ü Fault Tolerance

16

Ensuring Software Reliability:
Known Means

Motivation

Software fault tolerance is a potential

solution to improve software reliability in lieu of

virtually impossible fault-free software

Software is a big problem

17

High Reliability/Availability:

Motivation

Software Fault Tolerance
Classical Techniques

ü Design diversity

ÁRecovery block

ÁN-version programming

ÁN-self check programming

ü Data diversity

18

Motivation

ü Design diversity

Á Recovery block

Á N-version programming

Á N-self-check programming

Classical Techniques

Expensive Ą

not used much

in practice!

Design

diversity

Yet there are
stringent

requirements for
failure-free
operation

Challenge: Affordable Software Fault Tolerance

19

Software Fault Tolerance:

Motivation

A possible answer: Environmental Diversity

ü Complex systems (e.g., SDN, CPS, IoT) have a large amount of

software. Software failures are a major cause of undependability.

ü Software failures during operation are a fact that we need to

learn to deal with. Traditional method of software fault tolerance based

on design diversity is expensive and hence does not get used extensively.

ü Software fault tolerance based on inexpensive environmental

diversity should be exploited.

ü The focus so far has been on software faults; we need to pay

attention also to failures caused by software bugs and the recovery from

these failures.

ü Or, focus so far has been on software reliability; we need to pay

attention to software availability as well.

20

TAKE AWAY MESSAGE

Motivation

ü Motivation

ü A Real System Example

ü Software Fault Classification

ü Environmental Diversity

ü Methods of Mitigation

ü Conclusions

21

Outline

REAL SYSTEM: SIP ON WEBSPHERE

IBM Implementation (around 2007)

22

Blade 4

IP Sprayer-IBM Load

Balancer

-

SIP

IBM PC

Replication

Group 3

Blade 2

Blade 3

Blade 4

Blade 2

AS 1

AS 2

AS 3

AS 4

AS 5

AS 1

AS 4

AS 2

AS 5

AS 6

AS 3

AS 6

Blade 3

Replication Domain 1

Replication Domain 2

Replication Domain 3

SIP

Proxy 1

SIP

Proxy 1

Blade 1

Blade 1

Replication Domain 4

Replication Domain 5

Replication Domain 6

Blade Chassis 1

Blade Chassis 2

Blade 4

Test Driver

Test Driver

Test drivers

DM

AS1 thru AS6 are

Application Server

Proxy1's are Stateless

Proxy Server

More details in my PRDC 2008

and ISSRE 2010 papers

23

High availability SIP Application Server
Configuration on IBM WebSphere

Real System

Example

24

High availability SIP Application Server
Configuration on IBM WebSphere

Real System

Example

ü Hardware configuration:

Á Two BladeCenter chassis; 4 blades (nodes) on each chassis

Á 1 chassis is sufficient from performance perspective

ü Software configuration:

Á 2 copies of SIP/Proxy servers (1 sufficient for performance)

Á 12 copies of WebSphere Application Server (WAS or AS)
Á 6 copies sufficient for performance

Á Each WAS instance forms a redundancy pair (replication domain) with WAS
installed on another node on a different chassis

ü Fault Tolerance:

Á The system has both hardware redundancy

Á and software redundancy.

ü Software Redundancy

Á Identical copies of SIP proxy used as backups (hot spares)

Á Identical copies of WebSphere Applications Server (WAS)

used as backups (hot spares)

Á Type of software redundancy – (not design diversity) but

replication of identical software copies

Á Normal recovery after a software failure ïuses time

redundancy

V Restart software, reboot node or fail-over to a software replica;

only when all else fails, a “software repair” is invoked

25

High availability SIP Application Server
Configuration on IBM WebSphere

Real System

Example

Failover to an identical software replica

(that is not a diverse version)

Both have the same bugs

Does it

help?

If yes,

why?

Thirty years ago this would be considered crazy!

