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Abstract 

Code smells refer to poor designs that are considered to have negative impacts on the readability and maintainability during software 

evolution. Much research has been conducted to study the effects and correlations between them. However, software is a product of human 

intelligence, and the fundamental cause of code smell is developers. As a result, the research on the impact of code contributors on code 

smell appears vital in particular. In this paper, on 8 popular Java projects with 994 versions, we investigate the impact on code smells from 

the novel perspective of code contributors on five features. The empirical study indicated that the greater number of contributors involved, 

the more likely it is to introduce code smell. Having more mature contributors, who participate in more versions, can avoid the introduction 

of code smell. These findings are helpful for developers to optimize team structure and improve the quality of products. 
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1. Introduction 

 

Code smell represents bad programming designs. The existence of code smell will adversely affect the understanding and 

maintenance of the program [1-3], and is considered to hinder the evolution and development of the software. 

 

The existing research on code smell mainly focus on smell detection [4-6], smell evolution [7-9], and correlation between 

smell and file fault-proneness and change-proneness [10-12]. However, in the process of software evolution [7], it is the code 

contributors who operate the files or methods, that make the changes. As a result, human features are considered to have a 

great impact on software quality [13].   

 

Tourani et al. [13] studied the impact of people's discussions about projects on defect propensity. Rahman et al. [14] 

explored the impact of code owner and developer experience on software quality. When it turns to the research of the impact 

of human features on code smell, Tufano et al. [15] studied the impact of developer status on smell introduction from three 

features: workload, whether the developer is the code owner, and whether the developer is a new participant. However, in this 

study, each code contributor is regarded as an independent individual, and the collaboration and teamwork of code contributors 

are not considered. 

 

Therefore, in this paper, we conduct an extensive empirical study to investigate the impact on code smell from the 

perspective of code contributors. Specifically, we propose multiple code contributor features, i.e., the number of code 

contributors, closeness, maturity, experience and clustering. Then, we define the methods that potentially introduce code smell 

at the method level. Though a total of 994 release versions of 8 popular Java projects, we analyze the relationship between 

code contributors and code smells. Our empirical study results show that, at the file level, smelly files contain more code 

contributors than the non-smelly files; at the method level, the methods that potentially introduce code smell also have more 

contributors than other methods. In addition, the more contributors involved, the more likely it is to introduce code smell.  

 

The more mature contributors, who participate in more versions in the project, can avoid the introduction of code smell. 

 

http://www.ijpe-online.com/
mailto:xfzhang@suda.edu.cn


1068                                        Junpeng Jiang, Can Zhu, and Xiaofang Zhang 

The main contributions of this paper include: (1) Code contributors' features are defined in many ways, not only for 

individuals, but also for collaborations, which makes our research on code contributors more comprehensive and profound. 

(2) Impact analysis is done at multiple levels, including file level and method level. We analyze the influence of developers 

on smell from the surface to the inside, which deepens our understanding of code smell from the file level to the method level. 

(3) Experiments are studied on 994 versions of 8 projects, providing guidelines for building developer teams. Only through 

the analysis of experimental research on large data sets can our suggestions become more credible. 

 

The rest of this paper is organized as follows: the approach and the study design are described in Section 2 and Section 

3. Section 4 provides results and discussion of the study, as well as the threats and validity of our work. Then, some related 

work is introduced in Section 5. Finally, Section 6 presents the conclusion of our study results and discusses future work. 

 

2. Approach 

 

This section shows the approach used in our experiment, including the experiment process, collection of method change 

information, and the features used to describe code contributors. 

 

2.1. Experiment Process 

 

In order to understand the influence of code contributors on code smell, this paper adopts the following process, as shown in 

Figure 1. 

 

• Git Blame command is used to obtain the features of code contributors, including the number, closeness, maturity, 

experience and clustering. 

• DÉCOR [5] is used to detect the code smells in the file. With the information, the files containing the code smell are 

recorded as smelly files; the files without the code smell are recorded as non-smelly files. 

• Abstract Syntax Tree (AST) is used to extract the methods in all files in each version. The code in each file is 

transferred to ASTs so that the methods that potentially introduce code smell can be defined by comparing the methods 

in adjacent versions. 