26

Software Fault Tolerance: New Thinking

Real System

Example

Have been
Known to help
in dealing with

hardware
transient faults

Do they help in
dealing with failures
caused by software

bugs? Without fixing
those bugs?

If yes, why?

1 2

3

27

Software Fault Tolerance: New Thinking

Real System

Example

Bugs are not all equal !

ü Fault triggers make the difference

ü Some bugs are “trivial”, and failures caused by them can

be easily reproduced. So it is relatively easy to remove

these bugs

ü Others are “subtle”, and reproducing the failures caused by

these bugs is challenging

Á Concurrency bugs

ÁRace conditions

ÁMemory leaks

ÁHardware-related bugs affecting software

Á ...

Á These bugs have a significant impact in terms of the

number of software failures and the resultant losses

28

ü Motivation

ü A Real System Example

ü Software Fault Classification
Á “Fighting Bugs: Remove, Retry, Replicate and Rejuvenate,” M.

Grottke and K. Trivedi. IEEE Computer Magazine, 2007.

ü Environmental Diversity

ü Methods of Mitigation

ü Conclusions

29

Outline

ü Failure occurs when the delivered service no longer

complies with the desired output

ü Error is that part of the system state which is liable to lead to

subsequent failure

ü Fault (or bug) is adjudged or hypothesized cause of an
error

Faults are the cause of errors that may lead to failures

Fault Error Failure

30

IFIP Working Group 10.4 (Laprie)

Software Fault

Classification

Bohrbug:= A fault that is easily

isolated and that manifests

consistently under a well-defined set of

conditions, because its activation and

error propagation lack complexity.

Example: A bug causing a failure whenever the user enters a
negative date of birth

Á Since they are easily found, Bohrbugs may hopefully be
detected and fixed during the software testing phase.

Á The term alludes to the physicist Neils Bohr and his rather
simple atom model.

A New Classification of Software Faults

31

Software Fault

Classification

A New Classification of Software Faults

Mandelbug:= A fault whose activation

and/or error propagation are complex.

Typically, a Mandelbug is difficult to isolate,

and/or the failures caused by a it are not

systematically reproducible.

Example: A bug whose activation is scheduling-dependent:

Á The residual faults in a thoroughly-tested piece of software
are mainly Mandelbugs.

Á The term alludes to the mathematician Benoît Mandelbrot
and his research in fractal geometry.

Á Sometimes called concurrency bugs or non-deterministic
bugs, soft bugs or environment-dependent bugs; failures
resulting from these bugs are sometimes called transient
failures 32

Software Fault

Classification

Mandelbug Complexity Factors

ü Besides workload and internal state of the software
system, its system-context (or operating) environment
participates in determining whether a failure due to such
a bug will occur

ü So a fault is a Mandelbug if its manifestation as a failure
is subject to the following complexity factors
Á Long time lag between fault activation and failure appearance

Á Operating environment dependence (OS resources, other applications
running concurrently, hardware, network…)

Á Timing among submitted operations

Á Sequencing or ordering of operations

ü A failure due to a Mandelbug thus may not recur upon
the resubmission of the same workload if the operating
environment has changed enough

33

Software Fault

Classification

Aging-related bug := A fault that leads

to the accumulation of errors either

inside the running application or in its

system-context environment, resulting

in an increased failure rate and/or

degraded performance.

Example:

Á A bug causing memory leaks in the application

Á Note that the aging phenomenon requires a delay between
(first) fault activation and failure occurrence.

Á Note also that the software appears to age due to such a bug;
there is no physical deterioration

34

Aging-related Bug – Definition

Software Fault

Classification

ü Bohrbug and Mandelbug are complementary antonyms.

Aging-related bugs are a subtype of Mandelbugs

Aging-Related Bugs

Bohrbugs

Mandelbugs

AgingRelated Bugs

Bohrbugs

Mandelbugs

35

Relationships of the Bug Types

Software Fault

Classification

Dealing with Mandelbugs

ü Depending on the bugtype, appropriate strategies are needed

ü Traditional testing tends to be ineffective for Mandelbugs; more suitable

verification strategies are

Á Model checking

Á Combinatorial testing

Á Ratliff, Kuhn, Kacker, Lei & Trivedi, "The Relationship between

Software Bug Type and Number of Factors Involved in Failures," IEEE

International Symposium on Software Reliability Engineering

Workshops (ISSREW), 2016

ü Failures due to Mandelbugs can be tolerated by

Á Retrying failed operation, Restarting a process or Rebooting the VM

Á Failover to an identical replica

ü Failures due to Aging-related bugs can be prevented by

Á Rejuvenation

Á Handbook on Software Aging and rejuvenation, Dohi, Trivedi &

Avritzer (eds.), World scientific, 2020

36

Dealing with Software Failures

ü We submit that a software fault tolerance approach

based on retry, restart, reboot or fail-over to an

identical software replica (not a diverse version) works

because of a significant number of software failures are

caused by Mandelbugs (environment-dependent

bugs) as opposed to the traditional software bugs now

known as Bohrbugs.

37

Software Fault

Classification

Examples of Mandelbugs in IT Systems

ü Mandelbugs in IT Systems: “Recovery from

failures due to Mandelbugs in IT systems,”

Trivedi, Mansharamani, Kim, Grottke, Nambiar.

PRDC 2011; IEEE TR, 2016 (Roberto Natella was

added co-author for IEEE-TR paper)

ü The selected TCS (Tata Consultancy Services)

projects ranged across a number of business

systems in the banking, financial, government, IT,

pharmacy, and telecom sector

38

Software Fault

Classification

Mandelbug “Reproducibility”

ü (Failures due to) Mandelbugs are really hard to reproduce

ÁConducted a set of experiments to study the

environmental factors that affect the reproducibility of

Mandelbugs in MySql

Ádisk usage,

Ámemory occupancy

ÁConcurrency level

ÁHigh usage levels of environmental factors increases

significantly failure occurrences due to Mandelbugs

ü Reproducibility of Environment-Dependent Software Failures: An
Experience Report, Cavezza, Pietrantuono, Alonso, Russo, Trivedi,
ISSRE, 2014.

39

Software Fault

Classification

ü What fraction of bugs in real software systems are

Bohrbugs, Mandelbugs and aging-related bugs

ÁHow do these fractions vary

Vover time

Vover projects, languages, application types,…

ÁNeed of Real Data

40

Important Questions about these Bugs

Software Fault

Classification

Fault Types in NASA Software
ü Bug types in JPL/NASA flight software - “An empirical investigation of

fault types in space mission system software,” Grottke, Nikora, and

Trivedi. DSN, 2010.

ü This papers won the Test of Time Award at DSN 2020

Project LoC %BOH %NAM % ARB % UNK

JPL/NASA 61.4 32.1 4.4 2.1

41

Software Fault

Classification

ü Bug types in Linux, MySQL, Apache AXIS, HTTPD - “Fault triggers in

open-source software: An experience report,” D. Cotroneo, M. Grottke, R.

Natella, R. Pietrantuono, and K. Trivedi. ISSRE, 2013.