 

 
Figure 1. The process of this study 

 

2.2. Collection of Method Change Information 

 

The addition, modification or removal of certain methods can lead to the introduction or elimination of code smell. Therefore, 

we collect the different states of code smell in the process of software evolution, so as to judge whether the introduction or 

removal of code smells is a common phenomenon in the evolution of software. Table 1 shows the states of code smell, where 

𝑆𝑖  indicates the number of files with code smell, 𝐶𝑜𝑛𝑡𝑖𝑛𝑢𝑠  indicates the number of persistent smelly files, and 

𝑛𝑜𝑡 𝐶𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 indicates the number of not persistent smelly files.  
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Table 1. The state of code smell 

Project name |𝑆𝑖 | Continuous First_Last First_Mid Mid_Last Mid_Mid Not continuous 

Framework 942 716 153 86 252 225 226 

Security 328 274 0 43 85 146 54 

Boot 605 407 4 17 143 243 198 

Integration 604 477 0 21 170 286 127 

Batch 398 191 3 10 90 88 207 

Session 20 15 0 0 3 12 5 

Data-mongodb 83 73 0 17 25 31 10 

Data-gemfire 122 48 1 1 16 30 74 

 

As shown in Table 1, code smells appear in various states in the process of software evolution, including the state of 

persistence and non-persistence in the version. In addition, this paper also details several states of persistent smelly files 

such as the file with code smells from the first version to the last version (First-Last), the file that code smells exist in the 

first version but disappear in the middle version (First-Mid), the file that the middle version has code smell and continues 

until the last version (Mid-Last) and the file where the appearance and disappearance of code smells occur in middle versions 

(Mid-Mid). 

 

Changes in the appearance and elimination of code smell are often caused by changes in the methods. Therefore, by 

combining the occurrence and disappearance of code smell, as well as the information on the changes of methods, the methods 

that potentially introduce code smell are defined as potential smell-introducing methods (PSIMs in short). 

 

First, the version information is established for the file with code smell. If a file 𝑗 is smelly file, the version information 

of the smelly file is: 
 

𝑗: [(𝑉𝑎1, 𝑉𝑑1), ⋯ , (𝑉𝑎𝑛 , 𝑉𝑑𝑛)] (1) 
 

Where 𝑉𝑎 represents the version in which the smell appears, 𝑉𝑑 represents the version in which the smell is about to 

disappear, and (𝑉𝑎 , 𝑉𝑑) indicates the version interval where the code smell exists. 

 

Then, PSIM is defined, as shown in Table 2. As for 𝑉𝑎, compared with the previous version, if a method in the file is 

modified between the two versions, or in the current version, the method is added as a new method. Then, define the method 

as PSIM. As for 𝑉𝑑, compared with the later version, if a method in the file is modified or removed between the two versions, 

then define this method as PSIM. 

 
Table 2. Potential smell-introducing methods 

Current version Compare version 
Method change 

information 
PSIM 

𝑉𝑎 𝑉𝑎−1 
added-method √ 

modified-method √ 

- - 

𝑉𝑑 𝑉𝑑+1 
modified-method √ 

removed-method √ 
- - 

 

2.3. Features of Mode Contributors 
 

To explore the impact of code contributor on code smell, this section sets up the following five features of code contributors, 

as shown in Table 3. 
 

Table 3. Features of code contributors 

Features of code contributors Description 

Number of contributors Reflects the number of contributors included in the method. 

Closeness 
Reflects the number of identical files that different contributors participate 

together, that is, whether the cooperation is close. 

Maturity Reflects how long contributors have been involved in the project. 

Experience Reflects the number of files that each contributor participate in the project. 