Linux 1.31M 42.2 41.9 8.3 7.6

MySQL 453K 56.6 30.3 7.7 5.4

HTTPD 145K 81.1 10.5 7.0 1.4

AXIS 80K 92.5 3.5 4.0 0.0

Project LoC %BOH %NAM % ARB % UNK

JPL/NASA 61.4 32.1 4.4 2.1

42

Fault Types in Open-Source Systems

Software Fault

Classification

Bug Types in Open-Source Systems:
NAM classification

ü LAG: there can be a time lag between the activation of

the fault and the occurrence of a failure

ü ENV: the activation and/or error propagation is influenced

by the interactions of the software application with its

system-internal environment

ü TIM: the activation and/or error propagation is influenced

by the timing of inputs and operations

ü SEQ: the activation and/or error propagation is influenced

by the sequencing (i.e., the relative order) of operations
43

Bug Types in Open-Source Systems:
ARB classification

ü MEM: ARBs causing the accumulation of errors related to memory

management

ü STO: ARBs causing the accumulation of errors that affect disk

storage space

ü LOG: ARBs causing leaks of “other logical resources”, that is,

system-dependent data structures

ü NUM: ARBs causing the accumulation of numerical errors

ü TOT: ARBs in which the increase of the fault activation/error

propagation rate with the total system run time is not caused by

the accumulation of internal error states 44

Examples of ARB/NAM

Project Type Description

MySQL NAM/

SEQ

“if you ‘alter table .. rename to ..’ on a table that has an active transaction

open and UNIV DEBUG is defined, mysqld crashes”

Linux NAM/

LAG

”[The e1000 network driver at suspend/resume does not] explicitly free and

allocate irq [...] Restarting the network solved the problem”

HTTPD NAM/

ENV

“The error only occurs intermittently [...] It behaves as if requests are being

distributed (via round-robin or the like) and handled sometimes by a worker

thread that is not properly initialized”

Axis ARB/

MEM

“Strings and char[]s are being leaked”

Linux ARB/

LOG

“In 2.6.35 and earlier, shutdown(2) will fully remove a socket. This does not

appear to be true any more and is causing software to misbehave.”

HTTPD ARB/S

TO

“Apache child processes will die trying to write logs which have reached 2GB

in size.”

45

Fault Types in Android
ü Bug types in Android operating system- “An Empirical investigation of

fault triggers in Android operating system,” F. Qin, Z. Zheng, X. Li, Y.

Qiao, and K. Trivedi. PRDC, 2017.

Android 65.2 27.0 4.4 3.4

Project LoC %BOH %NAM % ARB % UNK

JPL/NASA 61.4 32.1 4.4 2.1

46

Software Fault

Classification

Example of Mandelbug in Android

ü ENV: On certain Android devices, performing

the following operations in sequence could lead

to a crash

Open camera Ą Set flash ON Ą Take a picture

Ą Set flash OFF Ą Take another picture.

(Caused by Environments)

47

Software Fault

Classification

Fault Types in Linux Revisited
ü Bug types in Linux - “Fault Triggers in Linux Operating System: From

Evolution Perspective,” G. Xiao, Z. Zheng, B. Yin, and K. Trivedi. ISSRE,

2017 (all the bug reports in Linux)

Linux2 55.8 31.7 7.8 4.7

Project LoC %BOH %NAM % ARB % UNK

JPL/NASA 61.4 32.1 4.4 2.1

48

Software Fault

Classification

Fault Types in Several Systems
ü Bug types in JPL/NASA flight software - “An empirical investigation of fault types in space
mission system software,” M. Grottke, A. Nikora, and K. Trivedi. DSN, 2010.

ü Bug types in Linux, MySQL, Apache AXIS, HTTPD - “Fault triggers in open-source software:
An experience report,” D. Cotroneo, M. Grottke, R. Natella, R. Pietrantuono, and K. Trivedi. ISSRE,
2013.

ü Bug types in Android operating system - “An Empirical investigation of fault triggers in
Android operating system,” F. Qin, Z. Zheng, X. Li, Y. Qiao, and K. Trivedi. PRDC, 2017.

ü Bug types in Linux - “Fault Triggers in Linux Operating System: From Evolution
Perspective,” G. Xiao, Z. Zheng, B. Yin, and K. Trivedi. ISSRE, 2017 (all the bug reports in Linux)

Project LoC %BOH %NAM % ARB % UNK

JPL/NASA 61.4 32.1 4.4 2.1

Linux 1.31M 42.2 41.9 8.3 7.6

MySQL 453K 56.6 30.3 7.7 5.4

HTTPD 145K 81.1 10.5 7.0 1.4

AXIS 80K 92.5 3.5 4.0 0.0

Android 65.2 27.0 4.4 3.4

Linux2 55.8 31.7 7.8 4.7

49

Software Fault

Classification

Software Faults and Mitigation Types

ü The fault classification is not only theoretical, it has

also practical implications

ü Each type of software fault may require different

type of approach during development, testing, as well

as during operations

50

Software Fault

Classification

Outline

ü Motivation

ü Real System Examples

ü Software Fault Classification

ü Environmental Diversity

ü Methods of Mitigation

ü Conclusions

51

Software Fault Tolerance: New Thinking

ü Environmental Diversity as opposed to Design

Diversity

ü Our claim is that this (retry, restart, reboot,

failover to identical software copy) may well work

since failures due to Mandelbugs are not negligible.

We thus have an affordable software fault tolerance

technique that we call Environmental Diversity

52

Environmental

Diversity

ü The underlying idea of Environmental diversity
Á Restart an application (without fixing the bus) and it most

likely works -- Why?

Á because of the environment where the application is
executed has changed enough to avoid the fault activation.

ü The environment is understood as
Á OS resources, other applications running concurrently and

sharing the same resources, interleaving of operations,
concurrency, or synchronization.

ü This is Fault Tolerance since we do not necessarily

fix the fault; fault caused a failure but this failure is dealt

with by using time redundancy hence the user may not

experience the failure again on retry

What is Environmental diversity?

53

Environmental

Diversity

Outline

ü Motivation

ü Real System Examples

ü Software Fault Classification

ü Environmental Diversity

ü Methods of Mitigation

ü Conclusions

54

55

Bohrbugs: Remove

Methods of

Mitigation

ü Find and fix the bugs during testing

ü Failure data collected during testing

ü Calibrate a software reliability growth model

(SRGM) using failure data; this model is then used for

prediction

ü Many SRGMs exist

Á Books by Lyu, Musa and several others

Bohrbug: Remove

56

Methods of

Mitigation

57

Methods of Mitigation: Mandelbugs

Methods of

Mitigation

Implications of Mandelbugs
ü Can measure/model software availability

ü Combined of software and hardware availability

ü Need:

ÁDevelop methods of debugging and testing for

environment-dependent bugs

ÁMethods to determine environmental factors and

their effects

ÁRun-time control of environmental factors to avoid

failure occurrences

ÁOptimal recovery sequence after failure occurrence

ÁExperimental methods to determine the nature

software failure times including use of ALT
58

Determine Environmental Factors

ü There are two steps:

ü Step 1: List all the possible environmental factors.

ü Step 2: Determine the critical environmental factors that can

affect the times to failure through:

ü Either logically , according to the failure mechanism

ü Or by experimental method , need Design of Experiments.

59

Environmental

Diversity

Determine Environmental Factors Step 1

ü Five Categories of Candidate Environmental Factors:
ü Hardware resources

F Physical memory, CPU, disk, network, I/O devices, buses, etc.

F Connected firmware

ü Operating System kernelôs subsystems
F OS memory management, device drivers, file-system, networking,

process management, etc.

ü Concurrent software
F Utility software, daemon processes, etc.

F Application-level interacting software, middleware, etc.

ü Interfaces
F Third-party library, open-source library, etc.

ü Others

60

Environmental

Diversity

Determine Environmental Factors
Step 2

ü Using logic. Examples as follows:

¸ Data Race problem. According to the OS theory, smaller
the physical Resident-Set-Size memory, larger the
number of concurrent users, and larger the number of
CPU cores, larger the context switch frequency among
threads; thereby increasing the race’s activation process.
These three environmental factors are therefore critical ones.
Details are in [Kun et al. TR 2019].

61

Environmental

Diversity

Qiu, Zheng, Trivedi, et al. Stress Testing With Influencing Factors to

Accelerate Data Race Software Failures. IEEE T. Reliab., 2019.