Clustering Reflects the degree of contributors clustering together in the project. 
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For each method in the current version 𝑖, this paper uses the analysis of social networks and quantifies the relevant 

features of the code contributors in the method as follow: 

 

(1) Closeness: for all contributors of the method, establish an undirected weighted graphs with pairwise associations, 

where the weight represents the number of files that the two authors jointly participated in this version. The closeness of these 

two contributors is calculated as follows: 
 

𝐶𝑙𝑜𝑠𝑒𝑛𝑒𝑠𝑠𝑐1,𝑐2 =
𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛𝑐1,𝑐2

√𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛𝑐1 × 𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛𝑐2

 (2) 

 

Where 𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛𝑐1,𝑐2 indicates the number of files that 𝑐1 and 𝑐2 participate together, and 𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛𝑐1 and 

𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛𝑐2 indicate the number of files that 𝑐1 and 𝑐2 separately involved in respectively. If the method contains 

only one contributor, the highest closeness value is 1. 

 

(2) Maturity: the number of versions for the contributor 𝑐1 participating in the project between the first time version 𝑘 

and the current version 𝑖: 
 

𝑀𝑎𝑡𝑢𝑟𝑖𝑡𝑦𝑐1 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑣𝑒𝑟𝑠𝑖𝑜𝑛𝑠 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑖 𝑎𝑛𝑑 𝑘  (3) 
 

(3) Experience: the number of files contributed by the contributor 𝑐1 in the current version: 
 

𝐸𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒𝑐1 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑖𝑙𝑒𝑠 𝑐1 𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑑 𝑖𝑛 𝑣𝑒𝑟𝑠𝑖𝑜𝑛 𝑖  (4) 
 

(4) Clustering: for the current version 𝑖, construct an undirectedconnection graph between code contributors, where if 

two contributors participate in at least one file, these two contributors are connected to each other. The clustering degree of 

code contributor 𝑐1 is calculated as follows: 
 

𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑖𝑛𝑔𝑐1 =
2𝐸(𝑐1)

𝑛𝑐1(𝑛𝑐1 − 1)
  (5) 

 

Where 𝐸(𝑐1) represents the number of edges connected to each other by the adjacent nodes of the contributor 𝑐1, and 

𝑛𝑐1 represents the number of adjacent nodes of  𝑐1. 

 

3. Study Design 

 

3.1. Research Question 

 

In essence, the code contributor's operation has promoted software evolution, and it is also the root cause of the introduction 

of code smells. The features of code contributors provide developers a reliable indicator for making critical development 

decision in the software process. 

 

Further, operations at file level and method level are both critical to software maintenance. Thus, analyzing the 

correlations between code contributors and code smells in different granularities is helpful for developers to make a proper 

plan of software refactoring. 

 

In this study, we aim at answering the following research questions by analyzing the correlations between code 

contributors and code smells: 

 

• RQ1: How does the number of code contributors change in smelly files and non-smelly files during the evolution of 

software projects? 

• RQ2: Considering the introduction of smells at method level, which code contributor features are significantly related 

to the introduction of smells? 

• RQ3: More specifically, what is the specific relationship between these features and the introduction of smells? 

 

3.2. Subjects of Experiment 

 

In the process of selection of experimental objects and data collection, we need to consider both data diversity and sufficiency. 
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Therefore, the selection of data set should according to the following principle: the experimental objects should have different 

scales and realize different functions to ensure diversity. In addition, to guarantee the data adequacy, there must be sufficient 

changed methods between two adjacent versions. Finally, 8 open-source Java projects in the Spring series are selected for 

empirical research. Their brief introductions are as follows: 
 

• Framework: it provides a comprehensive programming and configuration model for contemporary java-based 

enterprise applications. 

• Security: it is a powerful and highly customizable framework for authentication and access control. 

• Boot: it is used to easily create stand-alone, production-level Spring-based applications, most of which require very 

little Spring configuration. 

• Integration: it provides a simple model for building enterprise integration solutions. 

• Batch: it provides a lightweight and comprehensive Batch processing framework for developing powerful Batch 

applications that are critical to the daily operation of enterprise systems. 

• Session: it provides an API and implementation for managing user Session information. 

• Data mongodb: it is part of the Spring Data project, which aims to provide a familiar and consistent Spring-based 

programming model for new Data storage. 

• Data gemfire: it aims to make it easier to build highly extensible Spring-driven applications using Pivotal gemfire as 

the underlying distributed memory data management platform. 
 