ü Motivation

ü A Real System Example

ü Software Fault Classification

ü Environmental Diversity

ü Methods of Mitigation

ü Conclusions

62

Outline

Summary

ü It is possible to enhance software availability during

operation exploiting environmental diversity

ü Multiple types of recovery after a software failure

can be judiciously employed: restart, failover to a

replica, reboot and if all else fails repair (patch)

63

ü Complex systems (e.g., SDN, CPS, IoT) have a large amount of

software. Software failures are a major cause of undependability.

ü Software failures during operation are a fact that we need to

learn to deal with. Traditional method of software fault tolerance based

on design diversity is expensive and hence does not get used extensively.

ü Software fault tolerance based on inexpensive environmental

diversity should be exploited.

ü The focus so far has been on software faults; we need to pay

attention also to failures caused by software bugs and the recovery from

these failures.

ü Or, focus so far has been on software reliability; we need to pay

attention to software availability as well.

64

TAKE AWAY MESSAGE

Motivation

Kishor Trivedi

Dept. of Electrical & Computer Engineering

Duke High Availability Assurance Lab (DHAAL)

Duke University

ktrivedi@duke.edu

www.ee.duke.edu/~ktrivedi

Thank you

for your attention

65

Key References
Motivation

Å On Operational Availability of a Large Software-Based

Telecommunications System, R. Cramp, M. A. Vouk, and W. Jones,

Proc. ISSRE 1992.

Å Software dependability in the Tandem GUARDIAN system, I. Lee, R.

Lyer,, IEEE Transactions on Software Engineering, 1995.

Å Reliability of a Commercial Telecommunications System, M.

Kaaniche and K. Kanoun, Proc. ISSRE 1996.

Å Network Troubleshooting, O. Kyas, Agilent Technologies , 2001

Å Lessons Learned From the Analysis of System Failures at

Petascale: The Case of Blue Waters, C. D. Martino, F. Baccanico, J.

Fullop, W. Kramer, Z. Kalbaczyk, and R. Lyer, Proc. DSN 2014.

66

Key References
Real System

Å Availability Modeling of SIP Protocol on IBM WebSphere, K. S. Trivedi, D. Wang, D. J. Hunt, A.
Rindos, W. E. Smith, and B. Vashaw, Proc. PRDC 2008.

Å Performance and Reliability Evaluation of Passive Replication Schemes in Application Level Fault
Tolerance, S. Garg, Y. Huang, C. M. R. Kintala, K. S. Trivedi, and S. Yajnik. Proc. FTCS 1999.

Fault Classification

Å Fighting Bugs: Remove, Retry, Replicate and Rejuvenate, M. Grottke and K. Trivedi, IEEE Computer,
2007.

Å An Empirical Investigation of Fault Types in Space Mission System Software, M.Grottke, A. P.
Nikora and K. S. Trivedi, Proc. DSN, 2010.

Å Software fault mitigation and availability assurance techniques, K. S. Trivedi, M. Grottke, and E.
Andrade. International Journal of System Assurance Engineering and Management, 2011.

Å Recovery from Failures due to Mandelbugs in IT Systems, K. Trivedi, R. Mansharamani, D.S. Kim, M.
Grottke, M. Nambiar , Proc. PRDC 2011 – IEEE TR 2015

Å R. Chillarege, et al. “Orthogonal Defect Classification ïA Concept for In-process Measurements”,
IEEE Trans. on Software Engineering, 1992

Å F. Frattini, R. Ghosh, M. Cinque, A. Rindos, and K. Trivedi. “Analysis of Bugs in Apache Virtual
Computing Lab”, IEEE/IFIP DSN Workshop, 2013.

Å An Empirical investigation of fault triggers in Android operating system Android operating
system, F. Qin, Z. Zheng, X. Li, Y. Qiao, K. S. Trivedi, PRDC 2017;

Å Fault Triggers in Linux Operating System: From Evolution Perspective , G. Xiao, Z. Zheng, B. Yin,
K. S. Trivedi”, ISSRE 2017.