Table 4 summarizes the details of the experimental data set, showing their first and last versions, where |𝑣| represents 

the number of versions selected in the study. As shown in Table 4, we conduct our experiments on total 994 versions of 8 

projects, which makes our results more convincing. 
 

Table 4. Experiment subjects 

Project name First version Last version |𝑣| 
Spring framework v3.0.0.M1 v5.1.5.RELEASE 146 

Spring security 1.0.0 5.2.0.M1 123 

Spring boot v0.5.0.M1 v2.2.0.M1 123 
Spring integration v1.0.0.M1 v5.2.0.M1 178 

Spring batch spring-batch-1.0-m2 4.2.0.M1 91 

Spring session 1.0.0.RC1 2.2.0.M1 53 
Spring data mongodb 1.0.0.M1-MongoDB 2.2.0.M4 143 

Spring data gemfire v1.0.0.M1 2.2.0.M4 137 

 

3.3. Analysis Methods 
 

This paper adopts the Logistic Regression method to analyze the correlation between code contributors and code smell from 

multiple features.  
 

Logistic regression is a generalized linear model. The dependent variable of logistic regression can be two-category or 

multi-category, while the two-category is more commonly used and easier to be explained. Multi-category can be processed 

by softmax. In this paper, the dependent variable has two values 0  and 1 , which indicates whether it is a potential 

introduction of code smell. The formula of logistic regression is: 
 

𝜋(𝑥1, 𝑥2, ⋯ , 𝑥𝑛) =
𝑒𝑤0+𝑤1𝑥1+𝑤2𝑥2+⋯+𝑤𝑛𝑥𝑛

1 + 𝑒𝑤0+𝑤1𝑥1+𝑤2𝑥2+⋯+𝑤𝑛𝑥𝑛
  (6) 

 

In Equation (6), 𝑥1, 𝑥2, ⋯ , 𝑥𝑛 are independent variables in this paper, representing the number of code contributors, 

closeness, maturity, experience, and clustering in the method. 𝑤1, 𝑤2, ⋯ , 𝑤𝑛 represent the weights of independent variables 

obtained by regression. 
 

4. Experimental Results and Analysis 
 

This section will show the result of our experiment of the 8 projects in detail and analyze the corresponding results to obtain 

relevant features that may lead to the introduction of code smell. 
 

4.1. The Evolution of the Number of Code Contributors at File Level (RQ1) 
 

This paper firstly presents the number of code contributors for smelly and non-smelly files at the file level to get a preliminary 
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understanding of the code contributor characteristics. Figure 2 shows the average number of code contributors included in 

two types of files. The 𝑥-axis in the figure represents the version, and the 𝑦-axis represents the average number of code 

contributors contained in the file, where the blue solid line and the green dotted line represent the average number of code 

contributors in smelly files and non-smelly files respectively. As shown in Figure 2, the smelly files contain more contributors 

than the non-smelly files in all projects. Besides, the average number of code contributors fluctuates with different amplitudes 

as the software evolves. However, the number of contributors in smelly files and the non-smelly files fluctuates consistently. 

 

 
Figure 2. Average number of code contributors in smelly files and non-smelly files 

 

It's not hard to notice that there are several versions in most of the projects where the number of contributors increased 
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sharply. By further analyzing these versions, it is found that when the number of files in these versions was relatively stable, 

the average number of files participated by new code contributors increased significantly, compared to other versions of the 

same project. 

 

In summary, at the file level, smelly files contain a higher number of contributors than non-smelly files. However, it is 

difficult to make sure whether the number of code contributors will affect the introduction of code smells at the file level. 

Therefore, it is necessary to further conduct fine-grained research. 

 

4.2. Multi-Feature Exploration of Code Contributors at Method Level (RQ2) 

 

In order to further explain why smells are introduced, we investigate various features of the code contributors, including the 

number of contributors, closeness, maturity, experience and clustering. Then, this study uses logistic regression to show how 

these features are related to PSIMs. Table 5 shows the results of the analysis on code contributors based on multiple features. 

When the regression coefficient is positive, it means that the feature is positively correlated with PSIMs, and if it is negative, 

it means that the feature is negatively correlated with PSIMs. If the significance value is less than 0.05, it indicates that  the 

feature has a significant impact on PSIMs. 

 
Table 5. Analysis results of code contributors based on multiple features 

  Framework Security Boot Integration Batch Session 
Data 

mongodb 

Data 

gemfire 

Number 

regression 

coefficient 
0.195 0.328 0.338 0.391 0.270 0.013 -0.031 0.350 

significance 0.000 0.109 0.000 0.000 0.008 0.970 0.838 0.018 

Closeness 
regression 
coefficient 

-0.278 -1.051 0.051 0.341 -0.471 0.657 -1.449 -1.638 

significance 0.013 0.011 0.760 0.105 0.121 0.549 0.002 0 

Maturity 

regression 

coefficient 
-0.004 -0.001 -0.005 -0.008 -0.026 -0.041 -0.018 -0.006 

significance 0.000 0.780 0.002 0.000 0.000 0.055 0.000 0.021 

Experience 

regression 

coefficient 
0.000 0.000 0.000 0.000 0.001 -0.034 0.011 0.007 

significance 0.000 0.195 0.203 0.274 0.002 0.172 0.000 0.000 

Clustering 
regression 
coefficient 

0.614 1.665 -0.275 -0.643 0.392 0.674 1.309 -1.386 

significance 0.005 0.004 0.215 0.000 0.061 0.621 0.031 0.014 

 

From the results, it can be seen that in all projects except Data mongodb, the number of code contributors have a positive 

correlation with PSIMs, and it is statistically significant in the regression analysis model in 5 projects. Maturity presents a 

negative correlation with PSIMs in all projects. That means, the more versions the contributors are involved in, the more likely 

they are to avoid the introduction of smells, which is in line with our expectations. 

 

The relationship between PSIMs and other features (closeness, experience and clustering) is inconsistent in different 

projects. Besides, it is not difficult to note that for Session, all the research features are not significant in the logistic regression 

model. We guess that it is because Session has a smaller number of versions as well as smaller version size than other projects. 

For Data mongodb, there are also the same problems on the fewer smelly files, and the impact of the number of contributors 

on the introduction of smell is inconsistent with other projects. 

 

4.3. Single Feature Analysis of Code Contributors at Method Level (RQ3) 

 

Based on the results of RQ2, the introduction of code smells is more related to the number and maturity of contributors. Thus, 

in this section, these two features are further analyzed separately. It mainly shows the concrete and intuitive connection 

between the two features of code contributors (the number and the maturity) and the introduction of smells by comparing the 

average values of these features in PSIMs with other methods. The study considered only files containing both PSIMs and 

other methods in the smelly files to ensure the accuracy of the data. 

 

Figure 3 shows the average number of contributors in PISMs and other methods. In the figure, the 𝑥-axis, such as 

Framework-S, represents the PSIMs in Framework project. Framework-N represents other methods in Framework project. 

The 𝑦-axis represents the average number of code contributors. It is not difficult to see from Figure 3 that in all projects, the 

PSIMs contain a large number of code contributors, and the median value is also significantly higher than other methods. 
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Figure 4 shows the average maturity of contributors in PSIMs and other methods for each smelly file. The x-axis in Figure 

4 is similar to Figure 3, and the y-axis represents the average maturity of the contributors. From the data distribution and the 

median value in Figure 4, it is shown that in all projects, the PSIMs have a lower average code contributor maturity. It is 

consistent with the conclusion that the contributor maturity of all projects is negatively correlated with PSIM in logistic 

regression. 

 

 
Figure 3. Average number of code contributors in PSIMs and other methods 

 

 
Figure 4. Average maturity of code contributors in PSIMs and other methods 

 

To sum up, by investigating both at the file level and method level, we can turn to the conclusions that the number of 

code contributors who participate in the project can affect the quality of the code. The higher the number of developers 

involved, the more likely it is to lead to the irregular structure of code, so as to increase the maintenance cost of the code. 

Furthermore, both in multiple and single features analysis, code contributor maturity is negatively correlated with PSIMs. 

Thus, in the process of software development and evolution, developers who are familiar with the project itself can contribute 

to better programming. 