67

Key References
Environmental Diversity and Methods of Mitigation

Å Performance and Reliability Evaluation of Passive Replication Schemes in Application Level
Fault Tolerance, S. Garg, Y. Huang, C. M. R. Kintala, K. S. Trivedi, and S. Yajnik. Proc. FTCS 1999.

Å Whither generic recovery from Application Faults? A fault study using Open-Source Software,
Chandra S., Chen P. M., Proc. CDSN 2000.

Å Vibhu S. Sharma, Kishor S. Trivedi, “Reliability and Performance of Component Based Software Systems with
Restarts, Retries, Reboots and Repairs”, 17th Int. Symp. on Software Reliability Engineering (ISSRE 2006)

Å An Empirical Investigation of Fault Repairs and Mitigations in Space Mission System Software J.
Alonso, M. Grottke, A. Nikora, and K. Trivedi. Proc. DSN 2013.

Å Software fault mitigation and availability assurance techniques, K. Trivedi, M. Grottke, and E.
Andrade. International Journal of System Assurance Engineering and Management, 2011.

Å Recovery from Failures due to Mandelbugs in IT Systems, K. Trivedi, R. Mansharamani, D.S. Kim,
M. Grottke, M. Nambiar , Proc. PRDC 2011

Å Fault triggers in open-source software: An experience report, Cotroneo, Grottke, Natella,
Pietrantuono, Trivedi, ISSRE 2013.

Å Reproducibility of environment-dependent software failures: an experience report, Cavezza,
Pietrantuono, Alonso, Russo, Trivedi , ISSRE 2014.

Å Understanding the impacts of influencing factors on time to a datarace software failures, K. Qiu,
Z. Zheng, K.S. Trivedi, B. Yin, ISSRE 2017.

Å Stress Testing With Influencing Factors to Accelerate Data Race Software Failures, K. Qiu, Z.
Zheng, K.S. Trivedi, B. Yin, TR 2020.

Å Availability Analysis of Systems Deploying Sequences of Environmental-Diversity-Based
Recovery Methods, K. Qiu, Z. Zheng, K.S. Trivedi, I. Mura, TR 2020.

68

Extra Slides if Needed

Å To answer questions about Heisenbugs vs.

Mandelbugs

69

Jim Gray’s Definitions

ü The terms “Bohrbug” and “Heisenbug” were first

used in print by Jim Gray in 1985.

ü “Bohrbugs, like the Bohr atom, are solid, easily

detected by standard techniques, and hence boring.”

ü “Most production software faults are soft. If the

program state is reinitialized and the failed operation

is retried, the operation will not fail a second time. …

The assertion that most production software bugs are

soft – Heisenbugs that go away when you look at

them – is well known to systems programmers.”

(Gray, 1985)

J. Gray

70

Software Fault

Classification

ü Based on Grayôs paper, researchers have
often equated Heisenbugswith soft faults.

ü However, when Bruce Lindsay originally
coined the term in the 1960s (while working
with Jim Gray), he had a more narrow
definition in mind.

ü “Heisenbugs as originally defined … are
bugs in which clearly the system behavior is
incorrect, and when you try to look to see why
it’s incorrect, the problem goes away.” (Lindsay,
2004)

ü The term alludes to the physicist Werner
Heisenberg and his Uncertainty Principle.

B. Lindsay, photo by T. Upton

Bruce Lindsay’s Definition

71

Software Fault

Classification

Heisenbug := A fault that stops causing a

failure or that manifests differently when

one attempts to probe or isolate it.

ü How can probing affect the bug?

Á Some debuggers initialize unused
memory to default values, thus preventing
failures due to improper initialization.

Á Trying to investigate a failure can
influence process scheduling in such a
way that a scheduling-related failure does
not occur again.

Heisenbug – Our Definition

72

Software Fault

Classification