 

4.4. Threats to Validity 

 

Similar to many empirical studies, our work has some limitations in internal and external validity. 

 

1) Internal Validity: one of the major threats to validity is the correctness of our experiment environment. Firstly, we 

chose DECOR to detect smells from recent tools [4, 6, 16-20]. The description of smells may have some subjective features, 
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which are the potential threats to our study validity. However, as a widely used smell detection tool, its recall reached 100%, 

and the average accuracy is more than 60%. Therefore, we think it is acceptable in our experiment that we used DECOR to 

detect code smells. 

 

2) External Validity: we conducted our study on 8Java projects. These projects have a relatively large size and have been 

applied in different domains. We have explored a total of 994 versions. The data collected from these versions is large enough 

to support our experiment. We believe that due to enough experimental scale, our experimental results are reliable. 

Furthermore, our experiment was conducted at the file level and method level, which makes our experiment more acceptable 

and convincing. 
 

5. Related Work 
 

Code smells were first proposed by Fowler et al. [21]. They described 22 particular structures of code that contain design 

problems in software development and maintenance. 
 

Code smell changes with the evolution of software. Chatzigeorgiou et al. [9] studied the evolution of smell in the system 

and found that in most cases, code smell persists in the development and evolution of software. Olbrich et al. [22] conducted 

a study on Gods and Shotgun Surgery, showing that the evolution of smell presents different characteristics in different stages 

and has a variety of change frequency and size. In our study, we not only focus on the smell changes with the evolution of 

software, but also compare the different code smells from the perspective of code contributors, so as to get the relationship 

between the kind of code smells and features of code contributors. 
 

Khomh et al. [11] explored the impact of smells on change-proneness and fault-proneness in 54 versions of 4 projects. It 

was found that classes containing code smells tend to change more significantly in almost all versions of the study. The results 

also indicated that some smells had a high correlation with change-proneness and fault-proneness, such as AntiSingleton, 

while others had no significant correlation, and some correlation did not persist in the system, such as 

ClassDataShouldBePrivate. In this paper, inspired by their work, we define the potential smell-introducing method, making 

our research more convincing. 
 

Tufano et al. [15] conducted a large-scale empirical study on the software evolution history of 200 open source projects 

to explore when and why smells were introduced. This study fills a gap in the academic understanding of code smells. This 

study figured out that most code smells are introduced when code instances are added to the system. By exploring the purpose 

of submission, the state of the project, and the state of the developer, they found that developers were more likely to introduce 

code smells when improving existing features or adding new features. In terms of the state of the project, most of the smells 

occurred in the last month before release, confirming that the deadline pressure on developers was one of the main causes of 

the smells. Our work was partially motivated by their conclusions. However, we aim to figure out whether the inside features 

of code contributors themselves are related to the code smells in their codes, instead of outside pressure. More specifically, 

we study which feature of code contributors will have a significant impact on the introduction of code smell. 
 

6. Conclusion 
 

There are few studies focused on the correlation between code smell and human features. In order to reveal the relationship 

behind them, we conducted an extensive empirical study to investigate the correlation between them. 
 

In this paper, we define five features of code contributors both from individuals and cooperations, representing the 

features both from individuals and teams. The impact analysis is performed at multiple levels, including file level and method 

level, which provides a better understanding of the introduction and state of code smells. The empirical study is conducted on 

994 versions of 8 projects, providing guidelines for building code contributor teams. Based on the results we obtained, we can 

obtain the following conclusions: 
 

• At the file level, smelly files contain more contributors than non-smelly files. 

• At the method level, the number and maturity of code contributors are significantly correlated to smell introducing, 

while other features present inconsistent characteristics in different projects. 

• The greater number of contributors involved, the more likely it is to introduce code smell. Having more mature 

contributors who participate in more versions in the project can avoid the introduction of code smell. 
 

The results and analysis provided by our empirical study suggest to streamline the structure of developers and choose 

high-maturity code contributors. 
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In future work, more empirical studies on other projects will be conducted to confirm our conclusions. Moreover, the 

specific human feature, such as centrality or ownership will be defined to discuss their impact on code smell. 
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